Communication Dans Un Congrès Année : 2024

Reliability of Single-Level Equality-Constrained Inverse Optimal Control

Résumé

Inverse optimal control (IOC) allows the retrieval of optimal cost function weights, or behavioral parameters, from human motion. The literature on IOC uses methods that are either based on a slow bilevel process or a fast but noise-sensitive minimization of optimality condition violation. Assuming equality-constrained optimal control models of human motion, this article presents a faster but robust approach to solving IOC using a single-level reformulation of the bilevel method and yields equivalent results. Through numerical experiments in simulation, we analyze the robustness to noise of the proposed single-level reformulation to the bilevel IOC formulation with a human-like planar reaching task that is used across recent studies. The approach shows resilience to very large levels of noise and reduces the computation time of the IOC on this task by a factor of 15 when compared to a classical bilevel implementation.

Domaines

Autre
Fichier sous embargo
Fichier sous embargo
0 2 25
Année Mois Jours
Avant la publication
mardi 6 mai 2025
Fichier sous embargo
mardi 6 mai 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04931691 , version 1 (06-02-2025)

Identifiants

Citer

Filip Becanovic, Kosta Jovanović, Vincent Bonnet. Reliability of Single-Level Equality-Constrained Inverse Optimal Control. 2024 IEEE-RAS 23rd International Conference on Humanoid Robots (Humanoids), Nov 2024, Nancy, France. pp.623-630, ⟨10.1109/Humanoids58906.2024.10769923⟩. ⟨hal-04931691⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More