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Abstract

In this paper we deal with the problem of controlling a safe place/transition net so as to avoid a

set of forbidden markings F . We say that a given set of markings has property REACH if it is closed

under the reachability operator. We assume that all transitions of the net are controllable and that

the set of forbidden markings F has the property REACH.

The technique of unfolding is used to design a maximally permissive supervisor to solve this

control problem. The supervisor takes the form of a set of control places to be added to the unfolding

of the original net.

The approach is also extended to the problem of preventing a larger set FI of impending forbidden

marking. This is a superset of the forbidden markings that also includes all those markings from which

- unless the supervisor blocks the plant - a marking in F is inevitably reached in a finite number of

steps.

Finally, we consider the particular case in which the control objective is that of designing a

maximally permissive supervisor for deadlock avoidance and we show that in this particular case our

procedure can be efficiently implemented by means of linear algebraic techniques.

1 Introduction

In this paper we show how Petri net unfolding can be used to design a maximally permissive supervisor

to avoid a set of forbidden markings F . We assume that all transitions are controllable and that the set

F has property REACH, i.e., any marking reached from a marking in F is also forbidden.
∗Submitted to Discrete Event Dynamic Systems. A preliminary version of this paper titled ”Control of safe ordinary

Petri nets with marking specifications using unfolding,” was published in the Proc. IFAC WODES’04: 7th Work. on

Discrete Event Systems (Reims, France), September 2004. Contact author is Alessandro Giua.
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1.1 Relevant literature

The use of partial order methods for the efficient verification of concurrent systems is a technique that

has been used by several authors in the last 10-15 years. In particular, a Petri net is a natural model for

this approach because it has primitives to explicitly capture the notion of precedence and independence

between events.

The interleaving of concurrent sequences often leads to the well-known problem of state space explosion

that hinders the applicability of all those Petri net analysis techniques, e.g., the reachability graph,

that are based on the exhaustive search over the set of reachable markings. However, the sets of states

introduced by concurrency are for the most part intermediate markings that are irrelevant to determine

the properties of the system: what matters is the unique marking reached by the firing of all these

concurrent sequences.

As Valmari (1994) has lucidly explained, this fact has motivated research along at least two different

lines.

• A first approach is to let one (or at least as few as possible) interleaving represent all its equivalent

interleavings: the notion of stubborn set (Valmari, 1991) and persistent set (Godefroid, 1996) is

inspired by this idea.

• A second approach consists in replacing the reachability graph by a net structure which captures

the concurrent executions, and does not explicitly show individual interleavings. This technique

is based on the unfolding of a (bounded) Petri net into an occurrence net. A finite prefix of the

unfolding can be used to characterize the set of all reachable markings without having to enumerate

them (McMillan, 1995; Esparza et al., 2002). Recently, this approach has also been extended to

unbounded nets (Neumair, 2002). Note that the occurrence net is much simpler than the original

Petri net and can usually be validated using structural analysis.

Although these two types of techniques have proved to be a powerful instrument in the verification of

concurrent systems, the application of these techniques to the control of discrete event systems has not

received a lot of attention. We recall here some contributions in this area.

Hellgren et al. (1999) have used persistent sets to design supervisors for deadlock avoidance.

Observability and diagnosis are closely related to control: Aghasaryan et al., (1998) were the first to use

unfolding for fault detection and diagnosis in distributed systems. This approach has also been extended

in two subsequent papers by Benveniste et. al (2003a; 2003b).

Recently, in a series of papers He and Lemmon (2000; 2002) have presented an original approach based on

unfolding for liveness verification and enforcing. However we have shown (Xie and Giua, 2004) that some

key results of these papers are incorrect. As a result, although we still strongly believe that unfolding is

an interesting and potentially fruitful technique for Petri net control, the applicability of unfolding for

Petri net supervision is still an open issue.

Part of the material presented in this paper has also been presented in (Giua and Xie, 2004; Giua and

Xie, 2005).
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1.2 Contribution

In the paper we consider discrete event systems modelled by safe place/transition nets. The control

problem we consider can be framed within the theory of supervisory control (Ramadge and Wonham,

1989). In particular, we consider a control specification that requires avoiding a set of forbidden markings

F . In the current state of investigation, we assume that all transitions are controllable, i.e., they can be

disabled by a controlling agent called supervisor that must enforce the specification.

We use a set of finite prefixes of the unfolding, that we call order 1 unfolding and order 2 unfolding, to

characterize the reachability set of the original net.

We restrict our attention to a special class of forbidden markings specifications that satisfy what we

call property REACH : once a forbidden marking is reached, all markings reachable from it will also

be forbidden. This has a nice advantage over the unfolding structure: if a configuration (i.e., a set of

transition firings) is forbidden, any larger configuration should also be forbidden. We show that in this

case a simple control structure - that consists of a set of places to be added to the order 1 unfolding -

can be used to implement a maximally permissive control policy that enforces the specification.

In many control problems it is necessary not only to ensure a safe behavior of the controlled system —

e.g., avoiding a set of forbidden markings — but to guarantee some liveness properties as well. A usual

liveness requirement is that the supervisor should not deadlock the system. To address this problem, we

consider the problem of preventing the larger set FI of impending forbidden markings. This is a superset

of the forbidden markings that also includes all those markings from which - unless the supervisor blocks

the plant - a marking in F is inevitably reached in a finite number of steps. In this case, we use the

larger order 2 unfolding to compute a set of control places that, added to the order 1 unfolding, can be

used to implement a maximally permissive control policy for this problem.

The approach we present in the paper requires in general an exhaustive enumeration of the set of forbidden

markings. It has however the advantage of allowing one to construct a maximally permissive supervisor

in the form of a controlled occurrence net (i.e., an occurrence net with the addition of control places)

using a procedure which does not require the exhaustive enumeration of the set of markings of the plant.

The closed loop system in this approach can also be represented by this controlled occurrence net.

In many cases it is also possibile to avoid the exhaustive enumeration of the set of forbidden markings

and solve the control problem by means of structural analysis. Two examples of this type are discussed

in the paper.

A first example is the case in which the set of forbidden markings satisfies a set of linear inequalities. In

this case it is possible to check if the set has property REACH and to design the maximally permissive

controller by integer programming analysis.

A second, and more meaningful, example is the case in which the control objective is that of designing a

deadlock prevention control policy. This is a problem that has received a lot of attention in the literature

(Ezpeleta et al., 1995; Chu and Xie, 1997; Park and Reveliotis, 2001) and the last section of the paper is

devoted to this problem. If the set of forbidden markings F consists of the set of deadlock markings of

the original net, the maximally permissive nonblocking control policy consists exactly in the prevention

of the set FI and we show in the paper that the computation of the supervisor can be carried out by
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structural analysis.

The following two remarks should clarify the contribution of this paper.

• Our approach deals with a particular class of marking specifications and not with more general

language specifications usually considered in supervisory control theory (Ramadge and Wonham,

1989). We believe that it may be possible to extend this approach to the latter type of specifications,

but this issue will be the object of future research.

• The computational advantage of our approach lies in the fact that it does not require to exhaustively

generate the whole state space of the plant (i.e., its reachability set), because it works on the

structure of the unfolding net. This advantage can only be gauged in qualitative terms. In fact,

if the plant is composed by several subsystems with a high degree of concurrency, then the size of

the unfolding is much smaller than the size of the reachability set. If, on the contrary, the behavior

of the plant does not contain many interleavings of concurrent sequences, then the advantages of

working on the unfolding is less significant.

This paper is structured as follows. In Section 2 we recall the standard notation on Petri nets. Section

3 contains an informal presentation of unfolding and we also define the finite prefixes of the unfolding

that will be used in this paper. In Section 4 we discuss a special class of forbidden markings specification

having property REACH that will considered in the following. In Section 5 we show how the order 1

unfolding can be used to design a maximally permissive supervisor for F . In Section 6 we discuss the

problem of preventing the set FI . Finally, in Section 7 we show how a maximally permissive supervisor

for deadlock avoidance can be efficiently designed using linear algebraic techniques.

2 Background on Petri nets

In this section we recall the formalism used in the paper. A more detailed introduction to Petri nets can

be found in (Murata, 1989).

The Petri net model considered in this paper is an ordinary Place/Transition net (P/T net) denoted

N = (P, T, F ), where P is a set of m places; T is a set of n transitions; F ⊆ (P × T ) ∪ (T × P ) is the

flow function that specifies the arcs from places to transitions and from transitions to places.

The incidence matrix C of a net is an m × n matrix such that C(p, t) = 1 if (t, p) ∈ F and (p, t) /∈ F ,

C(p, t) = −1 if (p, t) ∈ F and (t, p) /∈ F , else C(p, t) = 0.

The preset and postset of a node x ∈ P ∪T are denoted •x , {x′ |(x′, x) ∈ F } and x• , {x′ |(x, x′) ∈ F }
while •x• =• x ∪ x•. Node x is a source (resp., sink) if •x = ∅ (resp.; x• = ∅).

Given two nodes x, x′ ∈ P ∪ T we define the following relations.

• Node x precedes x′ (denoted x 4 x′) if there exists a directed path from x to x′ . If we require that

the path has length greater than zero (i.e., x 6= x′) we write x ≺ x′.

• Nodes x and x′ are in conflict (denoted x#x′) if there exist two different transitions t, t′ ∈ T such

that: t 4 x, t′ 4 x′, •t∩ •t′ 6= ∅. In this case, in fact transitions t and t′ are in conflict because they
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have a common input place, and the conflict propagates to all nodes following them. A node x is

in self-conflict if x#x holds.

• Nodes x and x′ are concurrent (denoted x ≈ x′) if neither x 4 x′, nor x′ 4 x, nor x#x′ hold.

Note that given two nodes x and x′ it may hold that: (x ≺ x′ and x′ ≺ x and x#x′).

A marking is a vector M : P → N that assigns to each place of a P/T net a non–negative integer number

of tokens, represented by black dots. We denote M(p) the marking of place p. A P/T system or net

system 〈N, M0〉 is a net N with an initial marking M0.

A transition t is enabled at M iff M(p) > 0 for all p ∈ •t. If t is enabled, it may fire yielding the marking

M ′ = M + C(· , t). We write M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk
is enabled at

M , and we write M [σ〉M ′ to denote that the firing of σ yields M ′. We associate to a sequence σ a firing

vector X : T → N such that X(t) = k if transition t appears k times in σ.

A marking M said to be dead if no transition is enabled at M .

A marking M is reachable in 〈N, M0〉 iff there exists a firing sequence σ such that M0[σ〉M . The set of

all markings reachable from M0 defines the reachability set of 〈N, M0〉 and is denoted R(N,M0).

We denote PR(N, M0) the potentially reachable set, i.e., the set of all markings M ∈ Nm for which

there exists a vector X ∈ Nn that satisfies the state equation M = M0 + C · X, i.e., PR(N,M0) ,
{M ∈ Nm | ∃X ∈ Nn : M = M0 + C ·X }. It holds that R(N, M0) ⊆ PR(N, M0).

A place p is k-bounded if for all M ∈ R(N,M0) it holds M(p) 6 k. A 1-bounded place is called safe. A

net system 〈N, M0〉 is said k-bounded (resp., safe) if all its places are k-bounded (resp., safe). A marking

M of a safe net system is a binary vector and can also be seen as a set of places M = {p ∈ P |M(p) = 1}.

In the rest of the paper for sake of simplicity we will consider only safe net systems. However, the results

presented in this paper can also be extended to arbitrary bounded nets in a straightforward manner.

3 Unfolding

In this section we informally recall how it is possible, given a safe net system 〈N, M0〉, to unfold it by

constructing a labelled occurrence net Ñ(M0). This occurrence net, that is also commonly called the

unfolding of 〈N, M0〉, has a structure that depends both on N and on M0. A formal description of the

unfolding procedure requires a long and tedious series of definitions: we prefer to present the key concepts

here. Any of the references (McMillan, 1995; Esparza et al., 2002; He and Lemmon, 2002; Benveniste et

al., 2003b) contains a more comprehensive and accurate discussion.

An occurrence net is an ordinary P/T net with a special structure:

• starting from any node, all backward paths are finite, i.e., eventually they reach a source node;

• each place has at most one input arc;

• no node is in self-conflict.
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It is easy to show that in an occurrence net the two relations of precedence and conflict are mutually

exclusive and that the precedence relation is a partial order. Thus, for any two distinct nodes x and x′

one and only one of the following conditions holds: x ≺ x′, or x′ ≺ x, or x#x′, or x ≈ x′. The net shown

in Figure 2 is an example of a finite occurrence net.

To the unfolding Ñ(M0) = (P̃ , T̃ , F̃ ) is also associated a labelling function ` : (P̃ → P ) ∪ (T̃ → T ) that

maps each node of the unfolding into a node of the original net N . Note that usually a node p or t of N

may correspond to more than one node of the unfolding, i.e., `−1(p) ⊂ P̃ and `−1(t) ⊂ T̃ .

The labelling function can also map set of nodes into set of nodes. In particular, in the following procedure

given a set of places P ′ ⊆ P of the original net, we write P ′ = ˆ̀(P̃ ′) to denote that the set of places P̃ ′

of the unfolding has the same cardinality of P ′ and P ′ =
{

p ∈ P
∣∣∣p̃ ∈ P̃ ′, p = `(p̃)

}
, hence each place of

P̃ ′ maps into a place of P ′ but no two places in P̃ ′ map into the same place of P ′.

Procedure 1. (Unfolding of a safe net system 〈N, M0〉 into an occurrence net Ñ(M0))

1. Add to the unfolding a set of source places P̃0 with ˆ̀(P̃0) = {p ∈ P |M0(p) = 1}.

2. Let i := 0.

3. Let P̃exp := P̃i

4. If P̃i = ∅ then STOP.

5. Let i := i + 1.

6. Let P̃i := ∅.

7. For all transitions t ∈ T

For all sets of places P̃ ′ ⊆
(
P̃exp \ P̃i

)
such that the following three conditions are all verified:

- ˆ̀(P̃ ′) = •t,

- all places in P̃ ′ are concurrent,

- P̃ ′ ∩ P̃i−1 6= ∅,
(a) Add to the unfolding a new transition t̃ with ˆ̀(t̃) = t.

(b) Add to the unfolding a set of new places P̃ ′′ with ˆ̀(P̃ ′′) = t•.

(c) Add an arc from each place in P̃ ′ to t̃.

(d) Add an arc from t̃ to each place in P̃ ′′.

(e) Let P̃i := P̃i ∪ P̃ ′′.

(f) Let P̃exp := P̃exp ∪ P̃ ′′.

8. Goto 4. ¥

In the procedure at step 1 we add to the unfolding a copy of each place of the original net marked by the

initial marking: all places in this set P̃0 are ranged on the tier 0 and represent the source nodes of the

occurrence net. The index i initialized at step 2 denotes the tier on which the places of each set P̃i are

ranged.
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The set P̃exp initialized at step 3 keeps track of the places that can be used to expand the unfolding.

Strictly speaking, in this version of the procedure this set needs not be defined because it always coincides

with the set of places in the unfolding. However we will need it when the procedure is modified to construct

a finite prefix (that we call order 1 unfolding) as explained in the following.

Each time a new tier is added we check for all transitions t of the original net if there exists in the

unfolding a set P̃ ′ with the following properties:

• it is a copy of the set of input places of t, hence a marking that marks in the unfolding all places

in P̃ ′ corresponds to a marking of the original net that enables t;

• all places in P̃ ′ are concurrent, hence they can simultaneously be marked (note that the safeness of

the original net ensures that two places on the unfolding with the same label cannot be concurrent);

• at least one place in P̃ ′ belongs to the lastly added tier, so that the marking of the unfolding that

marks all these places has not been considered in the previous steps.

For all such sets P̃ ′ we add to the net a new copy of transition t, a new copy of all its output places P̃ ′′

and the relative arcs.

The procedure given above is not an algorithm because it is not guaranteed to halt in a finite number

the steps. In fact the unfolding of a net that admits repetitive sequences is infinite.

Example 2. The net in Figure 2 is a finite prefix of the unfolding of the safe net1 in Figure 1, constructed

using the previous procedure. A place p̃ of the unfolding such that `(p̃) = pk is labelled k, k′, . . .. A

transition t̃ of the unfolding such that `(t̃) = tk is labelled k, k′, . . .. ¥

Note that we can consider an unfolding both as a net and as a marked net where the initial marking

assigns to each source place in P̃0 a token, so we need not specify its initial marking and simply write

R(Ñ(M0)) to denote its reachability set.

The unfolding is a safe net so we can represent a marking with the set of non-empty place: we write

M̃0 = P̃0 and in general M̃ =
{

p̃ ∈ P̃
∣∣∣M̃(p̃) = 1

}
. It is also possible to apply the mapping ˆ̀ to markings.

Definition 3. To each marking M̃ of the unfolding corresponds a marking of the original net M =
ˆ̀(M̃) ,

{
p ∈ P |p = `(p̃) , p̃ ∈ M̃

}
. This leads to an equivalence relation among markings in R(Ñ(M0))

and if ˆ̀(M̃) = ˆ̀(M̃ ′) we write M̃ =P M̃ ′.

A firing vector X̃ of the unfolding is a binary vector that can also be seen as a set of transitions X̃ ={
t̃ ∈ T̃

∣∣∣X̃(t̃) = 1
}

.

Definition 4. Given a transition t̃ ∈ T̃ , the minimal firing vector of the unfolding that contains it is

called a local configuration; it can be show that this vector is unique and we denote it [t̃]. The marking

reached firing configuration X̃ (resp., [t̃]) will be denoted M̃(X̃) (resp., M̃([t̃])).

It is also clear that each marking M̃ reachable in Ñ(M0) corresponds to a unique configuration in Ñ(M0)

(the unfolding net is acyclic) that we sometimes denote conf (M̃).

1In the net in Figure 1 an arc with a double arrow between a place p and a transition t denotes a self-loop, i.e., (p, t) ∈ F

and (t, p) ∈ F .
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Given a net system 〈N,M0〉, McMillan (1995) presented a technique to construct a finite prefix of its

unfolding. Following Lemmon and He (2002), we consider a slightly different construction of the finite

prefix.

Definition 5 (Order 1 unfolding). The order 1 unfolding, denoted Ñ1(M0), is a finite prefix of the

unfolding obtained by Procedure 1 stopping the construction of the unfolding when we reach a cut-off

transition t̃, i.e., a transition such that:

• EITHER the firing of the local configuration of t̃ brings back to the initial marking, i.e., M̃([t̃]) =P

M̃0;

• OR there exists another transition t̃′ with the following properties:

(a) t̃′ has a smaller configuration than t̃: [t̃′]⊂ [t̃];

(b) the markings reached firing the two configurations are equivalent, i.e., M̃([t̃′]) =P M̃([t̃]).

In the following we call t̃′ the mirror transition of t̃ in Ñ1(M0).

It should be noted that what we call order 1 unfolding is a net slightly larger than McMillan finite prefix,

because our condition (a) is stronger: McMillan requires only that card([t̃′]) < card([t̃]).

Algorithm 6. The order 1 unfolding can be constructed using a modified version of Procedure 1 where

the instruction 7.(f) is changed to

7.(f ’) If t is not a cut-off transition, then let P̃exp := P̃exp ∪ P̃ ′′.

In this case when a cut-off transitions is added to the unfolding, a copy of its output places is also added

but they will not be used to expand the unfolding any further. With this small change, Procedure 1 always

stops in a finite number of steps if the original system is safe (and can now be called an algorithm).

Example 7. Consider the net shown in Figure 1. Its order 1 unfolding is shown in Figure 2 (the subnet

in darker color). Note that we have also added to the unfolding the cut-off transitions and their output

places: the cut-off transitions of the order 1 unfolding are the thick transitions t̃2 (on tier 3) and t̃6 (on

tier 4). Transition t̃5 (on tier 2) is not a cut-off transition: after its firing the unfolding cannot proceed

because a deadlock is reached. ¥

The following result follows from an original result presented by McMillan (1995).

Lemma 8. The image through the labelling function of the reachability set of the order 1 unfolding

Ñ1(M0) is the reachability set of the original system, i.e.,

R(N, M0) = `(R(Ñ1(M0))) ,
{

M ∈ Nm
∣∣∣M = `(M̃) , M̃ ∈ R(Ñ1(M0))

}
.

Proof. McMillan showed this result holds for the total unfolding and also for the finite prefix. Since

Ñ1(M0) is larger than McMillan finite prefix, the result follows immediately.

We can also define a larger finite prefix of the unfolding.

Definition 9 (Order 2 unfolding). Once constructed Ñ1(M0) , assume we continue the unfolding until

we reach a transition t̃ such that there exist a transition t̃′ with the following properties:

(a) either t̃′ does not belong to Ñ1(M0) or it is a cut-off transition of Ñ1(M0);
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t5 

t6 

p1 p2 

t1 

p3 

p4 

t2 

t3 

Figure 1: A safe Petri net.

(b) t̃′ has a smaller configuration: [t̃′] ⊂ [t̃];

(c) the two configurations reach equivalent markings: M̃([t̃′]) =P M̃([t̃]).

The resulting net, called order 2 unfolding, will be denoted Ñ2(M0). ¥

Example 10. Consider the net shown in Figure 1. Its order 2 unfolding is shown in Figure 2. The

cut-off transitions of the order 2 unfolding are the transitions in lighter color drawn with a thick line:

transition t̃′2 (on tier 6) and transitions t̃′6, t̃′′3 and t̃′′6 (on tier 7). ¥

In general, by iterating this procedure, we can construct the order i unfolding Ñi(M0), for i ∈ N; such a

system is an acyclic PN. When it is not necessary to specify the order of unfolding the subscript i may

be omitted.

We conclude this section pointing out to an obvious advantage of unfolding a net.

Proposition 11. Let us consider an unfolding net Ñ(M̃0). If the vector X̃ ∈ Nñ satisfies M̃0 + C̃X̃ ≥ 0,

then there exists a firing sequence enabled in Ñ(M̃0) whose firing count vector is X̃.

Proof. This is a classic result that holds for all acyclic nets.

There is an obvious corollary of the previous result, that allows one to characterized reachability in terms

of the state equation.

Corollary 12. For an unfolding net Ñ(M̃0) the set of reachable markings is equal to the set of potentially

reachable markings, i.e.,

R(Ñ(M0)) =
{

M̃ ∈ Nm̃
∣∣∣M̃ = M̃0 + C̃X̃, X̃ ∈ Nñ

}
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 Figure 2: The order 1 unfolding (subnet in darker color) and the order 2 unfolding (the complete net) of

the net in Figure 1.
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4 A special class of forbidden markings problem

We consider a control problem where the set of forbidden markings F has a special structure.

Definition 13. A set F ⊆ R(N, M0) has property REACH wrt a net system (N,M0) if

M ∈ F and M ′ ∈ R(N,M) ⇒ M ′ ∈ F .

Thus property REACH implies that the set is closed under the reachability operator.

Meaningful examples of sets that have property REACH are the following:

• the set of deadlock markings;

• the set of markings from which there exists no firing sequence containing a given transition;

• the set of markings that are not co-reachable, i.e., from which it is not possible to reach a given set

of final markings;

• the set of markings from which the initial marking is not reachable, i.e., from which no control law

can ensure reversibility;

• the set of markings from which there exists no firing sequence containing all transitions, i.e., from

which no control law can ensure liveness.

An example of a class of sets that do not necessarily have property REACH is the set of forbidden markings

corresponding to a generalized mutual exclusion constraint2 (w, k). The set of forbidden markings for

such a constraint, where w ∈ Zm and k ∈ Z, is F(w, k) = {M ∈ R(N, M0) | wT M > k}, and it is easy to

find examples where the property REACH does not hold. As an example, in the net in Figure 1 consider

the GMEC (w, k) with

w = [0 0 1 0 0 0 1 0]T and k = 1.

This constraint forbids the set

F(w, k) = {M ∈ R(N,M0) | M(p3) + M(p7) > 1} = {[0 0 1 0 0 0 1 0]T }

that does not have property REACH because from the unique marking in this set the firing of, say, t2

leads to [0 0 0 1 0 0 1 0]T 6∈ F .

In the following we focus on the optimal control of F . Property REACH will allow us to use unfolding

to design optimal controllers, as we show in the following section. However, for some control problems it

is not sufficient to prevent a net from reaching markings in a set F but it is also necessary to prevent the

set FI of markings that will inevitably lead to a marking in F .

Definition 14. Given a set F ⊆ R(N,M0) we define its impending set as

FI = {M ∈ R(N, M0) | (∃k ∈ N) : R≥k(N, M) ⊆ F , R<k(N, M) ∩D(N,M0) ⊆ F},

where R≥k(N, M) (resp., R<k(N, M)) denotes the set of markings reachable from M with a firing sequence

containing at least (resp., less than) k transitions, and D(N,M0) is the set of dead markings of the net

system 〈N, M0〉. ¥
2 A generalized mutual exclusion constraint (or GMEC) is a linear constraint on the set of reachable markings as defined

in (Giua et al., 1992).
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Thus, starting from a marking in FI any evolution of length k or more and any evolution of length less

than k that cannot be continued leads to F . Clearly if a marking in FI\F is reached, the only means the

supervisor has to prevent the plant from reaching a marking in F is that of blocking it. Hence avoiding

FI allows the supervisor to prevent F without having to block the plant. Note that by definition F ⊆ FI .

If the larger set FI must be avoided, property REACH is still preserved as shown in the following result.

Theorem 15. If a set F has property REACH, then the set FI has property REACH.

Proof. Consider any marking M ∈ FI . From the definition, there exists an integer k such that R≥k(N,M) ⊆
F , R<k(N,M)∩D(N, M0) ⊆ F . Consider any marking M ′ reachable from M such that M ′ ∈ Ri(N,M).

If i ≥ k, then M ′ ∈ F and hence M ′ ∈ FI . If i < k, then M ′ ∈ FI since R≥k−i(N, M ′) ⊆ R≥k(N, M) ⊆ F ,

and R<k−i(N, M ′) ∩D(N, M0) ⊆ R<k(N,M) ∩D(N, M0) ⊆ F .

The following result shows an important consequence of the property REACH on the structure of an

unfolding net.

Theorem 16. Given a set F with property REACH and a marking M̃ such that ˆ̀(M̃) ∈ F , if M̃ is

reachable with configuration X̃, then any larger configuration X̃ ′ > X̃ leads to a marking M̃ ′ such that
ˆ̀(M̃ ′) ∈ F .

Proof. If M̃ is reachable with configuration X̃, and M̃ ′ is reachable with configuration X̃ ′ then:

M̃ = M̃0 + C̃X̃, and M̃ ′ = M̃0 + C̃X̃ ′.

This implies

M̃ ′ = M̃ + C̃(X̃ ′ − X̃)

with X̃ ′ − X̃ ∈ Nñ hence M̃ ′ is reachable by M̃ (by Corollary 12). Thus ˆ̀(M̃ ′) must be reachable from
ˆ̀(M̃) and (by property REACH) it belongs to F . ¤

To conclude this section, let us comment how it may be possibile to check if a given set F has property

REACH. In the general case this may be done with an exhaustive reachability analysis: this is always

possible because the reachability set of a safe net is finite. However, there are some special cases in which

more efficient techniques can be used.

As an example, assume that the set of forbidden markings is given as a linear set:

F = {M ∈ Nm | AM ≤ b}, (1)

where A is a matrix r ×m and b is a vector r × 1. In this case is also immediate to observe that the set

of markings of the unfolding corresponding to forbidden markings are

`−1(F) = {M̃ ∈ Nm̃ | ÃM̃ ≤ b},

where Ã is a suitable matrix r×m̃ that can be constructed from A. In particular, assume that the matrix

A has elements A(i, p) where i = 1, . . . , r, denotes the generic constraint, and p ∈ P is a place of the net.

Then for all i = 1, . . . , r and for all p̃ ∈ `−1(p) it holds Ã(i, p̃) = A(i, p).

Under this assumption the following theorem holds.
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Theorem 17. A forbidden set F of the form given in eq. (1) has property REACH if and only if the

following IPP 



min J =
r∑

i=1

zi

s.t. M̃ = M̃0 + C̃2X̃ (a)

ÃM̃ ≤ b (b)

M̃ ′ = M̃ + C̃2X̃
′ (c)

zK + ÃM̃ ′ − (b + 1r) ≥ 0 (d)

M̃, M̃ ′ ∈ Nm̃; X̃, X̃ ′ ∈ Nñ; z ∈ {0, 1}r.

has optimal performance index J∗ < r, where K is a sufficiently large number, 1r is a r× 1 vector of 1’s,

and C̃2 is the incidence matrix of the order 2 unfolding.

Proof. The proof can then be established by the following facts: (1) each forbidden marking M has an

equivalent marking M̃ in the order 1 unfolding and (2) the set of markings reachable from M̃ in the order

2 unfolding contains the set of markings reachable from M in the original net N (this result is formally

proved later in Theorem 29).

Obviously J∗ < r if and only if there exist at least one i such that zi = 0. This means that there exists a

marking M̃ that is reachable (a) and forbidden (b) from which a marking M̃ ′ is reachable (c) and M̃ ′ is

not forbidden (d) because it does not satisfy the i-th equation that defines `−1(F). Note that the state

equation can be used to characterize reachability in (a) and (c) thanks to Corollary 12.

5 Control policy for F

Given a forbidden markings set F with property REACH we now present a maximally permissive control

policy ensuring that no marking in F is reached. This control policy will be “implemented” in the

unfolding net by places with output arcs and no input arcs.

For marking M̃ ∈ R(Ñ(M0)) such that ˆ̀(M̃) ∈ F let X̃ be the unique configuration that yields it.

Definition 18. The set of control transitions of M̃ is X̃c =
{

t̃ ∈ X̃
∣∣∣ 6 ∃t̃′ ∈ X̃, t̃ ∈ [

t̃′
]}

.

In plain words, these are all transitions inputting into the places that belong to M̃ and that do not

precede any other such transition.

It is easy to prove that all these transitions are concurrent. In fact, since X̃c ⊆ X̃ and X̃ is a firable

sequence, no two transitions can be in conflict. Furthermore, all transitions preceding another one in the

set X̃ are removed by construction, thus we are left with only concurrent transitions in X̃c.

We will use the following control structure to prevent reaching M̃ .

Definition 19. Given a marking M̃ with set of control transitions X̃c, the control place p̃c for M̃ is

a new place initially marked with
∣∣∣X̃c

∣∣∣ − 1 tokens and with an arc going to each transition in X̃c. The

incidence matrix of the control place is C̃(p̃c, t̃) = −1 if t̃ ∈ X̃c, else C̃(p̃c, t̃) = 0.

Theorem 20. The control strategy corresponding to control places for all ˆ̀(M̃) ∈ F is maximally per-
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missive, i.e., it does not prevents the unfolding to reach a marking M̃ ′ with ˆ̀(M̃ ′) /∈ F , if the set F has

property reach.

Proof. By construction, each control place for a marking ˆ̀(M̃) ∈ F corresponding to configuration X̃

forbids the configuration X̃ and all larger configurations X̃ ′ > X̃. From Theorem 16, the control place

only prevents from reaching markings ˆ̀(M̃) ∈ F . As a result, the control strategy corresponding to

control places for all ˆ̀(M̃) ∈ F is maximally permissive. ¤

We now show that such a controller can be constructed from order 1 unfolding Ñ1(M0) including all its

cut-off transitions and their output places. The key behind this construction is that avoiding F can be

achieved by one-step look-forward by checking whether firing a new transition leads to a marking in F .

We first construct the control places that prevent reaching markings in F in Ñ1(M0).

Algorithm 21. Construction of control places for F

1. Determine a reachable marking M̃ such that ˆ̀(M̃) ∈ F and such that no marking M̃ ′ with ˆ̀(M̃ ′) ∈ F
and conf (M̃ ′) ⊂ conf (M̃) exists.

2. If no such marking exists, then stop.

3. Add to Ñ1(M0) the control place for M̃ .

4. Goto 1.

The net obtained by adding these control places to the order 1 unfolding is called Ñ1,c(M0). This net

is not necessarily an occurrence net because the control places may contain more than one token. It

is however always possible to convert it into an equivalent occurrence net if necessary. This procedure

however is not necessary because we can use the net Ñ1,c(M0) as it is to solve our control problem.

Example 22. Given the net in Fig. 1, assume we want to forbid the set of markings M ∈ R(N, M0)

such that M(p3) + M(p4) + M(p7) + M(p8) = 2. Clearly F = {{p3, p7}, {p4, p7}, {p3, p8}, {p4, p8}} , and

it is not difficult to show that this forbidden set has property REACH for this net.

Consider the order 1 unfolding shown in Figure 3 where to avoid any confusion we have assigned a unique

label to each place and transition.

In the following table for each of the forbidden markings M we have shown the corresponding unfolding

marking(s) M̃ , the configuration conf (M̃), the corresponding set of control transitions X̃c and finally the

control place p̃c. A symbol * (resp., **) in the last column denotes a non minimal configuration already

forbidden by place p̃c1 (resp., p̃c2) hence no new place has to be added to the net for preventing it.
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Figure 3: The net Ñ1,c(M0) in Example 22.

M M̃ conf (M̃) X̃c p̃c

{p3, p7} {p̃3, p̃
′
7} {t̃3, t̃1, t̃′4} {t̃1, t̃′4} p̃c1

{p4, p7} {p̃4, p̃7} {t̃4} {t̃4} p̃c2

{p̃′4, p̃′7} {t̃3, t̃1, t̃2, t̃′4} {t̃2, t̃′4} *

{p3, p8} {p̃3, p̃
′
8} {t̃3, t̃1, t̃′4, t̃′5} {t̃1, t̃′5} *

{p4, p8} {p̃4, p̃8} {t̃4, t̃5} {t̃5} **

{p̃′4, p̃′8} {t̃3, t̃1, t̃2, t̃′4, t̃′5} {t̃2, t̃′5} *

The net Ñ1,c(M0) obtained adding to the order 1 unfolding the control places is shown in Figure 3. Note

that place p̃c2 contains no token because its corresponding set of control transitions is a singleton: this

means that transition t̃4 on tier 1 should never fire. ¥

If we want to use the order 1 unfolding for computing a control law for sequences of unbounded length,

it is necessary to be able to reset the marking of the unfolding after a sequence containing a cut-off

transition has fired. To show how this is possibile, we introduce the notion of mirror marking using the

concept of extension of a local configuration (Esparza et al., 2002) and of equivalent extension.

Definition 23. Let M̃ be a marking of an unfolding net such that conf (M̃) = [t̃] ∪ E and [t̃] ∩ E = ∅,
i.e. conf (M̃) is an extension of [t̃] denoted as [t̃] ⊕ E. If t̃ is a cut-off transition with t̃′ as its mirror

transition in Ñ1(M0), we define the mirror marking of M̃ as the marking of the configuration [t̃′] ⊕ E′

where E′ is the equivalent extension of E for [t̃′].

As an example, consider the unfolding net of Figure 3 before adding p̃c1 and p̃c2. The configuration

of the marking M̃ = {p̃′4, p̃′7} is conf (M̃) = {t̃3, t̃1, t̃′4, t̃2} containing one cut-off transition t̃2 with a
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local configuration [t̃2] = {t̃3, t̃1, t̃2} and extension E = {t̃′4}. The mirror transition of t̃2 is t̃′ = ε, the

equivalent extension E′ = {t̃4} and the mirror marking is the marking of configuration [ε] ∪ {t̃4} = {t̃4}
which is {p̃4, p̃7}.

The concept of mirror marking can also be extended to a control place.

Definition 24. Let M̃ be a marking of Ñ1,c(M0) such that conf (M̃) = [t̃] ∪ E and [t̃] ∩ E = ∅. If

t̃ is a cut-off transition with t̃′ as its mirror transition, the mirror marking of a control place p̃c is

M̃ ′(p̃c) = M̃0(p̃c) + C̃(p̃c, ·)([t̃′]⊕ E′), where E′ is the equivalent extension of E for [t̃′].

According to the previous definition, after a cut-off transition fires, the control places should get back all

those tokens that have been taken by the firing of [t̃]− [t̃′].

As an example, consider the control net of Figure 3 and the marking M̃ obtained firing cut-off transition

t̃2. Such a marking can be written as: M̃(P̃ ) = {p̃′4, p̃′5, p̃6} — considering its projection over the places

of the unfolding net (excluding the control places) — while M̃(p̃c1) = M̃(p̃c2) = 0.

The configuration of this marking is conf (M̃) = [t̃2] = {t̃3, t̃1, t̃2} with extension E = ∅. The mirror

transition of t̃2 is t̃′ = ε hence the mirror marking relative to the places of the unfolding is: M̃ ′(P̃ ) =

{p̃4, p̃5, p̃6}. The mirror marking of the control place p̃c1 can be computed as follows: M̃ ′(p̃c1) = M̃0(p̃c1)+

C̃(p̃c1, ·)([ε]) = 1 + 0 = 1. Analogously, one can compute M̃ ′(p̃c2) = 0.

Definition 25. The control policy for F uses the net Ñ1,c(M0) and can be defined as follows.

1. The plant and the net Ñ1,c(M0)) are initialized with the respective initial marking.

2. Compute a control pattern as follows: if T̃e is the set of transitions enabled in Ñ1,c(M0), the set of

transitions that are enabled by the controller on the plant is Te = `(T̃e).

3. If a transition t fires in the plant, the unique transition t̃ ∈ `−1(t) enabled in Ñ1,c(M0) is fired.

After the firing of t̃, the marking of the unfolding is set to the related mirror marking if t̃ is a

cut-off transition.

4. Goto 2.

As an example, let us consider the control actions determined using the unfolding net of Figure 3 at

different steps of the firing sequence t3t4t5t6t1. In the following table σ denotes the sequence generated

by the plant, M̃(P̃ ) denotes the corresponding marking relative to the places of the unfolding (excluding

the control places), M̃(p̃c1) and M̃(p̃c2) denote the corresponding marking of the control places, enab(σ)

denotes the set of transitions enabled in the plant after the firing of σ, while φ(σ) denotes the set of

transitions enabled by the controller after the firing of σ.
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σ M̃(P̃ ) M̃(p̃c1) M̃(p̃c2) enab(σ) φ(σ)

ε {p̃4, p̃5, p̃5} 1 0 {t3, t4} {t3}

t3 {p̃1, p̃2, p̃
′
5, p̃6} 1 0 {t1, t4} {t1, t4}

t3t4 {p̃1, p̃2, p̃
′
7} 0 0 {t1, t5} {t5}

t3t4t5 {p̃1, p̃2, p̃
′
8} 0 0 {t1, t6} {t6}

t3t4t5t6 {p̃1, p̃
′
2, p̃

′′
5 , p̃′6} 0 0

↓ (mirror) ↓ ↓
{p̃1, p̃2, p̃

′
5, p̃6} 1 0 {t1, t4} {t1, t4}

t3t4t5t6t1 {p̃3, p̃
′
5, p̃6} 0 0 {t2, t4} {t2}

Theorem 26. The control policy of Definition 25 is maximally permissive.

Proof. Similar to the proof of Theorem 20, a marking M̃ of Ñ1(M0) is forbidden by control places of

Algorithm 21 if and only if ˆ̀(M̃) ∈ F . Since a marking M̃ obtained by a cut-off transition t̃ is replaced

by its mirror marking M̃ ′, we need to prove that M̃ ′ is also permitted by control places. This is true since

M̃ is accepted by control places which implies ˆ̀(M̃) /∈ F and M̃ =P M̃ ′. The maximal permissiveness is

a consequence of the completeness of the unfolding. ¤

A final comment to conclude this section. In general Algorithm 21 requires an exhaustive search of all

forbidden markings. However, assume that, as in (1), the set of forbidden markings is given by a linear

set. Under this assumption the following theorem holds.

Theorem 27. Given a forbidden set F of the form given in eq. (1), the set of minimal configurations to

be forbidden in Algorithm 21 are the minimal vectors X̃ satisfying the constraint set




M̃ = M̃0 + C̃1,cX̃ (a)

ÃM̃ ≤ b (b)

M̃ ∈ Nm̃; X̃ ∈ Nñ.

(2)

where C̃1,c is the incidence matrix of the order 1 unfolding augmented with existing control places.

Proof. The state equations can be used to characterize reachability in (a) thanks to Corollary 12.

Example 28. The set of forbidden markings of the previous example

F = {M ∈ Nm | M(p3) + M(p4) + M(p7) + M(p8) = 2},

is in the form given by (1).

We start by solving for the uncontrolled net the IPP




min
∑

t̃∈T̃

X̃(t̃)

M̃ = M̃0 + C̃1X̃

M̃(p̃3) + M̃(p̃4) + M̃(p̃′4) + M̃(p̃7) + M̃(p̃′7) + M̃(p̃8) + M̃(p̃′8) = 2

M̃ ∈ Nm̃; X̃ ∈ Nñ.
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and determine configuration X̃2 = {t4} to be forbidden.

We add to the net the corresponding control place p̃c,2 in Figure 3 and for the controlled net thus obtained,

whose incidence matrix we denote C̃ ′1,c, we solve




min
∑

t̃∈T̃

X̃(t̃)

M̃ = M̃0 + C̃ ′1,cX̃

M̃(p̃3) + M̃(p̃4) + M̃(p̃′4) + M̃(p̃7) + M̃(p̃′7) + M̃(p̃8) + M̃(p̃′8) = 2

M̃ ∈ Nm̃; X̃ ∈ Nñ.

and determine configuration X̃1 = {t3, t1, t′4} to be forbidden.

We add to the net the corresponding control place p̃c,1 in Figure 3 and for the controlled net thus obtained,

whose incidence matrix we denote C̃ ′′1,c, we can check that constraint set (2) is unfeasible, hence no other

configuration should be forbidden. ¥

6 Control policy for FI

Since FI also has the REACH property, the control policy for F applies if FI is known and the order 1

unfolding is enough. Unfortunately, for most control problems, FI is not given and has to be determined.

To check whether a reachable marking ˆ̀(M̃) ∈ FI , we need to check whether F is avoidable starting from

M̃ . Order 1 unfolding is no longer enough as it does not allow the reachability analysis for all reachable

markings. This is possible with order 2 unfolding thanks to the following theorem.

Theorem 29. Given a net system 〈N,M0〉, let M ∈ R(N, M0) be a reachable marking and let M̃ ∈
R(Ñ1(M0)) be a marking of the unfolding such that ˆ̀(M̃) = M . Then the order 1 unfolding Ñ1(M) of

net N with initial marking M is a subnet of N2(M0) starting at M̃ .

Proof. Consider any configuration X̃ of Ñ1(M0) corresponding to marking M̃ . Considering the order 1

unfolding Ñ1(M̃) starting at M̃ . For any configuration of Ỹ of Ñ1(M̃), from the completeness of the

unfolding net Ñ(M0), X̃ + Ỹ is a configuration of Ñ(M0) and Ñ1(M̃) is a subnet of Ñ(M0). The theorem

is proved if any transition t̃ in Ỹ is either a cut-off transition of Ñ2(M0) or its local configuration [t̃] does

not contain any cut-off transition of Ñ2(M0). For this purpose assume that there exists a transition t̃ in

Ỹ such that its local configuration [t̃] contains a cut-off transition w̃ of Ñ2(M0). Of course w̃ belongs to

Ñ1(M̃) as well. From the definition of Ñ2(M0), there exists another transition w̃′ such that (a) either

w̃′ does not belong to Ñ1(M0) or it is a cut-off transition of Ñ1(M0); (b) w̃′ has a smaller configuration:

[w̃′] ⊂ [w̃]; (c) the markings reached firing the two configurations are equivalent: M̃([w̃′]) =P M̃([w̃]).

From the above definition, w̃′ is a transition of the local configuration [t̃]. Further by construction t̃ is

not in conflict with any transition in X̃ and hence w̃′ is not in conflict with X̃. As a result, Z̃ = X̃ ∪ [w̃′]

is configuration, Z̃ ⊂ X̃ and w̃′ is a transition of Ñ1(M̃). Similarly w̃ is a transition of Ñ1(M̃) and it is a

cut-off transition of Ñ1(M̃). Because t̃ follows w̃, it cannot be in Ñ1(M̃). This contradicts the fact that

t̃ is a transition of Ñ1(M̃) and concludes the proof.

18



Hence, if we identify in the order 2 all markings M̃ such that ˆ̀(M̃) ∈ F , then we can easily identify, by

reachability analysis, all markings in FI . Structural analysis may also be used for this purpose, as we

discuss in the following section.

We conclude this section showing that the set FI can be prevented by a non deadlocking supervisor, i.e.,

the corresponding supervisor is such that the controlled net does not contain controller induced deadlocks.

Theorem 30. Let Ñ1,c(M0) be the controlled unfolding net in all markings M̃ such that ˆ̀(M̃) ∈ FI are

forbidden by their related control places. Then there exist no dead marking in M̃ of Ñ1,c(M0) unless it is

also a dead marking of Ñ1(M0).

Proof. Let us assume, it is possible to reach in the controlled net a marking M̃ that is a control induced

dead marking, i.e., a marking that is dead because of the controller but that is not dead in the order 1

unfolding. Since the control places only forbid transitions firings that lead to FI , then without control

all transitions enabled at M̃ would lead to a marking in FI in one step. By definition, this implies that
ˆ̀(M̃) ∈ FI . But this is a contradiction, because we have assumed that no markings in FI is reachable in

the controlled net.

7 Deadlock avoidance control

We consider the particular case in which the set of forbidden markings F is the set of dead markings.

Hence the set FI is the set of the impending deadlocks and a control law that prevent this set corresponds

to a maximally permissive nonblocking supervisor. Under this assumption, we show that there exists an

efficient approach based on linear algebra to identify markings in FI and to prevent them with control

places.

In this section, when we need not distinguish between order 1 and order 2 unfolding we omit the subscript

1 or 2. Thus we denote an unfolding Ñ while its incidence matrix is the m̃ × ñ matrix C̃. Similarly,

the controlled net with the addition of m̃c control places is denoted Ñc while its incidence matrix is the

(m̃ + m̃c)× ñ matrix C̃c.

We first observe that the controlled net is an acyclic net. In fact the unfolding is acyclic by construction,

and the addition of control places does not modify this property, because each control place has only

output arcs. Thus Proposition 11 and Corollary 12 also holds for the controlled net.

Secondly, we discuss how it is possible to give a linear algebraic characterization of the set of deadlock

marking. The following result holds.

Proposition 31. Given an unfolding net Ñ(M̃0), we have that a marking M̃ is dead if and only if for

all t̃ ∈ T̃ if holds ∑

p̃∈• t̃

M̃(p̃) ≤ |•t̃| − 1.

Proof. The result follows from the fact that the unfolding is a safe net, hence t̃ if enabled if and only if

M̃(p̃) = 1 for all p̃ ∈ •t̃.
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This result does not hold for the controlled net, because the control places are not necessarily safe.

However, the following results holds.

Proposition 32. Given a controlled net Ñc(M̃c,0), let P̃ be the set of places of the unfolding net, and P̃c

the set of control places. Given any marking M̃ , we can associate to each place p̃c ∈ P̃c a binary counter

µ(p̃c) ∈ {0, 1} that satisfies the following equations:

µ(p̃c) ≤ M̃(p̃c) and M̃c,0(p̃c)µ(p̃c) ≥ M̃(p̃c). (3)

Then a marking M̃ is dead if and only if for all t̃ ∈ T̃ if holds

∑

p̃∈P̃∩• t̃

M̃(p̃) +
∑

p̃c∈P̃c∩• t̃

µ(p̃c) ≤ |•t̃| − 1.

Proof. We first observe that the first equation (3) implies that µ(p̃) = 0 if M̃(p̃c) = 0, while the second

equation (3) implies that µ(p̃) = 1 if M̃(p̃c) > 0 (note that by construction the control place is such that

M̃c,0(p̃c) ≥ M̃(p̃c)), i.e., µ(p̃) = 1 if and only if p̃ is marked. The results follows because t̃ is enabled if

and only if all its input places are marked.

Our third and final preliminary result characterizes redundant control places, i.e., places that can be

removed without changing the behavior of the controlled net.

Definition 33. Given a controlled net Ñc(M̃c,0), let Ñ ′
c(M̃

′
c,0) be the net obtained from Nc removing

a control place p̃′c. We say that place p̃′c is redundant in Ñc(M̃c,0) if for all reachable markings M̃ ∈
R(Ñc(M̃c,0)) and for all transitions t̃ ∈ p̃′• it holds (∀p̃c ∈ •t̃ \ {p̃′c}) M̃(p̃c) > 0 =⇒ M̃(p̃′c) > 0. ¥

Proposition 34. With the notation of the previous definition, place p̃′c is redundant in Ñc(M̃c,0) if and

only if the following integer programming problem (IPP)




min J = C(p̃′c, ·)X̃

s.t. M̃ ′
c,0 + C̃ ′X̃ ≥ 0

— where C̃ and C̃ ′ are, respectively, the incidence matrices of Ñc and Ñ ′
c — has optimal solution J∗

such that M̃c,0(p̃′) + J∗ ≥ 0.

Proof. By Proposition 11, any vector X̃ satisfying the IPP corresponds to a firable sequence of Ñ ′
c(M̃ ′

c,0).

This sequence is never disabled by place p̃′c in Ñc(M̃c,0) if M̃c,0(p̃′c) + J∗ ≥ 0. Hence Ñ ′
c(M̃

′
c,0) and

Ñc(M̃c,0) admit the same set of firable sequences.

We can finally outline an algorithm to design a maximally permissive deadlock avoidance controller for

a given safe net system 〈N, M0〉.
Algorithm 35. Deadlock avoidance controller

1. Construct the order 2 unfolding Ñ2(M̃0).

2. Determine the set of dead markings of Ñ2(M̃0), excluding the markings that include the output

places P̃out of the cut-off transitions of the order 2 unfolding3. This set corresponds to the feasible

3These markings even if they are dead in Ñ2(M̃0), do not necessarily correspond to dead markings in the original net.
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solutions M̃ of the following constraint set




M̃ = M̃0 + C̃2X̃

∑
p̃∈• t̃ M̃(p̃) ≤ |•t̃| − 1 (∀t̃ ∈ T̃ )

M̃(p̃) = 0 (∀p̃ ∈ P̃out)

M̃ ∈ Nm̃, X̃ ∈ Nñ

and for each marking M̃ add to the unfolding the corresponding set of control places to obtain a net

Ñ2,c(M̃c,0).

3. Determine the set of dead markings of Ñ2,c(M̃c,0) as the set of feasible solutions M̃ of the following

constraint set 



M̃ = M̃c,0 + C̃2,cX̃

µ(p̃c) ≤ M̃(p̃c) (∀p̃c ∈ P̃c)

M̃c,0(p̃c)µ(p̃c) ≥ M̃(p̃c) (∀p̃c ∈ P̃c)
∑

p̃∈P̃∩• t̃

M̃(p̃) +
∑

p̃c∈P̃c∩• t̃

µ(p̃c) ≤ |•t̃| − 1 (∀t̃ ∈ T̃ )

M̃(p̃) = 0 (∀p̃ ∈ P̃out)

M̃ ∈ Nm̃, X̃ ∈ Nñ, µ ∈ {0, 1}m̃c

4. If the set of dead markings determined at the previous step is not empty, add to Ñ2,c the corre-

sponding control places and go to 3.

5. Let Ñ1,c be the net obtained from Ñ2,c removing all places and transitions that do not belong to the

order 1 unfolding, and removing all control places that have arcs going to a transition that has been

removed.

6. Check all control places of Ñ1,c for redundancy, using the IPP of Proposition 34, and remove the

redundant ones. ¥

If is not difficult to show that the control net computed by the previous algorithm corresponds to a

maximally permissive deadlock avoidance controller for a given safe net system 〈N, M0〉. We give here a

sketch of this proof.

• First, let us observe that all markings forbidden in step 2 are dead markings of the original net, and

let D̃ be this set of markings. The k-th iteration of step 3 forbids all markings of Ñ2(M̃0) that are

k steps from markings in D̃, hence by repeating step 3 one forbids all markings that unavoidably

leads to markings in D̃ in a finite number of steps. Let D̃∗ be the set of markings that are forbidden

either in step 2 or in step 3: clearly these markings are dead markings or impending dead markings

that should be forbidden by a deadlock avoidance controller.

• On the other hand, according to Theorem 29, any order 1 unfolding marking M̃ has its order 1

unfolding net as subnet of Ñ2(M̃0). As a result, any order 1 unfolding marking M̃ corresponding

to a dead marking or to an impending dead marking of 〈N, M0〉 belongs to the set D̃∗ and is hence

forbidden by the controller of Algorithm 35.
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Figure 4: The net Ñ1,c in Example 36 before removing the redundant control places.

• The above two results show that any order 1 unfolding transition enabled by the controller designed

with the previous algorithm does not leads to a marking in D̃∗. Furthermore, it is clear that a mirror

marking following of an order 1 cut-off transition belongs to D̃∗ iff its original marking belongs to

D̃∗. These two results show the correctness of the controller designed with Algorithm 35, while the

completeness of the order 1 unfolding ensures the maximum permissiveness of the controller.

The net constructed with the previous algorithm can be used to compute a maximally permissive non-

blocking control policy, as explained in Definition 25.

Example 36. The net in Figure 1 is blocking. Using the previous algorithm we first construct its order

2 unfolding (see Figure 2) and at step 2 identify three blocking markings: {p̃4, p̃8}, {p̃′4, p̃′8} and {p̃′′′4 , p̃′′′8 }.
All correspond to the unique dead marking of the original net that marks places p4 and p8. Iterating

at step 3 of the algorithm we identify new control induced markings, and add the corresponding control

places to the order 2 unfolding. At step 5, removing the second order subnet, we obtain the net Ñ1,c

shown in Figure 4. Finally at step 5 we eliminate the redundant places: only places p̃c,3 and p̃c,6 remain

at the end of the algorithm. ¥

8 Conclusions

In this paper we have used the technique of unfolding to design maximally permissive supervisors for safe

Petri nets assuming that the specification is given by a set of forbidden markings F with property REACH.

The control structure we have derived takes the form of a set of places to be added to the unfolding.

The unfolding net with the addition of control places is used to compute a maximally permissive control

policy.

The approach has also been extended to the problem of preventing a larger set FI of impending forbidden
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marking. This is a superset of the forbidden markings that also includes all those markings from which -

unless the supervisor blocks the plant - a marking in F is inevitably reached in a finite number of steps.

Although in the general case it may be necessary to enumerate all forbidden markings, the technique can

be efficiently applied to the design of maximally permissive supervisors for deadlock avoidance by means

of structural analysis.

There are some lines for future research that are still open.

• In many cases it may be possible to find equivalent control structure to be added to the original

net rather than to the unfolding.

• The approach may also be extended to nets with uncontrollable transitions, that cannot be disabled

by a supervisor.

References

Aghasaryan, A., E. Fabre, A. Benveniste, R. Boubour and C. Jard (1998). Fault detection and diagnosis

in distributed systems: an approach by partially stochastic Petri nets. Discrete Events Dynamical

Systems 8, 203–231.

Benveniste, A., E. Fabre and S. Haar (2003a). Markov nets: probabilistic models for distributed and

concurrent systems. IEEE Trans. on Automatic Control 48(11), 1936–1950.

Benveniste, A., E. Fabre, S. Haar and C. Jard (2003b). Diagnosis of asynchronous discrete event systems,

a net unfolding approach. IEEE Trans. on Automatic Control 48(5), 714–727.

Chu, F. and X. Xie (1997). Deadlock analysis of Petri nets using siphons and mathematical programming.

IEEE Trans. on Automation 13(6), 793–804.
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