Article Dans Une Revue Forum of Mathematics, Sigma Année : 2019

Higher order paracontrolled calculus

Résumé

We develop in this work a general version of paracontrolled calculus that allows to treat analytically within this paradigm some singular partial differential equations with the same efficiency as regularity structures, with the benefit that there is no need to introduce the algebraic apparatus inherent to the latter theory. This work deals with the analytic side of the story and offers a toolkit for the study of such equations, under the form of a number of continuity results for some operators. We illustrate the efficiency of this elementary approach on the example of the generalised parabolic Anderson model equation $$ (\partial_t + L) u = f(u)\zeta $$ for a spacial 'noise' $\zeta$ of Hölder regularity $\alpha-2$, with $\frac{2}{5}< \alpha \leq \frac{2}{3}$, and the generalized KPZ equation $$ (\partial_t + L) u = f(u)\zeta + g(u)(\partial u)^2, $$ in the relatively mild case where $\frac{1}{2}<\alpha\leq \frac{2}{3}$.
Fichier principal
Vignette du fichier
high-order-paracontrolled-calculus.pdf (743.3 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-01382067 , version 1 (30-05-2024)

Licence

Identifiants

Citer

Ismaël Bailleul, Frederic Bernicot. Higher order paracontrolled calculus. Forum of Mathematics, Sigma, 2019, 7, ⟨10.1017/fms.2019.44⟩. ⟨hal-01382067⟩
428 Consultations
23 Téléchargements

Altmetric

Partager

More