Power noise filtration in DREM - Hub Intelligence Artificielle de CentraleSupélec
Communication Dans Un Congrès Année : 2024

Power noise filtration in DREM

Résumé

The problem of estimation in the linear regression model is studied under the hypothesis that the noise is sufficiently small comparing to the regressor. Then the estimation solution is searched for a new regression containing the powers of the unknown parameters and disturbance, where the influence of the latter is attenuated. It is shown that power transformation of a regressor can preserve the excitation under mild assumptions. Possibilities of evaluation of powers of parameters are investigated using the dynamic regression extension and mixing (DREM) method. The performance of the estimators is demonstrated in numerical experiments.
Fichier principal
Vignette du fichier
main_PowerNoiseAttenuation.pdf (309.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04689487 , version 1 (05-09-2024)

Identifiants

Citer

Alexey Bobtsov, Stanislav Aranovskiy, Denis Efimov, Anton Pyrkin, Vladimir Vorobev, et al.. Power noise filtration in DREM. 2024 European Control Conference (ECC), Jun 2024, Stockholm, Sweden. pp.2259-2264, ⟨10.23919/ECC64448.2024.10590913⟩. ⟨hal-04689487⟩
216 Consultations
85 Téléchargements

Altmetric

Partager

More