Quantum Security of the UMTS-AKA Protocol and its Primitives, Milenage and TUAK - Equipe Cybersécurité et Cryptographie Access content directly
Preprints, Working Papers, ... Year : 2023

Quantum Security of the UMTS-AKA Protocol and its Primitives, Milenage and TUAK

Abstract

The existence of a quantum computer is one of the most significant threats cryptography has ever faced. However, it seems that real world protocols received little attention so far with respect to their future security. Indeed merely relying upon post-quantum primitives may not suffice in order for a security protocol to be resistant in a full quantum world. In this paper, we consider the fundamental UMTS key agreement used in 3G but also in 4G (LTE), and in the (recently deployed) 5G technology. We analyze the protocol in a quantum setting, with quantum communications (allowing superposition queries by the involved parties), and where quantum computation is granted to the adversary. We prove that, assuming the underlying symmetric-key primitive is quantum-secure, the UMTS key agreement is also quantum-secure. We also give a quantum security analysis of the underlying primitives, namely Milenage and TUAK. To the best of our knowledge this paper provides the first rigorous proof of the UMTS key agreement in a strong quantum setting. Our result shows that in the quantum world to come, the UMTS technology remains a valid scheme in order to secure the communications of billions of users.
Fichier principal
Vignette du fichier
Quantum_AKA__DCC_-1.pdf (466.41 Ko) Télécharger le fichier
Origin Files produced by the author(s)
licence

Dates and versions

hal-04334580 , version 1 (11-12-2023)

Licence

Identifiers

  • HAL Id : hal-04334580 , version 1

Cite

Paul Frixons, Sébastien Canard, Loïc Ferreira. Quantum Security of the UMTS-AKA Protocol and its Primitives, Milenage and TUAK. 2023. ⟨hal-04334580⟩
105 View
30 Download

Share

Gmail Mastodon Facebook X LinkedIn More