Weak and approximate curvatures of a measure: a varifold perspective - Modélisation mathématique, calcul scientifique
Article Dans Une Revue Nonlinear Analysis: Theory, Methods and Applications Année : 2022

Weak and approximate curvatures of a measure: a varifold perspective

Résumé

By revisiting the notion of generalized second fundamental form originally introduced by Hutchinson for a special class of integral varifolds, we define a weak curvature tensor that is particularly well-suited for being extended to general varifolds of any dimension and codimension through regularization. The resulting approximate second fundamental forms are defined not only for piecewise-smooth surfaces, but also for datasets of very general type (like, e.g., point clouds). We obtain explicitly computable formulas for both weak and approximate curvature tensors, we exhibit structural properties and prove convergence results, and lastly we provide some numerical tests on point clouds that confirm the generality and effectiveness of our approach.
Fichier principal
Vignette du fichier
SFF_2022.pdf (4.04 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02141391 , version 1 (27-12-2022)

Identifiants

Citer

Blanche Buet, Gian Paolo Leonardi, Simon Masnou. Weak and approximate curvatures of a measure: a varifold perspective. Nonlinear Analysis: Theory, Methods and Applications, 2022, 222, pp.112983. ⟨10.1016/j.na.2022.112983⟩. ⟨hal-02141391⟩
258 Consultations
80 Téléchargements

Altmetric

Partager

More