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ABSTRACT. 

Cellulose ethers are polymers frequently introduced into mortar formulations. This study 

allows to assess the potential role of cellulose ethers degradation on the alteration of the 

cement hydration kinetics. A retardation mechanism based on the calcium binding capacity of 

chelates is often proposed to describe the effects of some polysaccharides (e.g. sugars) on 

cement hydration. The alkaline stability of cellulose ethers has been poorly studied and may 

represent one way to understand the hydration delay induced by such admixtures. 

Identification and quantification of the hydroxy carboxylic acids generated during alkaline 

degradation were performed. The results indicate that cellulose ethers are very stable in 

alkaline media. We also show that the ability of cellulose ethers to complex calcium ions is 

negligible. Finally, degradation of cellulose ethers and its impact on the cement hydration 

kinetics does not seem to be significant.  

Keywords: cellulose ethers, complex, alkaline degradation, calcium binding capacity, delay. 

 

1. Introduction 

Cellulose ethers are usually introduced into mortar formulations in order to induce a 

substantial increase of the water retention capacity. They therefore prevent water from 

draining out too quickly from the mortar to the substrate. In this way, more water is retained 

in the fresh material, which favors cement hydration and thereby increases the mechanical 

strength of the hardened mortar.  Hydration delay is an undesired and uncontrolled secondary 

effect induced by some cellulose ethers. These polysaccharide admixtures retard the hydration 

of cement through poorly understood mechanisms [1-4]. Nevertheless, it is generally accepted 

that retardation occurs because of adsorption of admixtures to surfaces of the hydrated and/or 

anhydrous phases [5]. The adsorption may take place through a process where organic 
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molecules fix metallic ions by complexing or chelating. Concerning the action of sugars on 

cement hydration, many authors explained that chelation can play an important role on the 

adsorption ability [6,7]. Moreover, strong evidences proved that complexation of sugars with 

calcium is responsible for retardation [6,8]. Several studies also indicate that products formed 

by the alkaline degradation of cellulose (such as α-isosaccharinic acid) have a large effect on 

the complexation of calcium [9-10]. 

Pourchez et al. showed evidence of a very disparate delay on portlandite precipitation induced 

by cellulose ethers (from 10 minutes up to many hours). This retardation seems to depend 

mainly on the molecule chemical structure and particularly on the substitution degree [11]. 

Nowadays, few data are available concerning the capacity of cellulose ethers chelation in 

alkaline media and its potential influence on the kinetics of cement hydration. As 

polysaccharides are subject to alkaline degradation with formation of hydroxy carboxylic 

acids [12,13], which are well-known chelating and retarding agents, the possible impact of 

this degradation is of greatest importance in order to fully understand the action of cellulose 

ethers on cement hydration.  

Thanks to results with sugars [8], we know that there are at least two properties worth 

considering in this context: the alkaline stability and the calcium binding capacity. This study 

aims at collecting basic data on these two properties so as to determine the potential role of 

degradation during cement hydration. More precisely, this paper intends to evaluate the 

calcium complexing ability of cellulose ethers, to identify and quantify their degradation 

products in model alkaline environment, and finally to determine the retardation capacity of 

the different degradation products doubtless identified. 
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2. Materials  

2.1. Cement  

The investigated cement was a 52.5 ordinary Portland cement (CE CP2 according to the 

European standard NF EN 197-1). Its chemical and phase compositions are given in Table 1. 

To determine the oxide composition as well as the phase composition according to Bogue 

approximation, X-ray fluorescence spectroscopy (Bruker-AXS, SRS3400, Germany) was 

conducted [14]. XRD analysis (Siemens, D 5000, Germany) also allowed to quantify the 

phase composition of the given cement by means of Rietveld method (Siroquant V2.5 

software). 

2.2. Cellulose ethers 

Even if the most widespread cellulose ethers used in building materials are 

hydroxyethylmethyl cellulose (HEMC) or hydroxypropylmethyl cellulose (HPMC), 

hydroxyethyl cellulose (HEC) is also chosen because of its more simple chemical structure. 

Three different HEC molecules (noted H1, N1and N7) and two HPMCs (named U2 and P1) 

were selected. Beforehand, a precise characterization was performed (Table 2) by size 

exclusion chromatography and near infra red spectroscopy analysis [11]. It allowed to 

quantify the structure parameters, i.e. the weight-average molecular mass (Mw) the content of 

hydroxy ethyl substitution groups (% EOOH), the content of hydroxy propyl substitution 

groups (% POOH), and the content of methoxyl substitution groups (% OCH3). 
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3. Experimental procedures 

3.1. Calcium binding capacity of cellulose ethers 

The protocol performed to investigate the calcium binding ability was proposed by Thomas 

and Birchall [8]. Sugars (50 mM) or cellulose ethers (1 g per liter of deionized water) were 

stirred with excess calcium hydroxide (6 g per liter of deionized water) for 48 hours. The 

mixture was then filtered through a 0.7 µm membrane. The filtrate was diluted and acidified. 

Afterwards, the Ca2+ concentrations of the filtrate were determined by ionic chromatography. 

This analysis was performed on a Dionex apparatus composed of a GP 50 pump, a CS 12A 

column and a CD 20 conductometric detector (the elutent was a solution of metasulfonic acid 

at 20 mM with isocratic mode).  

3.2. Identification and quantification of degradation products 

Alkaline degradation of wood polysaccharides in kraft black liquors was commonly studied in 

order to improve the alkaline pulping processes in the paper industry. Based on this 

knowledge, Govin et al. developed a procedure in order to show the action of the alkaline 

degradation products of wood on cement hydration [15]. With specific modifications due to 

particular properties of cellulose ethers, a similar protocol was elaborated. 

All protocol steps of the sample preparation are illustrated in Figure 1. The first stage of the 

sample preparation was the degradation of cellulose ethers. This degradation occurred within 

12 hours in a saturated lime media (0.5 g of cellulose ether for 100 mL of lime water). The 

saturated lime solution is a model alkaline media which can simulate the alkaline solution in 

the cement pore. Preliminary results indicated that the concentration of degradation products 

should be very low. Consequently, a reconcentration was provided. An evaporation with a 

rotary evaporator followed by a dilution of the dry solids with 2 mL of water, allowed to 

obtain a 0.5 mL liquor samples. As cellulose ethers are thickener agents, the solution turned 
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into a gel during evaporation. Consequently, some centrifugations were conducted during the 

reconcentration to separate the non-degraded polymer from the degradation products. The 

obtained liquor was then passed through a column filled with a weakly acidic cation-exchange 

resin (Amberlite IRC-50, NH4
+, 4 mL). The interest of this conversion into ammonium salts is 

to avoid lactonization reaction and ring-closure of degradation products. The ion-exchange 

column was then washed with water to obtain an effluent volume of 50 mL. This effluent was 

evaporated to dryness under reduced pressure. The obtained dry solid was vacuum-dried with 

P2O5 during 12 hours. Afterwards, an internal standard (Xylitol) was added to the dry solid. 

Finally, 0.9 mL of pyridine and 0.1 mL of trifluorobis(trimethylsilyl)acetamide (BSTFA) 

containing 5% of chlorotrimethylsilane (TMCS) were added to the residue. This reaction was 

conducted under nitrogen environment and the mixture was stirred during 4 hours. This 

trimethylsilylation allowed the non-volatile degradation products to be more volatile for gas 

chromatograph analysis. Identification and quantification were performed with a gas 

chromatograph (Shimadzu GC-17A) equipped with a mass spectrometer (Shimadzu QP 

5000). A volume of 1.5 µL was injected. The temperature of the detector and the injector 

were set at 260°C. The column was apolar (UptiBond 5 Premium – 30 m × 0.32 mm × 0.25 

µm – Interchim). 

3.3. Hydration delay characterization 

Conductometric measurement in lime solution appears as a powerful tool to monitor the 

hydration kinetics [2,11,15,16]. The determination of hydration delay is based on the 

portlandite precipitation time, represented by an electrical conductivity drop as a benchmark. 

The experiments were performed in diluted water lime suspension, thermostated at 25°C and 

continuously subjected to magnetic stirring. The liquid to solid (L/S) weight ratio used was 

equal to 20 (100 mL of liquid and 5 g of solid). 
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To evaluate the impact of degradation products on the kinetics of cement hydration, 

conductometric measurements of a cement suspension with synthetic solutions of degradation 

products were performed. A synthetic solution of degradation products corresponded to a 

solution without the cellulose ether molecule, but containing all the identified degradation 

products (with a concentration corresponding to the degradation of a cellulose ethers to 

cement weight ratio of 2%). 

4. Results and discussion 

4.1. Calcium binding capacity of cellulose ethers 

The calcium complexing ability of cellulose ethers (H1, N1, N7, U2 and P1) and sugars 

(glucose, sucrose, maltose, cellobiose, raffinose and lactose) were conducted. The results are 

featured in Figure 2. Two points are immediately obvious on this figure. All the cellulose 

ethers investigated had a calcium concentration closed to the reference sample (calcium 

hydroxide and deionized water). As a result, the value of Ca2+ ion concentration reached for 

the cellulose ether samples (approximately 22 mM) is only due to the calcium hydroxide 

solubility. On the contrary, all the sugars made calcium hydroxide soluble to some extent. The 

excess of Ca2+ ion concentration observed, by comparison with the reference sample, showed 

a great calcium binding capacity of sugars. These results were coherent according to the data 

of Thomas and Birchall on the solubilization of calcium hydroxide by sugars [8]. Therefore, 

this protocol was perfectly adapted to investigate the calcium binding ability of molecules. To 

sum up, cellulose ethers induced a negligible complex formation with calcium ions, unlike 

sugars. 

Moreover, we noticed that the filtrate obtained with the reducing sugar (glucose, lactose, 

maltose and cellobiose) were always yellow, contrary to the non-reducing sugars (sucrose and 

raffinose) and cellulose ethers. This coloration was an additional evidence of the great 
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alkaline degradation of reducing sugars, whereas cellulose ethers seemed to be inert to 

degradation in saturated lime solution. In order to investigate the presence of different 

compounds generated during the alkaline degradation, all filtrates were examined by ultra-

violet spectroscopy. It was found that spectra of cellulose ethers didn’t show any peak in the 

UV region. On the contrary, the sugars spectra showed a large peak between 250 and 300 nm. 

This peak was principally detected for the reducing sugars. The presence of such a peak could 

be the sign of either the formation of saccharinic acids, or the enolization of the reducing 

sugars [8-10]. 

4.2. Results concerning HPMCs and HECs degradation 

Five major degradation products were identified: three hydroxy carboxylic acids (lactic acid, 

glycolic acid and oxalic acid) and two alcohols (diethylene glycol and glycerol). The chemical 

structure of these compounds are featured in Table 3. The detection of hydroxy acids is not 

amazing. Several authors showed that such hydroxy acids were commonly identified for the 

alkaline degradation of cellulose, hemicelluloses and monosaccharides [10,12,13,15]. The 

detection of the alcohols is more surprising. According to manufacturers’ data, the alcohols 

are certainly synthesis by-products rather than alkaline degradation products. The 

concentrations of all degradation products are very low, lower than 1 mg per gram of HPMC 

introduced (Figure 3). The concentrations of the hydroxy acids were ten times higher than that 

of the alcohols. Thus, we demonstrated that HPMCs are very stable in alkaline media. 

In agreement with the HPMCs degradation, the same degradation products were detected for 

HECs degradation except oxalic acid. The same order of magnitude of concentration was 

obvious. The concentrations of hydroxy acids and alcohols were respectively lower than 2 

mg.g-1 and 0.2 mg.g-1 of HEC introduced (Figure 4). We could conclude that all cellulose 

ethers investigated were stable in alkaline media. Moreover, these results let think that the 

substitution degrees were the key parameter which protected molecules from alkaline 
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degradation. Indeed, the less the hydroxyethyl content, the more important the degradation. 

These observations were coherent with the end-wise and peeling reactions which involved the 

effects of specific linkages on alkaline degradation of polysaccharides [13]. 

4.3. Influence of degradation products on cement hydration 

Even if the concentrations of degradation products were very low, these molecules may have 

a great impact on cement hydration. Conductometric measurements of a cement suspension 

with synthetic solutions of degradation products were performed. For example, the 

compositions of the synthetic solutions for HECs are described in Table 4. The low 

retardation induced by synthetic solutions of degraded HECs proved that the degradation 

products had a minor impact on the kinetics of cement hydration. The results are presented in 

Figure 5. The retardation on the portlandite precipitation due to the degradation products was 

always lower than 15 min. This is really negligible in comparison with the delay induced by 

the cellulose ether H1 (approximately 10 hours). The retardation caused by synthetic solutions 

of HPMCs (not described in this paper) had the same order of magnitude that the synthetic 

solutions of HECs. These experiments allowed to determine the real influence of degradation 

products on the hydration delay induced by cellulose ethers: there was no significant 

degradation of the cellulose ethers, and therefore its impact on cement hydration was 

negligible. 

5. Conclusions 

Through this study, the stability of cellulose ethers in alkaline media was demonstrated. 

Negligible calcium binding capacity of cellulose ethers was observed. Afterwards, the 

alkaline degradation of the selected cellulose ethers showed that the major hydroxy acids 

detected were lactic acid and glycolic acid. The degradation products had always a 
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concentration lower than 2 mg.g-1 of cellulose ether introduced. The very low influence of 

these degradation products on the kinetics of cement hydration was also proved. 

It is well-known that the retarding action of sugars on cement hydration was due to the 

remarkable ability of the degradation products to be more effective retarders than the sugars 

themselves. We verified that the hydrolysis of sugars in strong alkali media gives rise to 

compounds with a high calcium binding capacity. However, the mechanism of the hydration 

delay induced by HECs and HPMCs cannot be explained thanks to the impact of hydroxy 

carboxylic acids generated during their alkaline degradation. Therefore, new assumptions 

shall be proposed and examined to understand what happens when various cellulose ethers are 

added to Portland cement. 
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Table 1 

Chemical composition (% wt) Phase composition (% wt) 

Oxides XRF analysis Phases XRF analysis and 
Bogue approximation 

XRD analysis and 
Rietveld quantification 

CaO 67.11% C3S 67.5% 69.4% 

SiO2 21.18% C2S 9.8% 9.3% 

Al 2O3 4.29% C3A 8.3% 8.3% 

SO3 4.65% C4AF 5.5% 3.1% 

Fe2O3 1.82% Gypsum 4.65% 3.6% 

MgO 0.5 % CaCO3 - 4.9% 

TiO2 0.21% Anhydrite - 1.2% 

P2O5 0.23% Quartz - 0.2% 

Na2O 0.19%    

K2O 0.11%    
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Table 1 Chemical and phase composition of the investigated cement. 
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 Table 2 

Admixtures Mw (daltons) % EOOH % POOH % OCH3 

HPMC U2 

HPMC P1 

955 000 

175 000 

- 

- 

10.65 

19 

27.5 

27.5 

HEC H1 

HEC N1 

HEC N7 

175 000 

175 000 

1 335 000 

48.5 

56 

56 

- 

- 

- 

- 

- 

- 
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Table 2 Cellulose ether structure parameters. 
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Figure 1 
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Figure 1 Samples preparation for the analysis of the degradation products. 
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 Figure 2 
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Figure 2 Calcium binding capacity of cellulose ethers and sugars. 
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Table 3 

Major degradation 
products detected 

Formula 

Lactic acid 

 

Glycolic acid 

 

Oxalic acid 

 

Diethylene glycol 
 

Glycerol 
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Table 3 Major degradation products detected. 
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Figure 3 
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Figure 3 Quantification of HPMCs degradation products. 
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Figure 4 
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Figure 4 Quantification of HECs degradation products. 
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Table 4 

 

Degradation products 
Synthetic solution of 

H1 degraded 
Synthetic solution of 

N1 degraded 
Synthetic solution of 

N7 degraded 

Lactic acid (mg.L-1) 

Glycolic acid (mg.L-1) 

Diethylen Glycol (mg.L-1) 

Glycerol (mg.L-1) 

1.76 

7.12 

0.27 

0.24 

0.22 

1.65 

0.03 

0.04 

0.29 

0.76 

0.12 

0.056 
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Table 4 Composition of the synthetic solutions of HECs degraded. 
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Figure 5 
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Figure 5 Hydration delay on CH precipitation induced by HEC and synthetic solution of HEC 

degraded 
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Captions 
 
Table 1 Chemical and phase composition of the investigated cement. 

Table 2 Cellulose ether structure parameters. 

Fig. 1 Samples preparation for the analysis of the degradation products. 

Fig. 2 Calcium binding capacity of cellulose ethers and sugars. 

Table 3 Major degradation products detected. 

Fig. 3 Quantification of HPMCs degradation products. 

Fig. 4 Quantification of HECs degradation products. 
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