Pointwise adaptive estimation of the marginal density of a weakly dependent process - Ensai, Ecole Nationale de la Statistique et de l'Analyse de l'Information
Article Dans Une Revue Journal of Statistical Planning and Inference Année : 2017

Pointwise adaptive estimation of the marginal density of a weakly dependent process

Résumé

This paper is devoted to the estimation of the common marginal density function of weakly dependent processes. The accuracy of estimation is measured using pointwise risks. We propose a datadriven procedure using kernel rules. The bandwidth is selected using the approach of Goldenshluger and Lepski and we prove that the resulting estimator satisfies an oracle type inequality. The procedure is also proved to be adaptive (in a minimax framework) over a scale of H\"older balls for several types of dependence: stong mixing processes, $\lambda$-dependent processes or i.i.d. sequences can be considered using a single procedure of estimation. Some simulations illustrate the performance of the proposed method.
Fichier principal
Vignette du fichier
1604.00039v1.pdf (567.8 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01299483 , version 1 (28-10-2024)

Identifiants

Citer

Karine Bertin, Nicolas Klutchnikoff. Pointwise adaptive estimation of the marginal density of a weakly dependent process. Journal of Statistical Planning and Inference, 2017, 187, pp.115-129. ⟨10.1016/j.jspi.2017.03.003⟩. ⟨hal-01299483⟩
357 Consultations
8 Téléchargements

Altmetric

Partager

More