Testing and Reliability of Spiking Neural Networks: A Review of the State-of-the-Art - Circuits Intégrés Numériques et Analogiques
Communication Dans Un Congrès Année : 2023

Testing and Reliability of Spiking Neural Networks: A Review of the State-of-the-Art

Résumé

Neuromorphic computing based on Spiking Neural Networks (SNNs) is an emerging computing paradigm inspired by the functionality of the biological brain. Given its potential to revolutionize the power efficiency of many Artificial Intelligence (AI) applications, heavy research is underway on algorithms, hardware implementations, and applications. This article focuses on testing and reliability of hardware implementations providing a review of the state-of-the-art.
Fichier principal
Vignette du fichier
Testing_and_Reliability_of_Spiking_Neural_Networks__A_Review_of_the_State_of_the_Art.pdf (4.61 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04176109 , version 1 (02-08-2023)

Identifiants

  • HAL Id : hal-04176109 , version 1

Citer

Haralampos-G. Stratigopoulos, Theofilos Spyrou, Spyridon Raptis. Testing and Reliability of Spiking Neural Networks: A Review of the State-of-the-Art. 36th IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT 2023), Oct 2023, Juan-Les-Pins, France. ⟨hal-04176109⟩
392 Consultations
239 Téléchargements

Partager

More