Article Dans Une Revue IEEE Transactions on Visualization and Computer Graphics Année : 2025

Visualization-Driven Illumination for Density Plots

Xin Chen
Yunhai Wang
Huaiwei Bao
  • Fonction : Auteur
Kecheng Lu
Jaemin Jo
Jean-Daniel Fekete

Résumé

We present a novel visualization-driven illumination model for density plots, a new technique to enhance density plots by effectively revealing the detailed structures in high- and medium-density regions and outliers in low-density regions, while avoiding artifacts in the density field's colors. When visualizing large and dense discrete point samples, scatterplots and dot density maps often suffer from overplotting, and density plots are commonly employed to provide aggregated views while revealing underlying structures. Yet, in such density plots, existing illumination models may produce color distortion and hide details in low-density regions, making it challenging to look up density values, compare them, and find outliers. The key novelty in this work includes (i) a visualization-driven illumination model that inherently supports density-plot-specific analysis tasks and (ii) a new image composition technique to reduce the interference between the image shading and the color-encoded density values. To demonstrate the effectiveness of our technique, we conducted a quantitative study, an empirical evaluation of our technique in a controlled study, and two case studies, exploring twelve datasets with up to two million data point samples.
Fichier principal
Vignette du fichier
Shaded_Density_Field (3).pdf (8.88 Mo) Télécharger le fichier
Vignette du fichier
teaser (3).pdf (352.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence
Copyright (Tous droits réservés)
Format Figure, Image
licence

Dates et versions

hal-04776837 , version 1 (12-11-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Xin Chen, Yunhai Wang, Huaiwei Bao, Kecheng Lu, Jaemin Jo, et al.. Visualization-Driven Illumination for Density Plots. IEEE Transactions on Visualization and Computer Graphics, 2025, 31 (2), pp.1631-1644. ⟨10.1109/TVCG.2024.3495695⟩. ⟨hal-04776837⟩
51 Consultations
25 Téléchargements

Altmetric

Partager

More