Sharp well-posedness and blowup results for parabolic systems of the Keller-Segel type - Équations aux dérivées partielles, analyse
Article Dans Une Revue Methods and Applications of Analysis Année : 2023

Sharp well-posedness and blowup results for parabolic systems of the Keller-Segel type

Résumé

We study two toy models obtained after a slight modification of the nonlinearity of the usual doubly parabolic Keller-Segel system. For these toy models, both consisting of a system of two parabolic equations, we establish that for data which are, in a suitable sense, smaller than the diffusion parameter τ in the equation for the chemoattractant, we obtain global solutions, and for some data larger than τ , a finite time blowup. In this way, we check that our size condition for the global existence is sharp for large τ , up to a logarithmic factor.
Fichier principal
Vignette du fichier
KS-large-solutions-paper 2 Submitted to AFST.pdf (319.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03699868 , version 1 (20-06-2022)

Identifiants

Citer

Piotr Biler, Alexandre Boritchev, Lorenzo Brandolese. Sharp well-posedness and blowup results for parabolic systems of the Keller-Segel type. Methods and Applications of Analysis, 2023, 30 (2), pp.53-76. ⟨10.4310/MAA.2023.v30.n2.a1⟩. ⟨hal-03699868⟩
101 Consultations
96 Téléchargements

Altmetric

Partager

More