Random polytopes and the wet part for arbitrary probability distributions - Department of Algorithms, Computation, Image and Geometry
Rapport (Rapport De Recherche) Année : 2020

Random polytopes and the wet part for arbitrary probability distributions

Résumé

We examine how the measure and the number of vertices of the convex hull of a random sample of $n$ points from an arbitrary probability measure in $\mathbf{R}^d$ relates to the wet part of that measure. This extends classical results for the uniform distribution from a convex set [B\'ar\'any and Larman 1988]. The lower bound of B\'ar\'any and Larman continues to hold in the general setting, but the upper bound must be relaxed by a factor of $\log n$. We show by an example that this is tight.
Fichier principal
Vignette du fichier
1902.06519v1.pdf (414.32 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-02050632 , version 1 (18-12-2024)

Identifiants

Citer

Imre Bárány, Matthieu Fradelizi, Xavier Goaoc, Alfredo Hubard, Günter Rote. Random polytopes and the wet part for arbitrary probability distributions. [Research Report] Rényi Institute of Mathematics; University College London; Université Paris-Est; Université de Lorraine; Freie Universität Berlin. 2020, pp.701-715. ⟨hal-02050632⟩
216 Consultations
0 Téléchargements

Altmetric

Partager

More