Low Mach number limit for degenerate Navier-Stokes equations in presence of strong stratification - Équations aux dérivées partielles, analyse
Article Dans Une Revue Communications in Mathematical Physics Année : 2023

Low Mach number limit for degenerate Navier-Stokes equations in presence of strong stratification

Ewelina Zatorska
  • Fonction : Auteur
  • PersonId : 1105217

Résumé

In this paper, we investigate the low Mach and low Froude numbers limit for the compressible Navier-Stokes equations with degenerate, density-dependent, viscosity coefficient, in the strong stratification regime. We consider the case of a general pressure law with singular component close to vacuum, and general ill-prepared initial data. We perform our study in the three-dimensional periodic domain. We rigorously justify the convergence to the generalised anelastic approximation, which is used extensively to model atmospheric flows.
Fichier principal
Vignette du fichier
Fanelli_Zatorska.pdf (697.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03286164 , version 1 (13-07-2021)

Identifiants

Citer

Francesco Fanelli, Ewelina Zatorska. Low Mach number limit for degenerate Navier-Stokes equations in presence of strong stratification. Communications in Mathematical Physics, 2023, 400 (3), pp.1463-1506. ⟨10.1007/s00220-022-04624-2⟩. ⟨hal-03286164⟩
76 Consultations
53 Téléchargements

Altmetric

Partager

More