Fast rotation limit for the 2-D non-homogeneous incompressible Euler equations
Résumé
In the present paper, we study the fast rotation limit for the density-dependent incompressible Euler equations in two space dimensions with the presence of the Coriolis force. In the case when the initial densities are small perturbation of a constant profile, we show the convergence of solutions towards the solutions of a quasi-homogeneous incompressible Euler system. The proof relies on a combination of uniform estimates in high regularity norms with a compensated compactness argument for passing to the limit. This technique allows us to treat the case of ill-prepared initial data.
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Commentaire | Ce pdf est la version preprint de l'article (version soumise à l'éditeur, avant peer-reviewing) |