Critical points of arbitrary energy for the Trudinger-Moser functional in planar domains - Équations aux dérivées partielles, analyse
Article Dans Une Revue Advances in Mathematics Année : 2024

Critical points of arbitrary energy for the Trudinger-Moser functional in planar domains

Résumé

Given a smoothly bounded non-contractible domain $\Omega\subset \mathbb{R}^2$, we prove the existence of positive critical points of the Trudinger-Moser embedding for arbitrary Dirichlet energies. This is done via degree theory, sharp compactness estimates and a topological argument relying on the Poincar\'e-Hopf theorem.
Fichier principal
Vignette du fichier
DMMT_MT2_DegreeLinkingToMeanField 6.pdf (491.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03908236 , version 1 (20-12-2022)

Identifiants

Citer

Andrea Malchiodi, Luca Martinazzi, Pierre-Damien Thizy. Critical points of arbitrary energy for the Trudinger-Moser functional in planar domains. Advances in Mathematics, 2024, 442, pp.109548. ⟨10.1016/j.aim.2024.109548⟩. ⟨hal-03908236⟩
77 Consultations
61 Téléchargements

Altmetric

Partager

More