Random Tensor Networks with Non-trivial Links - Centre International de Mathématiques et d'Informatique de Toulouse
Article Dans Une Revue Annales Henri Poincaré Année : 2023

Random Tensor Networks with Non-trivial Links

Résumé

Abstract Random tensor networks are a powerful toy model for understanding the entanglement structure of holographic quantum gravity. However, unlike holographic quantum gravity, their entanglement spectra are flat. It has therefore been argued that a better model consists of random tensor networks with link states that are not maximally entangled, i.e., have non-trivial spectra. In this work, we initiate a systematic study of the entanglement properties of these networks. We employ tools from free probability, random matrix theory, and one-shot quantum information theory to study random tensor networks with bounded and unbounded variation in link spectra, and in cases where a subsystem has one or multiple minimal cuts. If the link states have bounded spectral variation, the limiting entanglement spectrum of a subsystem with two minimal cuts can be expressed as a free product of the entanglement spectra of each cut, along with a Marchenko–Pastur distribution. For a class of states with unbounded spectral variation, analogous to semiclassical states in quantum gravity, we relate the limiting entanglement spectrum of a subsystem with two minimal cuts to the distribution of the minimal entanglement across the two cuts. In doing so, we draw connections to previous work on split transfer protocols, entanglement negativity in random tensor networks, and Euclidean path integrals in quantum gravity.
Fichier principal
Vignette du fichier
s00023-023-01358-2.pdf (2.34 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04285851 , version 1 (17-09-2024)

Licence

Identifiants

Citer

Newton Cheng, Cécilia Lancien, Geoff Penington, Michael Walter, Freek Witteveen. Random Tensor Networks with Non-trivial Links. Annales Henri Poincaré, 2023, 25 (4), pp.2107-2212. ⟨10.1007/s00023-023-01358-2⟩. ⟨hal-04285851⟩
61 Consultations
1 Téléchargements

Altmetric

Partager

More