
HAL Id: emse-00489020
https://hal-emse.ccsd.cnrs.fr/emse-00489020

Submitted on 3 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Vector Approach to Cryptography Implementation
Jacques Jean-Alain Fournier, Moore Simon

To cite this version:
Jacques Jean-Alain Fournier, Moore Simon. A Vector Approach to Cryptography Implementation.
First International Conference DRMTICS 2005, Oct 2005, Sydney, Australia. pp.277-297. �emse-
00489020�

https://hal-emse.ccsd.cnrs.fr/emse-00489020
https://hal.archives-ouvertes.fr

A Vector Approach to Cryptography
Implementation

Jacques J.A. Fournier1,2 and Simon Moore1

1 University of Cambridge, Computer Laboratory, UK
{Jacques.Fournier,Simon.Moore}@cl.cam.ac.uk

2 Gemplus S.A, La Ciotat, France
jacques.fournier@gemplus.com

Abstract. The current deployment of Digital Right Management (DRM)
schemes to distribute protected contents and rights is leading the way
to massive use of sophisticated embedded cryptographic applications.
Embedded microprocessors have been equipped with bulky and power-
consuming co-processors designed to suit particular data sizes. However,
flexible cryptographic platforms are more desirable than devices dedi-
cated to a particular cryptographic algorithm as the increasing cost of
fabrication chips favors large volume production. This paper proposes a
novel approach to embedded cryptography whereby we propose a vector-
based general purpose machine capable of implementing a range of cryp-
tographic algorithms. We show that vector processing ideas can be used
to perform cryptography in an efficient manner which we believe is ap-
propriate for high performance, flexible and power efficient embedded
systems.

Keywords. Cryptography, AES, Montgomery Modular Multiplication,
RSA, vector architecture.

1 Introduction

Given the commercial value of digital contents, their management in mo-
bile equipments (like PDAs, mobile phones or smart-cards) has become
a critical issue for content issuers. Digital Right Management (DRM)
schemes are being worked on. For example the Open Mobile Alliance
(OMA) is working on a DRM architecture for the mobile industry [1].
In those DRM schemes, the distribution, management and protection of
data rely on the use of complex cryptographic protocols and algorithms.
In such a context, the processors used (in particular those in mobile
equipments) face constraints of size, power, cost, performance and secu-
rity.

During the past 15 years, we saw quite a few publications about hard-
ware modules for cryptographic applications. Most of those proposals
make use of processors which are very application specific. They are not
only optimized for one particular algorithm but also for particular sizes
to suit market requirements. For security, counter-measures have been

proposed, most of which are software-based leading to bulkier codes and
slower programs. A hardware-software co-design approach is being un-
dertaken by other researchers [2, 3, 4] in order to have a hardware that
would reduce the cost of those software counter-measures.

Our approach uses Data Parallel techniques for cryptographic applica-
tions. We first describe how we chose the vector design space. We then
illustrate how cryptographic algorithms can be vectorised by giving two
examples. This then takes us to the design of the corresponding vec-
tor processing machine before finally presenting results obtained on the
functional simulator. With this approach, we propose an architecture
which can achieve high performance and flexibility with little increase in
control logic compared to scalar processors. Those characteristics of per-
formance and flexibility are particularly relevant to DRM applications
where cryptographic applications are made to run on processors having
different constraints, going from the ‘computer terminal’ of the Rights
Issuer to the small embedded chip of the DRM Agent found in a mobile
equipment.

2 Having a quantitative approach

Recently, there has been an explosion in the use of cryptographic proces-
sors for embedded applications. For secret-key algorithms those hardware
implementations can be considered to be rather straight-forward. For
Public-Key systems however, given the complexity of the computations
involved, designers have been implementing systems for static lengths
(like having long-precision number multipliers for example). Some have
been integrating crypto-oriented instructions into the instruction set of
General Purpose Processors (GPPs) [5, 6, 7]. Others had a more scalable
approach as depicted in [8]. But none have had a systematic approach
where hardware designers would look for a design which would be the
‘best’ trade-off between speed, security, chip area and power consump-
tion.

Having identified this need, we went back to the architecture design space
and look for the best architecture that would allow us to undertake
such a quantitative study. Note that this paper focuses on the micro-
architecture design of a cryptographic accelerator. Issues of security (and
related countermeasures) are beyond the scope of this paper.

2.1 A case for a vector architecture

According to [9], the architecture design space can be decomposed into a
tree shown in Figure 1. From there, our approach was to parse through
that tree and decide on the best design approach for our cryptographic
algorithms.

Single Instruction Scheme Processors are chosen in order to maintain
compatibility with existing smart-card chips. Having a Multiple Instruc-
tion Scheme would imply having a multi-processor system which does

Architecture Design Space

Multiple Instruction Scheme
 Single Instruction Scheme

Data Level

Parallel

Instruction Level

Parallel

Sequential

Vector
 SIMD
 Independance
 Dataflow
 Superpipelined
 CISC

RISC
VLIW
 Superscalar

TTA

Fig. 1. Tree decomposition of the architecture design space

not fit with actual power and size constraints on embedded chips. In-
struction Level Parallel architectures were also put aside because having
parallel instruction executions:

– requires complicated instruction decoding and scheduling units, which
be against our motivation of reducing complexity.

– implies the use of very sophisticated instruction decoders and is-
suers, which consume a lot of power as illustrated in [10]. In the
latter paper, the authors that in a superscalar microprocessor where
instructions are issued in parallel, the instruction issue and queue
logic accounts for nearly one quarter of the total energy consumed
by the processor while another quarter is accounted for by the in-
structions’ reorder buffers.

– is not well suited for those particular applications: most crypto-
graphic algorithms involve the sequential use of precise instructions
or operations leaving little room for parallelism at this level.

A Data Level Parallel approach was chosen because

– the data used by those cryptographic algorithms can be decomposed
into a vector of shorter data onto which operations can be applied
in parallel (or partially-parallel) as illustrated in this paper.

– The instruction decoding is simpler, i.e. no dedicated logic is required
for dynamic instructions’ schedule and reordering.

– In terms of security, working on data in parallel can in theory reduce
the relative contribution of each data piece to the external power
consumption as announced by [11].

Hence we used Data Level Parallel techniques to design our crypto-
graphic processing unit. Our design’s vector machine is controlled by
a General Purpose Processor (GPP) which also allows the optimal exe-
cution of ‘scalar’ codes1.

1 In this paper, a scalar code is an algorithm’s code implemented on a scalar machine
(MIPS-I) and a vector code is an algorithm’s code implemented on a vector machine
(VeMICry).

3 Proposed methodology for vectorizing
cryptographic algorithms

We chose two case studies to illustrate how cryptographic algorithms can
be vectorised: the AES symmetric key algorithm and modular multipli-
cation based on Montgomery’s algorithm (used in both RSA or Elliptic
Curves Public Key Cryptography). For each of those case studies we look
at their performance on a scalar MIPS-I architecture ([12, 13]). We iden-
tify the most time-consuming operations. We then show how the latter
can be improved by having a vector approach based on an instruction
set defined in Appendix A. In section 5 we show how these algorithms
perform on our functional simulator.

3.1 Vectorising the Advanced Encryption Standard

The AES algorithm is described in [14]. The algorithm is meant to work
for key lengths namely 128, 192 or 256 bits. In this study, we will con-
centrate on the 128-bit version of the AES as it is very representative of
what’s happening.

Scalar Implementation on the MIPS Our test implementation
on the MIPS-IV is illustrated in Figure 2. The key schedule is done
first and the sub-keys stored in RAM. The encryption process is then
executed. No counter-measures are implemented. We focus on the en-
cryption process.

Table 1 is an analysis of the time taken the different processes. This
provides an indication of the most penalizing operations, in particular
the KEY-SCHEDULE, SUBBYTE and MIXCOLUMNS operations.

Sub-Process] clock-cycles] times called Total % of total encryption

KEY-SCHEDULE 508 1 508 16

ADDRNDKEY 16 11 176 6

SUBBYTE 68 10 680 22

SHIFTROWS 26 10 260 8.5

MIXCOLUMNS 143 9 1287 42

Table 1. Decomposition of the AES-128 encryption

Vector Approach to AES We applied a vector approach to the
encryption. We propose to vectorise the different processes as follows
(based on instructions from Appendix A).

The ADDRNDKEY is a byte-wise XOR between the data matrix and the
corresponding sub-key matrix. This operation is applied to each column
(which corresponds to a 32-bit word. With our vector ISA, the ADDRNDKEY
can be implemented in just four instructions:

M0

+

SUBBYTE

SHIFTROWS

MIXCOLUMNS

M1
 M2
 M3
 K0
 K1
 K2
 K3

+

C0
 C1
 C2
 C3

SUBBYTE

SHIFTROWS

+

Round 1

Round 9

SUBBYTE

SHIFTROWS

MIXCOLUMNS

+

:

:

Transform K3 -> T3

K3
 K'2

+

K'3

K2
 K'1

+

K'2

K1
 K'0

+

K'1

K0
 T3

+

K'0

 :

 :

 :

 :

 :

 :

Fig. 2. AES structure

VLOAD V0, (adr_key), 3 # loads 4 words into V0

starting at address ‘adr_key’

VLOAD V1, (adr_data), 3

VXOR V2, V0, V1

VSTORE V2, (adr_data), 3

The SUBBYTE is a byte-wise look-up process. For this purpose we have
a VBYTELD Vx, Ry, m instruction as explained in Appendix A. Such an
instruction can be implemented given we have the memory organization
described in Section 4.2. Note that this optimization is also useful for
the KEY-SCHEDULE.

Originally the SHIFTROWS function is composed of left rotations on each
row of the data matrix and if we had represented each row of the data
matrix on a 32-bit word, the SHIFTROWS would have been very simple. But
in our implementation, each 32-bit word is one column of the data matrix,
hence the difficulty of implementing this operation. Suppose we have
the operations VTRANSP and VBCROTR2 (Vector-Bit-Conditional-Rotate-
Right), the SHIFTROWS operations can be implemented as follows:

VLOAD V0, (adr_data), 3 # loads 4 words of data into V0

VTRANSP V1, V0, 4 # V1 = V0 transposed

ADDIU R11, 0x000E

MTVCR R11 # VCR = 1110b

VBCROTR V2, V1, 24 # V2 = V1 whose words indexed 1,

2,3 are rotated right by 24 bits

ADDIU R11, 0x000C

MTVCR R11 # VCR = 1100b

VBCROTR V1, V2, 24 # V1 = V2 whose words indexed 2,3

are rotated right by 24 bits

ADDIU R11, 0x0008

MTVCR R11 # VCR = 1000b

VBCROTR V2, V1, 24 # V2 = V1 whose word indexed 3

is rotated right by 24 bits

VMOVE V0, V2, 4 # V0 = V2 transposed

VSTORE (adr_data), V0, 3 # stored words indexed 0,1,2,3

of V0 to address of data

The MIXCOLUMNS operation is the most time consuming one as shown in
Table 1. It is a matrix multiplication working on each column as defined
below:
0
BB@

a′

b′

c′

d′

1
CCA =

0
BB@

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

1
CCA •

0
BB@

a
b
c
d

1
CCA =

0
BB@

x · a + (x + 1) · b + c + d
a + x · b + (x + 1) · c + d
a + b + x · c + (x + 1) · d
(x + 1) · a + b + c + x · d

1
CCA (1)

2 See Appendix A

such that
0
BB@

a′

b′

c′

d′

1
CCA =

0
BB@

x(a⊕ b)⊕ b⊕ c⊕ d
x(b⊕ c)⊕ a⊕ c⊕ d
x(c⊕ d)⊕ a⊕ b⊕ d
x(a⊕ d)⊕ a⊕ b⊕ c

1
CCA (2)

Each of the individual byte multiplications is done in the field GF(28),
modulo the irreducible polynomial given by

m(x) = x8 + x4 + x3 + x + 1 (3)

whose binary representation is 0x11B. The central operation is hence the
multiplication operation by x modulo m(x). Given the instructions in
Appendix A, the MIXCOLUMNS operation can be implemented as follows:

VLOAD V0, (adr_data), 3 # loads 4 words in V0.

Suppose each word of V0

is made up of bytes (a,b,c,d)

ADDIU R11, R0, 0xFFFF

MTVCR R11 # VCR = 0xFFFF

VBCROTR V1, V0, 8 # Each word of V1 = (d,a,b,c)

VBCROTR V2, V0, 16 # Each word of V2 = (c,d,a,b)

VBCROTR V3, V0, 24 # Each word of V3 = (b,c,d,a)

VXOR V4, V0, V3 # Each word of V4 =

(a+b,b+c,c+d,d+a)

ADDIU R11, R0, 0x011B

MTVCR R11 # VCR = 0x011B

VMPMUL V5, V4, R0 # Each byte of V4 is shifted

by 1 bit left and XORed with

last byte of VCR if outgoing

bit is 1.

Mult. by ‘x’ mod 0x011B.

1 word of V5 =

(x(a+b),x(b+c),x(c+d),x(d+a))

VXOR V0, V5, V1 # 1 word of V0 = (x(a+b)+d,

x(b+c)+a,x(c+d)+b,x(d+a)+c)

VXOR V0, V0, V2 # 1 word of V0 = (x(a+b)+d+c,

x(b+c)+a+d,x(c+d)+b+a,x(d+a)+c+b)

VXOR V0, V0, V3 # 1 word of V0 = (x(a+b)+d+c+b,

x(b+c)+a+d+c,x(c+d)+b+a+d,

x(d+a)+c+b+a)

VSTORE V0, (adr_data), 3

3.2 Vectorizing Montgomery’s Modular Multiplication

Two commonly used Public Key algorithms are RSA and ECC3. RSA is
based on the modular exponentiation of large integers (typically between

3 Elliptic Curve Cryptography

1024 to 2048 bits or more). ECC is based on the scalar multiplication
of a point on an elliptic curve in a finite field (either in Fp with p prime
or F2m). In both cases the most critical operation is the long precision
modular multiplication. In [15], the author looks at different techniques
for optimally implementing the modular multiplication operation. One
technique that came out of the lot, both in terms of performance and
code complexity, is based on the method originally proposed by Mont-
gomery in [16].

For our study, we looked at Elliptic Curve Cryptography over binary
fields [17]. The basic modular multiplication consists of multiplying the
co-ordinates of given points on the elliptic curve. Those co-ordinates have
a polynomial representation and the multiplication is done modulo an
irreducible polynomial in the same field. Modular multiplications have
been thoroughly studied and optimized. Methods like those proposed
in [18] based on Montgomery’s method are quite rapid algorithms. As
explained in [18], Montgomery’s algorithm can be implemented to inter-
leave the multiplication and the reduction phases. In the latter paper,
the authors show that we can use Montgomery’s algorithm to calculate
c(x) = a(x) · b(x) · r(x)−1mod f(x) where f(x) is an irreducible poly-
nomial. Given that we are working in the field F2m , the polynomials
involved in this algorithm are of length m, the authors in [18] show that
r(x) can be chosen such that:

r(x) = xk where k = 32M and M =
lm

32

m
(4)

If we suppose that the multiplicand a(x) can be decomposed into a linear
combination of 32-bit polynomials denoted by Ai(x) such that

a(x) = AM−1(x).x32(M−1) + AM−2(x).x32(M−2) + . . . + A0(x) (5)

we have the algorithm in Figure 3 for a 32-bit architecture: C0(x) is
the least significant 32-bit word of the polynomial c(x) and N0(x) is
the ‘Montgomery’s constant’, which is pre-calculated, such that N0(x) ·
F0(x) mod x32 = 1.

Input : a(x), b(x), f(x), M and N0(x)
Output : c(x) = a(x).b(x).x−32M mod f(x)

1. c(x) ← 0
2. for j = 0 to M − 1 do
3. c(x) ← c(x) + Aj(x) · b(x)
4. M(x) ← C0(x) ·N0(x) mod x32

5. c(x) ← c(x) + M(x) · f(x)
6. c(x) ← c(x)/x32

7. endfor

return c(x)

Fig. 3. 32-bit Montgomery Modular Multiplication

Scalar implementation on MIPS On the scalar MIPS, the modu-
lar multiplication takes about 22300 clock-cycles. In this test program, we
used test values from the field F2191 with a modulus f(x) = x191 +x9 +1
allowing us to store all values in registers. We thus spare additional mem-
ory accesses.

Vector approach to modular multiplication We looked at the
vector instructions that can help to enhance the execution of this ‘in-
terleaved’ Montgomery Modular Multiplication. As a result of which, we
obtain the following assembly code (The comments refer to the algorithm
in Figure 3):

.global MultBinPoly

.ent MultBinPoly

MultBinPoly:

lw $24, 16($29) # loading data size (M)

lw $2, 20($29) # loading the value of N0

vload $v0, $5, 5 # v0 <= b(x) on 6 words

vload $v1, $6, 5 # v1 <= f(x) on 6 words

vsmove $v3, $0, 8 # v3 cleared; (v3 == c(x))

addiu $15, $0, 0 # ’j’: loop init

sll $24, $24, 2 # $24 <= 4M

LoopBin:

add $8, $15, $4 # add. of j-th word of a(x)

lw $8, 0($8) # j-th word of a(x)

vspmult $v5, $v0, $8 # v5 <= a[j]*v0;(v0=b(x))

vxor $v3, $v5, $v3 # v3 <= v5 + v3

vextract $9, $v3, 1 # $9 <= C_0

vsmove $v2, $9, 1 # v2[0] <= $9;($9=C_0)

vspmult $v4, $v2, $2 # v4 <= N0 * v2

vextract $9, $v4, 1 # $9 <= M(x)

vspmult $v5, $v1, $9 # v5 <= v4[0]*v1;(v1=f(x))

vxor $v3, $v3, $v5 # v3 <= v3 + v5

vwshr $v3, $v3, 1 # v3 <= v3 shifted right by 1

addi $15, $15, 4 # Increase index by 4

as we read 4 bytes

bne $15, $24, LoopBin

nop

vstore $7, $v3, 5

j $31

nop

.end MultBinPoly

4 Proposed Architecture

Vector Processor techniques have been widely used either in super-computers
like the Cray machine [19] or in Digital Signal Processing applications

like on Intel’s MMX or the T0 architecture described in [20]. In the latter
example, the authors already use a MIPS-like scalar processor. In this
section we present the foundations for our vector architecture.

Our design aims at offering high performance for the parallel data cryp-
tographic processes without penalizing the scalar executions. Because of
this, we have an approach where we go from an already existing, highly
performing, General Purpose Processor and ‘plug’ in the vectorial co-
processor. This is particularly true with the MIPS architecture where
co-processor interfaces are well defined, easing user Application Specific
Extensions. The specification and definition of what we will call the Vec-
torial MIPS for Cryptography (VeMICry) has to be done on two levels:
– Resource/Architectural Level: definition of the resources present

in that vectorial unit (register files, processing units, memory inter-
face units . . .).

– Instruction scheduling and pipelining: Specification of the vec-
tor instructions’ execution with respect to the scalar pipeline in ad-
dition to the inner pipeline for each of the vector instruction.

4.1 Architectural specification

Appendix A of [21] provides a comprehensive picture of the theory behind
vector processing and its application to micro-processors. To suit the
MIPS ‘load-store’ architecture and to avoid complex memory accesses,
we chose a Register-to-Register vector architecture: we hence hope to
reduce memory-register transfers, which are the privileged attack paths
for side channel analysis. Note that in this paper we work only on code
implemented directly in assembly language, which means that we will
not be talking about compiler optimization techniques.

4.2 Vector Register File

The structure and architecture of the vector register file will be the de-
terminant factor in defining the rest of the architecture. 6 factors will
determine the structure of our vector register file:

– m: The size of each element of the vector elements (m = 32).
– q: The number of such vector registers.
– p: The number of elements in each vector register. This will be called

the depth of each vector.
– r: The number of lanes into which the vector registers are organized.

This notion is borrowed from [20] where it is associated to the num-
ber of VPUs4 available to the VeMICry. We have as many lanes as
there are VPUs. Ideally we would have r = p allowing us to work on
the p elements in parallel: the jth VPU for example would be ‘asso-
ciated’ to a register file made of all the jth elements of all the vector
registers. However, in some cases, for size and power constraints we
will not be allowed p VPUs. We leave r as a parameter for our anal-
ysis as to what would be the best performance to size trade-off. As

4 Vector Processing Units

a result, the jth VPU will be associated not only to the jth elements
across the register file but also j + rth, j + 2rth. . .

– l: The number of elements of the vector processor onto which the
function is applied. Our analysis revealed that it would be interesting
to work on vector lengths which are not necessarily equal to the
depth of each vector register; specially in the case where r 6= p, both
in terms of speed and power consumption. Setting the vector’s length
could done by setting a configuration register for example5.

– The memory latency is also an important factor. This not only de-
pends on the number of read and write ports per VPU but also on
the definition of the interface with the memory or even how many
‘memory banks’ we could have in parallel. In our architecture, we
propose to have a software managed memory bank per lane. Within
each ‘bank’ we have 4 parallel concurrently accessible byte arrays of
say 1 kilobytes each. Such a structure allows each VPU to smartly
fetch four bytes in parallel, specially for the VBYTELD instruction.

:
:
:
:

:
:
:
:

:
:
:
:

:
:
:
:

:
:
:
:

..........

..........

:
:
:
:

..........

..........

:
:
:
:

:
:
:
:

:
:
:
:

..........

..........

VPUrVPU2VPU1

V0

V1

V2

Vq-2

Vq-1

[0] [1] [r-1][r][r+1] [2r-1] [p-r][p-r+1] [p-1]
V
E
C
T
O
R
S

E L E M E N T S

Fig. 4. Vector Register File

We obtain the register file architecture shown in Figure 4. We propose
to study the influence of those 6 factors on performance and area. In
addition to the Vector Registers, we identified the need for a Vector
Conditional Register (VCR) which is a p bit register, a Scalar Buffer
Interface (SBI) register to act as buffer from scalar values being shared
between the scalar core and the vector processing unit and a CARry
buffer (CAR) to store the most significant word or carry when doing
addition or multiplication (in particular when l = p).

4.3 Vector Instruction Execution & Scheduling

In this section we briefly describe the schedule and execution of the vec-
tor instructions. A vector instruction is meant to replace what would be

5 Note that this factor is relevant when pipeline issues come into consideration. For
the functional simulator, we assume that we work on all p elements

in software a loop; a loop where the data being operated on are indepen-
dent from each other and where the calculation of each iteration of the
loop is independent from the calculation of the neighboring iterations.
However by looking at some of the instructions in Appendix A, we can
see that operations like VADDU, do not obey to this basic requirement. For
such instructions we will take advantage of the fact that the calculation
on each element of the vector is only ‘partially’ independent from that
on its neighbors.

From then on, we define three classes of vector instructions:

Definition 1. A Genuinely Independent Vector Instruction (GIVI)
is one where the transformation applied to every element of the operand
vectors is independent from the application of that same transformation
on this same element’s neighbors.

Definition 2. A Partially Independent Vector Instruction (PIVI)
is one where the transformation applied to every element of the operand
vectors depends partially on the result of the same operation applied to
one of its neighbors.

Definition 3. A Memory Accessing Vector Instruction (MAVI) is
a vector register-memory instruction where a memory access is required
for the application of the required transformation on every element of the
operand vectors.

Each of those groups of instructions has its own dependency constraints
which lead to the definition of a characteristic sequence of execution’s
decomposition for each group. The instruction decoding is handled by
the scalar MIPS as part of its ‘normal’ five stage pipeline:
– IF: Instruction Fetch.
– ID: Instruction Decode.
– EX: (Scalar) Execution Stage.
– DC: Data Cache read and alignment.
– WB: Write Back stage.

Upon the detection of a vector instruction, each VPU enters into its own
four stage pipeline:
– Data Fetch (DF) stage where each VPU fetches the two (depend-

ing on the instruction) elements from the target vector registers. If a
scalar register is involved, the value is fetched from the latter scalar
register and written back into the SBI register.

– Execute-Multiply (EXM) stage where the VPU performs the
corresponding multiplication or addition calculation for a PIVI. For
a GIVI or a MAVI, nothing is done.

– Execute-Carry (EXC) stage where the ‘carry’ selection is done
for the PIVIs and the latter’s calculation is completed. For a GIVI
or a MAVI, the corresponding calculation/manipulation is done onto
the arguments fetched in stage DF.

– Write Back (WB) stage where the result from the VPU is written
back to the corresponding element of the destination vector register.

It is left to the software to make sure the vector register length is properly
set before doing any vector instruction when working on vectors of length
l < p.

GIVI execution Let’s consider the general case where p is ‘too’ large
and that we only have r VPUs where r ≤ p (could be specially true
for embedded processors). This means each VPU will have to enter

�
p
r

�
times in order to apply the required operation on all p elements of the
targeted vector registers as shown in Figure 5. Hence the next vector
instruction will only be issued

�
p
r

�
cycles later.

Fig. 5. Timing relationship between scalar & vector executions

PIVI execution In a Partially Independent Vector Instruction, the
calculation on every element of the vector register depends on the calcu-
lation of the neighboring elements: the functions concerned by this cate-
gory are VADDU, VSPMULT, VSAMULT and VTRANSP. For the optimal schedule
of the PIVI instructions we will assume that each VPU has an internal
‘temporary’ 32-bit register. Most the above mentioned instructions have
to handle the addition of vector elements and to anticipate on the carry
being propagated from the neighboring least significant element. To do
so, we assume that each VPU has a 32-bit Carry Select Adder (CSA):
at each addition step the addition is performed for both cases where ‘in-
coming’ carry is 0 or 1 and the ‘correct’ output is determined once the
correct carry is known. Like this the PIVI instruction can be made to
have the same instruction issue rate as the GIVI.

MAVI execution Looking back at the Appendix, we have three MAVI
instructions: VBYTELD, VLOAD and VSTORE. Each VPU has its own software
managed memory which is the VPU can access by bytes (with 4 bytes in
parallel) for the VBYTELD instruction and by 32-bit words for VLOAD and
VSTORE. With such an arrangement the issue rate would be

�
p
r

�
.

Vector instructions’ chaining and hazards If we work on vector
depths which are greater than the number of VPUs, an instruction may
take several iterations as illustrated Figure 5 for a GIVI instruction. The
main type of hazard we might be confronted which is data hazard. Data
hazards occur when the instruction I has as operand the result from the
preceding instruction I − 1. With our vector operations, data hazards
occur when an instruction takes only 1 or 2 iterations (i.e. p

r
≤ 2). For

instructions having a larger number of iterations, the latency incurred by
the multi-iteration process diffuses the data dependency. The following
table describes the different data hazards that might occur between an
instruction I − 1 and the instruction I and how, when this is possible,
pipeline stalls can be avoided by using data feed-forward mechanisms.

I-1 I Description Stall? Bypass Required

GIVI GIVI Calculation done at
EXC stage

No stall Data forwarded from the
EXC stage of I − 1 to the
EXC stage of I

GIVI PIVI PIVI needs result at
EXM stage

Pipeline stalls
after ID stage

Data forwarded from the
EXC stage of I − 1 to the
EXM stage of I

PIVI GIVI PIVI needs result at
the EXM stage

No stall Data forwarded from the
EXC stage of I − 1 to the
EXC stage of I

PIVI PIVI PIVI needs result at
the EXM stage

Pipeline stalls
after ID stage

Data forwarded from the
EXC stage of I − 1 to the
EXM stage of I

Table 2. Data Dependencies on the vector instructions

5 Functional Simulation

We started by building a functional simulator for our VeMICry architec-
ture: a functional architecture allows us to test the vector code presented
in Sections 3.1 and 3.2. Moreover, with such a simulator, we can perform
performance studies in terms of instruction cycles and see the effect of
the parameters from Section 4.2.

5.1 Use of the ArchC simulation tool

The ArchC tool is an architecture description language which is devel-
oped by the Computer Systems Laboratory of the Institute of Computing
of the University of Campinas (www.archc.org). The tool allows to build
an architectural instruction simulator which is composed on:

– A language description used to describe the target architecture in-
cluding the memory hierarchy (AC ARCH) and the instruction set
architecture (AC ISA).

– A simulator generator (ACSIM) which uses the above description
language to generate a Makefile which is then used for building a
SystemC model.

It is based on a widely used commercial tool like SystemC [22] and allows
to build quite simple architectures which is sufficient for our immediate
needs. Moreover, the simulation software builder is based on GCC (
www.gnu.org). Hence it is easy to modify the instruction set. The idea
behind this study is to build a simulator of our VeMICry architecture to
test the vector instructions described in A and perform some preliminary
performance studies in terms of instruction cycles.

5.2 Building the functional model

Our architecture is based on the 32-bit MIPS architecture with an in-
struction set fully compatible with the (basic) MIPS-I family. Moreover,
we hacked GCC’s Assembler to compile our vector codes.

The backbone of the VeMICry model is composed of the definition files of
the MIPS-I model which we have upgraded to add our vector instructions.
In our model model:

– We have 8 vector registers (q = 8).
– Each vector is composed of 8 × 32-bit elements (p = 8).
– We have 8 VPUs working in parallel (r = 8). Hence there are eight

lanes where in the jth lanes the jth VPU works across the jth ele-
ments of the vector registers.

– We assume that each instruction is executed in 1 cycle (only a func-
tional model).

The simulator generates a series of basic statistics like the sequence of
instructions executed (vemicry.dasm), a trace of the Program Counter
(vemicry.trace) and the occurrences of each instruction along with the
number of cycle-counts (vemicry.stats).

5.3 Functional simulation of vectorised AES

As explained previously, the vector instructions are used to optimize
the SHIFTROWS, MIXCOLUMNS, ADDROUNDKEY and SUBBYTE operations. The
KEY SCHEDULE is implemented as a separate routine.

We validated the results generated by our vector AES encryption code.
Simulations show that encrypting 16 bytes (for an AES-128) takes 160
instruction cycles. In addition to this the KEY SCHEDULE took 246 instruc-
tion cycles. Those figures represent a large gain in performance when
compared to the same algorithms implemented the scalar MIPS. For the
scalar code the key schedule took 519 instruction cycles and the encryp-
tion took 3283 cycles.

More performance gain is achieved when we encrypt larger data files.
We ran simulations where we encrypted 32 bytes with one same key, i.e.
we ran the KEY SCHEDULE once and the encryption codes was modified to
work on 8 words of each vector register. Encrypting 32 bytes took 182
instruction cycles. This illustrates a major advantage of our architecture:
depending on the depth of vector registers, we are able to encrypt large
data tables with little performance penalties.

Another big advantage with our approach is that robust software counter-
measures (like those described in [2]) can be implemented to compensate
for any side-channel information leakage.

5.4 Simulation of vectorised Montgomery multiplication
in binary fields

On the VeMICry, the calculation of the Montgomery’s constant is ex-
ecuted in 22 instruction cycles. The main part of the modular multi-
plication takes 97 instruction cycles. The same modular multiplication
operation takes 22331 instruction cycles on the scalar MIPS.

Note that our test values are taken from the field GF (2191), which means
that the data values have a maximum length of 192 bits. Given that in
the actual architecture each vector register has 8 elements, each vector
register is used to hold the 192 bits of each variable. With a depth of
8, we could work on up to 256-bits ECC (with the same number of in-
struction cycles), which would be far from what would be required for
the next 20 years or so.

Note that in the preceding example, we perform a reduction by 32 bits
each time. However, one could envisage to perform a reduction by 64
bits as this would mean that we would have half as many loops. In the
algorithm depicted in Figure 3, each word is on 64 bits, which means
that the calculated N0 is also on 64 bits and also the we shift by 64 bits
in the end. We only perform half the number of loops.

We modified the vector code presented at the end of section 3.2 to emu-
late this reduction by 64 bits. The calculation of N0 took 72 instruction
cycles and the modular multiplication itself took 84 instruction cycles.
Note that N0 can be calculated only once at the beginning of the sig-
nature algorithm and hence for comparing performances, we focus only
on the multiplication algorithm. Performance gain when doing a 64-bit
reduction is of the order of 13% compared to the same algorithm imple-
mented with a reduction by 32 bits. This gain is achieved at the expense
of one additional vector register.

6 Ongoing research

To have a significant quantitative study, it makes sense to study modular
multiplications on larger values like in RSA. So the next phase of the

study is to test the modular multiplication on 1024 to 2048 bit values
and see how the number of instruction cycles changes by varying the
different sizes of the vector architecture. Then we will be implementing
a synthesisable Verilog model to add the ‘gate count’ parameter to our
benchmark.

7 Conclusion

In this paper we proposed a vector architecture for embedded cryptogra-
phy. We have shown how the vector approach is relevant to cryptography
and how cryptographic algorithms can be efficiently vectorised. We built
and validated a functional model of our vector architecture. The vector
architecture combined with our proposed instructions have helped us to
reduce the number of cycles taken for an AES encryption from 3283 on
the MIPS-I to 160 on the VeMICry. Likewise, modular multiplication
in the field GF (2191) has been reduced from 22331 instruction cycles to
84 cycles. We can anticipate that each lane will be at least (if not less)
complex than a scalar MIPS. This would mean that our vector approach
is a sound one given the performance figures measured. Further research
is currently being done to study the complexity of our vector architec-
ture and find the best trade-off between performance, size and power
consumption.

References

[1] Open Mobile Alliance, “DRM Specification V2.0 Candidate
Version 2.0 - 26 April 2005,” Tech. Rep. OMA-DRM-DRM-V2 0-
20050426-C, Open Mobile Alliance (OMA), April 2005.

[2] M.-L. Akkar and C. Giraud, “An Implementation of DES and
AES, Secure against Some Attacks,” Proceedings of the Workshop
on Cryptographic Hardware and Embedded Systmes (CHES 2001),
vol. LNCS 2162, pp. 309–318, 2001.

[3] J. Zambreno, A. Choudhary, R. Simha, and B. Narari, “Flex-
ible Software Protection Using Hardware/Software Codesign
Techniques,” Proceedings of Design, Automation and Test in Eu-
rope Conference and Exhibition (DATE’04), vol. 01, no. 1, p. 10636,
2004.

[4] J.-F. Dhem and N. Feyt, “Hardware and Software Symbiosis helps
smart card evolution,” IEEE Micro, vol. 21, no. 6, pp. 14–25, 2001.

[5] J. P. McGregor and R. Lee, “Architectural techniques for accelerat-
ing subword permutations with repetitions,” IEEE Transactions on
Very Large Scale Integration (VLSI) systems, vol. 11, pp. 325–335,
June 2003.

[6] J. Groszschaedl and G. Kamendje, “Instruction Set Extension
for Fast Elliptic Curve Cryptography over Binary Finite Fields
GF(2m),” Proceedings of IEEE International Conference on Appli-
cation Specific Systems Architectures and Processors (ASAP2003),
pp. 455–468, June 2003.

[7] MIPS-Technologies, “SmartMIPS ASE,” http://www.mips.com

/content/Products/.
[8] A. F. Tenca and Çetin K. Koç, “A Scalable Architecture for

Montgomery Multiplication,” Proceedings of CHES’99, vol. LNCS,
no. 1717, pp. 94–108, 1999.

[9] H. Corporaal, MicroProcessor Architectures : from VLIW to TTA.
[10] D. Folegnani and A. González, “Energy Effective Issue Logic,” Pro-

ceedings of 28th Annual International Symposium on Computer Ar-
chitecture 2001 (ISCA’2001), pp. 230–239, June-July 2001.

[11] E. Brier, C. Clavier, and F. Olivier, “Optimal Statistical Power
Analysis,” Cryptology ePrint Archive, http://eprint.iacr.org/,
vol. Report 2003, no. 152, 2003.

[12] “MIPSproTM Assembly Language – Programmer’s Guide,” Tech.
Rep. 007-2418-001, Silicon Graphics Inc., 1996.

[13] “MIPSTM Architecture For Programmers Volume II: The
MIPS32TM Instruction Set,” Tech. Rep. MD00086, Revision 0.95,
MIPS Technologies, 1225 Charleston Road, Mountain View, CA
94043-1353, March 2001.

[14] NIST, “Specification for the Advanced Encryption Standard,” Tech.
Rep. 197, Federal Information Processing Standards, November 26
2001.

[15] J.-F. Dhem, Design of an efficient public-key cryptographic library
for RISC-based smart-cards. PhD thesis, Université Catholique de
Louvain, Louvain-la-Neuve, Belgium, May 1998.

[16] P. Montgomery, “Modular Multiplication without Trial Division,”
Mathematics of Computation, vol. 44, pp. 519–521, April 1985.

[17] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptography,
vol. 265 of Lecture Note Series. London Mathematical Society.

[18] C. Koç and T. Acar, “Montgomery Multiplication in GF(2m),” De-
signs, Codes and Cryptography, vol. 14, pp. 57–69, 1998.

[19] R. M. Russell, “The CRAY-1 Computer System,” Communications
of the ACM, vol. 21, pp. 63–72, January 1978.

[20] K. Asanovic̀, Vector Microprocessors. PhD thesis, University of Cal-
ifornia, Berkeley, Spring 1998.

[21] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 3 ed., 2003.

[22] T. A. Team, “The Archc Architecture Description Language -
Reference Manual,” Tech. Rep. v1.2, University of Campinas,
http://www.archc.org/, December 2004.

A Vector Instructions

The VeMICry processor is composed of two families of instructions: the
scalar instructions which correspond to the conventional MIPS-I instruc-
tion set and the vector instructions tailored to suit cryptographic require-
ments.

Suppose we have a vector processor having q vector registers. Each vec-
tor register is a vector of p words of 32 bits each. We also have a Vector
Condition register (VCR) which contains p bits and which is used for con-
ditional vector instructions to show if the condition is applied to each of
the individual words of the vector. Moreover, we have a second ‘scalar’
register called the Carry Register (CAR) which, for some instructions,
‘carry bits/words’ are written back. We also assume that we are able to
work on an arbitrary vector length l with, of course, l ≤ p.

Vi corresponds to the ith vector register

Rj corresponds to the jth scalar regsiter
n 16-bit immediate value

VADDU Vl, Vj , Vk performs the unsigned addition between
the ith elements of Vj and Vk, writing the
result as the ith element of Vl. The carry
is propagated and added to the i + 1st el-
ement of Vl. The carry from the addition
of the corresponding pth words is added to
the content of CAR if l = p.

VBYTELD Vl, Ri, n each word of Vl is treated as four bytes.
Each byte is an offset which is added to the
address stored in Ri and the byte stored at
that address is read from the VPU’s corre-
sponding memory. The read byte is written
to the same location as that of its origi-
nal corresponding byte. This process is ex-
ecuted for n words of Vl.

VLOAD Vl, Ri, n loads in Vl the n consecutive 32-bit words
from memory starting from address stored
in Ri with a stride of 1 (The notion of
stride is introduced in Annexe A of [21]. A
stride of ‘1’ means that the words that are
consecutively stored in the vector register
are fetched by parsing the specified mem-
ory with a step of 1 word unit) .

VBCROTR Vl, Vj , n The Vector-Bit-Conditional-Rotate-Right
operates on each ith word of Vj . If VCR[i]
is 1, then Vj [i] is rotated by n bits to the
right and the result is written to Vl[i]. If
VCR[i] is 0, then Vj [i] copied to Vl[i] with-
out transformation

VEXTRACT Ri, Vj , n copies the value of the Vj [n− 1] into Ri. If
n = 0, then it is CAR which is written to
scalar register

VTRANSP Vl, Vj , n copies vector in Vj to register Vl. If n is
zero, there is a direct copy without trans-
position. If n is non-zero, Vj is viewed as a
4× p matrix which is transposed and writ-
ten to vector register Vl with a stride of
n

VMPMUL Vl, Vj The Vector Modular Polynomial Multipli-
cation treats each ith word of Vj as four
bytes: each byte is a polynomial in GF (28)
which is multiplied by x modular the poly-
nomial represented in the 9 least significant
bits in scalar register VCR. The result is
written to Vl

VSADDU Vl, Vj , Rk Vector-Scalar-Addition does the unsigned
arithmetic addition of value in Rk to every
ith word of Vj and writes the result to Vl.
The carry is not propagated but is instead
written as the ith bit of the register CAR

VSAMULT Vl, Vj , Rk Vector-Scalar-Arithmetic-Multiplication:
multiplies Rk by Vj [p]||Vj [p− 1]|| . . . ||Vj [0]
with carry propagation and result is
written to Vl. The most significant carry
bits are written to register CAR

VSMOVE Vl, Rk, n copies the value in register Rk to the first n
words of Vl. If n is zero, then Rk is copied
to every word of Vl

VSTORE Rk, Vl, n stores the first n consecutive 32-bit words
from register Vl to memory starting from
address stored in Rk with a stride of 1

VSPMULT Vl, Vj , Rk Vector-Scalar-Polynomial-Multiplication:
does the polynomial multiplication of
Rk by Vj [p]||Vj [p − 1]|| . . . ||Vj [0] and the
result is written to Vl. The most significant
p+1st word is written to the register CAR

VXOR Vl, Vj , Vk XORs corresponding words between Vj

and Vk and stores the result in Vl

VWSHL Vl, Vj , n Vector-Word-Shift-Left shifts the contents
of vector Vj by n positions to the left in-
serting zeros to the right. The resulting
vector is written to Vl and the outgoing
word to CAR

VWSHR Vl, Vj , n Vector-Word-Shift-Right shifts the con-
tents of vector Vj by n word position to
the right inserting the data stored in CAR
to the left. The resulting vector is written
to Vl.

MTVCR Rj Writes to VCR the value contained in the
scalar register Rj .

MFVCR Rj Copies the value contained in VCR to the
scalar register Rj .

