Polyps Recognition Using Fuzzy Trees - ETIS, équipe ASTRE
Conference Papers Year : 2017

Polyps Recognition Using Fuzzy Trees

Reconnaissance des polypes en utilisant arbres flous

Andrea Pinna
Bertrand Granado

Abstract

In this article, we present our work on classifier to realize a Wireless Capsule Endoscopy (WCE) including a Smart Vision Chip (SVC). Our classifier is based on fuzzy tree and forest of fuzzy trees. We obtain a sensitivity of 92.80% and a specificity of 91.26% with a false detection rate of 8.74% on a large database, that we have constructed, composed of 18910 images containing 3895 polyps from 20 different video-colonoscopies.
Fichier principal
Vignette du fichier
BHI2017-20161020.pdf (674.75 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01896834 , version 1 (16-10-2018)

Identifiers

Cite

Orlando Chuquimia, Andrea Pinna, Xavier Dray, Bertrand Granado. Polyps Recognition Using Fuzzy Trees. BHI-2017 International Conference on Biomedical and Health Informatics, Feb 2017, Orlando, FL, United States. pp.9-12, ⟨10.1109/BHI.2017.7897192⟩. ⟨hal-01896834⟩
257 View
156 Download

Altmetric

Share

More