Article Dans Une Revue Annales Henri Poincaré Année : 2015

Generalizations of Poisson Structures Related to Rational Gaudin Model

Résumé

The Poisson structure arising in the Hamiltonian approach to the rational Gaudin model looks very similar to the so-called modified Reflection Equation Algebra.  Motivated by this analogy, we realize a braiding of the mentioned Poisson structure, i.e. we introduce a ”braided Poisson” algebra associated with an involutive solution to the quantum Yang-Baxter equation. Also, we exhibit another generalization of the Gaudin type Poisson structure by replacing the first derivative in the current parameter, entering the so-called local form of this structure, by a higher order derivative.  Finally, we introduce a structure, which combines both generalizations.  Some commutative families in the corresponding braided Poisson algebra are found.

Fichier principal
Vignette du fichier
1312.7813.pdf (219.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01392198 , version 1 (05-07-2022)

Identifiants

Citer

Dimitri Gurevich, Vladimir Roubtsov, Pavel Saponov, Zoran Škoda. Generalizations of Poisson Structures Related to Rational Gaudin Model. Annales Henri Poincaré, 2015, 16 (7), pp.1689-1707. ⟨10.1007/s00023-014-0350-4⟩. ⟨hal-01392198⟩
153 Consultations
35 Téléchargements

Altmetric

Partager

More