
HAL Id: emse-00481458
https://hal-emse.ccsd.cnrs.fr/emse-00481458

Submitted on 9 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrated Evaluation Platform for Secured Devices
Pascal Manet, Jean-Baptiste Rigaud, Julien Francq, Marc Jeambrun, Bruno

Robisson, Jérome Quartana, Selma Laabidi, Assia Tria

To cite this version:
Pascal Manet, Jean-Baptiste Rigaud, Julien Francq, Marc Jeambrun, Bruno Robisson, et al.. Inte-
grated Evaluation Platform for Secured Devices. Reconfigurable Communication-centric Systems-on-
Chip, Jul 2006, Montpellier, France. p214-220. �emse-00481458�

https://hal-emse.ccsd.cnrs.fr/emse-00481458
https://hal.archives-ouvertes.fr


1

Integrated Evaluation Platform for Secured Devices
Pascal Manet, Jean-Baptiste Rigaud, Julien Francq, Marc Jeambrun,
Bruno Robisson, Jérôme Quartana, Selma Laabidi and AssiaTria

SESAM Laboratory (joint R&D team CEA-LETI/EMSE),
Centre Microélectronique de Provence

Avenue des Anémones, 13541 Gardanne, France
Email: {pascal.manet, bruno.robisson, assia.tria}@cea.fr,{rigaud, quartana, francq, jeambrun, laabidi}@emse.fr

Abstract— In this paper, we describe the structure of a FPGA
smart card emulator. The aim of such an emulator is to improve
the behaviour of the whole architecture when faults occur. Within
this card, an embedded Advanced Encryption Standard (AES)
protected against DFA is inserted as well as a fault injection
block. We also present the microprocessor core which controls
the whole card.

Keywords. smart card, faults, DFA, countermeasure,
hardware, FPGA, MIPS, AES.

I. I NTRODUCTION

Considering the evaluation of the safety of secured objects
with maximum relevance and to protect them with the greatest
efficiency, BTRS project1 (”Briques Technologiques pour le
Renforcement de la Sécurité”) aims at having a platform totest
a whole set of secured components. Safety being a permanent
race between the attacker and the defender, the innovation
in evaluation as in protection are the two axes of the project.
The prime objective of the project thus consists in pre-empting
the technological elements which will make it possible to the
actors to build the most sharpened benches of evaluation.

Fig. 1. Structure of the whole project

Within this project, a cryptosystem strengthened towards
existing attacks has to be developped. We chose AES which

1Powered by CIMPACA, in association with GEMPLUS and SPS

replaced the DES algorithm as the standard for symmetric
secret key encryption ([Na01]). Each physical implementation
of AES must be secured, against side channel and fault-based
cryptanalysis.

The injection of fault may enable an attacker to recover the
secret information stored in the device by modifying its be-
haviour [SA02]. To test the robustness of the countermeasure
we propose an injection fault block that will be developped to
simulate a fault attack on the hardware device.

The evaluation of security on a smartcard deals with hard-
ware and software. It is important to be able to test each level
of attack and to strengthen the whole card because hardware
attacks can modify the software behaviour.

In order to evaluate the behaviour of a entire card, this
fault injection block may be expanded to simulate an attack
anywhere. To control this fault injection and the whole system,
a microprocessor core is developped.

The evaluation of security on a smartcard deals with hard-
ware and software. It is important to be able to test each level
of attack and to strengthen the whole card because hardware
attacks can modify the software behaviour.

This paper is organized as follows. In Section II, we give
a short overview of the main attacks and their associated
countermeasures. The next section describes the whole card
and the choices we made. In Section IV, we present our current
work : our strengthened AES, the injection fault block and the
miniMIPS with their implementation on a FPGA. We conclude
in section V.

II. ATTACKS AND EXISTING COUNTERMEASURES

Concerning hardware dedicated attacks on a crypto-
processor, we studied AES. This algorithm is conjectured
mathematically safe. Cryptanalytic attacks such as Square,
Boomerang or Impossible Differentials defeat only reduced
version of AES. On the contrary, side-channel analysis and
fault-based cryptanalysis can be used to attack software or
hardware implementations.

A. Side-channel attacks

Among the existing and developping SCA attacks, DPA is
the most known and used.



2

1) Differential Power Analysis:Differential power analysis
was first presented in 1999 by Kocher et al. in [KJJ99]. It is
a statistical analysis of power consumption traces taken from
a cryptographic device as one of its inputs and determines
the validity of a guess made on the cipher key. This attack
relies on the assumption that a correlation exists between
the device operation and the power consumed by the device
while performing that operation. DPA is a powerful attack
because it is non-invasive, it requires only an oscilloscope
and computation means. Furthermore, it is independent of the
algorithm implementation. The most common DPA attacks
have been performed on the Data Encryption Standard (DES).
A DPA attack on DES can be done on a plain or ciphertext
with the associated power traces.
The principle is to make hypothesis on a bit value. Then, a
statistical approach enables the attacker to choose between the
two values. This attack works because there is a correlation
between the physical measurements taken at different points
during the computation and the internal state of the processing
device. As AES has replaced DES, such an attack on AES can
also be found in the litterature [OGOP04].

2) Countermeasures:There are three major types of coun-
termeasures presented in the litterature.

a) Make internal results unavailable:This first approach
prevents the prediction of intermediate results by using the
duplication method ([GP99]). In [CJRR99], a masking method
that splits intok parts each intermediate result of the crypto-
graphic algorithm is presented. This increases the difficulty
of obtaining the key through DPA exponentially withk.
Messerges shows in [Mes00] that this method does not protect
against higher order analysis.

b) Perturbate measurements:This can be done by intro-
ducing noise in the power measurements [KJJ99]. The noise
added is usually uncorrelated to the data. This countermeasure
forces the attacker to obtain more power traces to clean
them. Messerges et al. [MDS02] present several techniques
to improve the quality of the power trace. An other way is to
add a temporal jitter to remove the spike if the correct key
is guessed ([ABDM00]). With a learning step to understand
how this desynchronization works, one can use classic DPA.
Clavier, Coron and Dabbous ([CCD01]) propose the insertion
of unused instruction to add information that is not correlated
with data. However, they still propose a way to perform the
attack.

c) Reduce signature:Shamir in [Sha00] proposed to add
capacitors to isolate the target. As these capacitors are outside
the cryptographic hardware, it is possible to cut them and
perform DPA. Other techniques consist in reducing the current
signature locally, that is directly on paths which transport
the secret data. These approaches tend to balance the current
consumption at the logical level (by using, for example, asyn-
chronous logic and/or dual rail encoding [TMC+02], [SMB05]
and [BRR+04]), at electrical level (by using differential logic,
for example [TAV02] and [GHM+04]) and even at layout level
(by using ad hoc technics [TV04] and [GHMP05]).

B. Fault attacks

Fault-based cryptanalysis is a method that takes advantage
of the misfunctionning of a device which may occur during
the computation of a ciphertext [SA02]. Even before the
standardization of AES, many different attacks based on faulty
executions were proposed [BDL97], [BS97], [YJ00].

1) Differential Fault Analysis: Differential fault analysis
(DFA), uses a set of correct and faulty ciphertexts to recover
the key. The first DFA attack was proposed in 1997 by Biham
and Shamir on DES [BS97] .

In [Gir05], Giraud proposed a method to retrieve bytewise
the secret key of an AES by assuming that the attacker is
able to switch only one bit between the last MixColumns and
SubBytes. He also presented an attack which is more realistic.
He assumes that several faulty bits can be injected in a single
byte. This last method proceeds in three steps: first, attacking
KeySchedule at the beginning of the last round (K9), then at
the beginning of the ninth round (K8) and finally, the data
path at the beginning of round 9.

Chen and Yen [CY03] presented an attack on the KeySched-
ule which uses the same fault propagation properties as the
second attack of Giraud. It attacks only the KeySchedule.
Three faulty executions are required: at the beginning of the
last round then twice at the beginning of the ninth one. At
last, the whole last Round Key can be retrieved: eleven bytes
with the attack and the last five with an exhaustive search.

Dusart, Letourneux and Vivolo [DLV03] present an attack
that uses the properties of MixColumns. The four bytes are
linked by a relation that can be used to make hypothesis on
the last Round Key. The whole last Round Key is retrieved in
four steps. Each step needs its own faulty executions.

Piret and Quisquater [PQ03] present a very powerful attack
based on the same idea as the attack described by Dusart and
al. Only two pairs of good and faulty ciphertexts enable the
attacker to find the whole 128-bit key. The fault has to occur
on one or more bits of one byte between the MixColumns of
rounds 7 and 8.

2) Countermeasures:For DFA-type attacks, various coun-
termeasures have been presented. Chen and Yen([CY03]),
proposed to counteract their own attack. Among their three
countermeasures, they use twice the fact that the attacks
need several executions of the KeySchedule. So, for example,
computing only once the KeySchedule is an efficient solution.
It should be noted that this technique is also effective against
Giraud’s second attack.

Bertoni and al. [BBKP02], [BBK+02] present a very area-
convenient countermeasure based on the use of a 4x4 parity
bit matrix and a 4x4 error bit matrix which enables to stop the
device or produce a wrong result if an odd number of faulty
bits is purposedly induced. However, if this number is even,
the Piret and Quisquater’s method will enable to find the key.
As it needs only two pairs of correct and faulty texts, one can’t
rely upon statistics to protect the circuit.

In a recent paper [MSY05], Malkin, Standaert and Yung
show that countermeasures against DFA-type attacks which
enable a rather good fault coverage present a cost close to
duplication: Karpovsky and al. [KKT04] use a robust non-
linear code and Karry and al. [KWMK02] decrypt on the



3

fly each round to ensure that none of them are faulty. This
is sligthly better than what was proposed by Mitra and Mc-
Cluskey [MM00], where efficient detection implementations
would exceed the cost of duplication.

III. W HAT OUR BENCH WILL BE

Within the BTRS project, one objective is to study the
behavior of made-safe objects, including smart cards, when
they are attacked. To understand how faults operate and thus
develop adapted countermeasures, we have to be able to
control with a high precision how to inject them.

This precision level can be reached if we manage to run our
simulation on a hardware platform. Indeed we could be able
to inject faults on each desired bit.

The adopted solution is built on FPGA devices. A hardware
emulation platform is being implemented to copy a smart
card as close as possible. To be efficient, this system has to
make all the following elementary components work together:
microprocessor core, memories, cryptography block, serial
communication protocol.

Fig. 2. Structure of the whole card

The question could be: why is it pertinent to inject simulated
fault in FPGA while the software simulations are correct
and the design rules are respected ? We only try to have
real simulation results when a transient fault occurs on what
software consider as a register that will not exist on a chip.
Concerning AES for example, software simulated faults occur
at every step of the round computation, but only one register
hardwarely exists instead of four. Therefore, even if software
simulation can take into account this type of event, hardware
validation seems important.

This type of emulator also enables to test software behaviour
in case of attack on the hardware that executes it.

The ability to run a large amount of faulty simulation on
a hardware dedicated platform in a reduced time enables to
validate the countermeasure in term of concept as well as in
term of implementation.

IV. CURRENT WORK

Our current work, before the global design of a test card,
has three components. We first develop a countermeausre that

improve the security of AES against DFA attempting not to
have too bad performances in case of DPA attack, then we
develop a fault-injection block to test the reliability of our
countermeasures, finally we work on a MIPS core to control
the whole card.

A. Secured AES

We used the opencores’ website VHDL sources
(www.opencores.org) as a seed to model our AES circuit. This
implementation first converts the data and key, which are each
made of four 32-bit words, to two 128-bit registers. Then,
each round is computed within a clock cycle; KeySchedule
is computed on the fly. At last, the 128-bit ciphertext is
converted to four 32-bit words. Fig. 3 presents the top-level
architecture of our AES.

Fig. 3. AES architecture

1) Description: The general idea behind the proposed
countermeasure is to enable the device to detect the error
with a high fault coverage and then to perform modifications
inside the chip to prevent any existing attack. The error
detection information stay inside the AES computation without
interaction with any state machine or controller.

If an error occurs, the circuit performs self-defence modifi-
cations so that the DFA-techniques could not be applied. More
precisely, the aim of this countermeasure is to spread the error
in a way that differs from the “normal” AES faulty execution.
In our AES, any error which impacts only one byte of a state
is spread over at least six other bytes of the state. Note thatthe
proposed countermeasure will obviously not prevent a SEA-
type attack.

Fig. 4. Structure of the robust RoundExe

As shown in Fig. 4, the data path and KeySchedule are
duplicated so that the encryption is performed twice in parallel.



4

The countermeasure takes place in the block ”SubBytes”. It is
decomposed in four steps. Fig. 5 shows its architecture.

Fig. 5. Robust SubBytes

First, duplicated data states Round Data 1 and Round Data
2 are respectively latched in Register 1 and Register 2. These
states are compared by using a bitwise XOR. The result is
used as inputs for the Error Computing Block (Fig. 6).

Fig. 6. Error Computing

Second, the 4 bytes of each row and each column of this
comparaison are added together by using a bytewise OR. We
obtain 2 registers of 4 bytes (RegC, RegR). We swap the bits
of all RegC bytes. The most significant bit becomes the least
one etc.

Third, we combine, two by two with one OR gate, each
byte of RegC with each byte of RegR in order to obtain the
Error state (Fig. 6). This state is scrambled so that each byte
has a new position in the state.

At last, this Spread Error State is added to both S-Boxes
output data. These data give the outputs of the SubBytes block.

2) Fault coverage:The detection method has a 100% fault
coverage on single and multiple event upset occurring on one
byte. Assuming we consider a multiple byte attack, the row
and column sums may be zero and the circuit would not spread
this kind of error. The probability to have one sum equal to
zero is2−8 with a random error hypothesis. As all sums have
to be zero, the probability of a non-spread error is2−64 in the
case of a multiple-byte attack. Even in such a case there is no
existing attack with multiple faulty bytes.

The fact that the error is spread on other bytes prevents
the attacker from finding the key. The link of the data path
is broken and one can’t compute the key by using DFA-
techniques. Giraud’s and Yen and Chen’s attacks will not
be able to retrieve the link to the error injected in the

KeySchedule. Dusart and al.’s as well as Piret and Quisquater’s
attacks use the link provided by the MixColumns and it is also
modified.

Concerning DPA resistance, the second data-path processes
inverted data. A0 on one side always corresponds to a1 on the
other one. We try to equilibrate the data path at a gate level.We
used modified SubBytes and MixColumns, andxnor instead
of xor to add the inverted roundkey.

B. Fault injection

To test the proposed countermeasures and others, we have
to inject faults within the AES.

The ”fault generator” can inject three different types of
fault chosen by the user: the ”bit-flip” model (the value of
the affected bit is inverted), the ”stuck-at-fault zero” model
(SAF0: the value is forced to 0) and the ”stuck-at-fault one”
model (SAF1: the value is forced to 1). The choice of these
faults is not harmless. The ”bit-flip” model is the most used
in the litterature. The ”stuck-at” models are very convenient,
due to the fact they are representative of numerous kinds of
physical failures ([ABB+04]). It can be used to simulate a
ligth attack. For example, if a circuit is attacked during a long
time by a laser, we assume that some wires may be stuck at
a constant value.

1) Description of the ”fault generator”: Obviously, the
insertion of this block must have a limited impact on the
execution time of our initial system.

Fig. 7. Structure of the ”fault generator”

Such a block enables to choose the address of corrupted
bits, the kind of faults and the moment of injection. The
”fault generator” is built with two blocks called ”nbits” and
”decoder” (see Fig. 7).

The result computed by the decoder, called ”injectedfault”,
is sent to one of the inputs of the block ”nbits”. The result
”injected fault” has a particular size. Indeed, the kind of
fault for each input bit is a 2-bit vector. The decoder has
3 components, which are called ”counter”, ”comparator” and
”fault selector” (see Fig. 8). The component ”counter” is a
counter which starts with a synchronisation signal provided
by the cryptographic algorithm. ”Comparator” compares the
counter with the injection time chosen by the user: when equal,
it enables the ”faultselector”. Thus, the chosen fault is injected
into the circuit at the right time.

Other works on the subject may be found for example in
[ALV05].



5

Fig. 8. Structure of the ”decoder”

2) Fault injection on AES:In order to inject some faults at
the right round and at the right transformation of the AES, we
have to insert the block ”nbits” before each transformation
of the algorithm, which are called SubBytes, ShiftRows,
MixColumns, and AddRoundKey (and in the KeySchedule).
However, due to the linearity of ShiftRows and AddRoundKey
transformations, there is no use to implement the ”nbits”
block before AddRoundKey and ShiftRows (see Fig. 9).

Fig. 9. Insertion of the block ”nbits” in AES

All the blocks ”n bits” are linked to their own decoder.
Thus, a fault can be injected at the right transformation thanks
to synchronisation signal sent to it. Moreover, the synchroni-
sation input of the counter is linked to the KeySchedule start
signal. Thus, this block is able to put a fault in any round of the
AES algorithm: it allows a space-time insertion of faults. The
user of this block should only respect the following format:the
input format of the block ”nbits” must be adapted to the input
format of the temporary results of transformations (which are
called ”states”) to avoid conflicts. Thus, in our application, the
state format is a subtype in a package, defined as a(4 × 4)-
byte matrix. Moreover, another subtype must be defined for
the ”injectedfault”, which is a(4 × 4) 16-bit matrix.

C. Microprocessor core

The first challenge was to find a reliable and debugged
model for the microprocessor core that fits our needs. We
chose to work with miniMIPS core2. It consists in an open
source model of a 32 bits RISC microprocessor based on
MIPS-I instruction set. The version we use was provided by
TIMA Laboratory3.

Using the adapted design flow tools (ModelSim for simu-
lation and ISE for synthesis on FPGA), the miniMIPS model
was ported on the VirtexE. We took advantage of the basic
I/O components on the card (push-button, switches, LEDs) to
design a demonstrator. Once inputs are defined by the eight
switches on the card, the user uses the push-button to apply a
reset signal on the miniMIPS. Then instructions trigger the
microprocessor to perform an addition of the two four-bit
inputs. To do this, 32-bit instructions extracted from the MIPS
instruction set are pre-programmed (using VHDL code) on the
FPGA and sent sequentially to the miniMIPS.

Memory components are currently being added and will
communicate with the miniMIPS core. The program stored in
the ROM will be executed by the miniMIPS and data will be
managed in read/write mode in the RAM. Adding the secured
AES code, we will be able, using previous communication
protocol, to run cryptographic simulation campaigns and to
retrieve results.

Then the complete platform on the FPGA will be the subject
of a complete validation process. After that, it will be ready
to accept the fault injection block described above and testthe
robustness of our countermeasures.

D. Implementation

Given the FPGA cards available for the project, the whole
smart card emulation will be implemented on a XCV2000E+
Logic Module from Xilinx, V irtex − E

TM family. This
FPGA was embedded on a Integrator/LM XCV600E+ from
ARM ltd. This card was chosen also for its properties : it
can be easily connected on a larger platform to extend the
number of peripherals it can be linked to. So ARM processors,
communication ports, ethernet ports can be reached by that
way. The design was made with the Xilinx ISE framework.
The synthesis was performed with XST application and all
the simulations (functional, post-synthesis and post-place and
route) with ModelSim.

1) AES: We kept the opencores architecture of the AES
but we used our own transformation components. The AES
component contains a State Controler, Key Expander and
Round Execution and also input and output interfaces. Key
Expander is modified in order to perform twice the calculation.
Round Execution computes two data paths in parallel using
ShiftRows, MixColumns and AddRoundKey and a modified
SubBytes component that inputs and outputs the two data
paths’ states.

Each round is computed within a clock cycle. The S-Boxes
are implemented by dual-port RAM blocks. We added registers

2based on a students project from ENSERG school
3http://tima.imag.fr

Derived from their MDR project developped on an ALTERA FPGA card



6

Fig. 10. View of the demonstrator card

to use these RAM inputs and compute the countermeasure.
The input data are combined to create the error state.

We first implemented a non-robust AES on the FPGA.
This implementation takes 1005 slices for a 60 MHz clock
frequency. A slice is made up of two logic cells which are the
basic elements in a Xilinx’s familly FPGA. This basic element
is composed of a four variable logic function generator, a carry
logic and a memory element. The unprotected AES also uses
ten dual-port RAM blocks: eight for the sixteen data-path S-
Boxes and two for the four of the KeySchedule.

We tried then to only duplicate the data and key paths
without comparison. It had a size of 1600 slices, used twenty
RAM blocks and still worked at 60 MHz.

The robust version of our AES oversizes the duplication by
a 20% factor (1910 slices) and decreases the speed from 60
to 50 MHz. The number of RAM blocks used is unchanged.

2) Fault-generator:After synthesis, the design takes 1150
more slices, 800 more slice flip flops and 1500 more 4-input
LUTs than the unprotected AES. Area was not a critical
criterion and represents less than 10% of the total amount
of available space on the device. The speed requirement is
matched, only two gates were added in the critical path and
the required clock frequency is unchanged.

3) Microprocessor core:Some resulting figures are listed
hereafter: the design takes 1% of the total amount of avail-
able slice flip flops (494 out of 38400) and 4% of 4-input
LUTS (1650 out of 38400). It uses an equivalent count of
15094 gates. Moreover, with the chosen synthesis effort, the
maximum frequency is 36 MHz.

V. CONCLUSION

The BTRS project is on the long run to increase the
level of security of robust block. To study the behavior of
objects that have to be safe, including smart cards, under fault
attacks, we need to understand how these attacks work. With
a hardware dedicated platform, we can then develop adapted
countermeasures.

The adopted solution is built on FPGA devices. A hardware
simulation platform is being implemented to emulate a smart
card. This system includes a microprocessor core, AES cryp-

tography block and a fault injection block, but memories and
serial communication protocol are to be developped too.

Concerning AES, we present a countermeasure which de-
feats all known DFA attacks on AES. This countermeasure
consists in detecting the error by duplicating the key and data
paths and spreading an error all over the computation process
in order to break the link between the pairs of correct and
faulty ciphertexts and the secret key. We also note that the
detection information is kept within the data path and used to
corrupt it. This countermeasure is designed in order to produce
a limited DPA signature. To test this countermeasure, a fault
injection block is currently under developpement as well asa
microprocessor core to control the whole system.

REFERENCES

[Na01] National Institute of Standards and Technology (NIST). An-
nouncing the Advanced Encryption Standard (AES). Federal
Information Processing Standards Publication, n. 197, Novem-
ber 26, 2001. .

[ABB+04] Florence Azaı̈s, Serge Bernard, Yves Bertrand, Marie-Lise
Flottes, Serge Pravossoudovitch, Christian Landrault, Patrick Gi-
rard Michel Renovell, Laurent Latorre, and Bruno Rouzeyre.
Test de Circuits et de Systèmes Intégrés. Hermes, 2004.

[ABDM00] Mehdi-Laurent Akkar, Régis Bevan, Paul Dischamp, and Didier
Moyart. Power analysis, what is now possible... InASIACRYPT
’00: Proceedings of the 6th International Conference on the
Theory and Application of Cryptology and Information Security,
pages 489–502, London, UK, 2000. Springer-Verlag.

[ALV05] Lorena Anghel, Régis Leveugle, and Pierre Vanhauwaert. Eval-
uation of set and seu effects at multiple abstraction levels. In
IEEE International On-Line Testing Symposium (IOLT), 2005.

[BBK+02] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri,
and Vincenzo Piuri. On the propagation of faults and their
detection in a hardware implementation of the Advanced En-
cryption Standard. In13th IEEE International Conference
on Application-Specific Systems, Architectures, and Processors
(ASAP 2002), pages 303–312. IEEE Computer Society, 2002.

[BBKP02] Guido Bertoni, Luca Breveglieri, Israel Koren, and Vincenzo
Piuri. Fault detection in the Advanced Encryption Standard. In
Proceedings of MPCS 2002, Ischia, Italy, 2002.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the
importance of checking cryptographic protocols for faults. In
W. Fumy, editor,Advances in Cryptology− EUROCRYPT ’97,
volume 1233 ofLecture Notes in Computer Science, pages 37–
51. Springer, 1997.

[BRR+04] G. Bouesse, Marc Renaudin, Bruno Robisson, Edith Beign´e,
Pierre-Yvan Liardet, S. Prevosto, and J. Sonzogni. DPA on
quasi delay insensitive asynchronous circuits: Concrete.results.
In XIX Conference on Designof Circuits and Integrated Systems,
2004.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret
key cryptosystems. In B.S. Kaliski Jr., editor,Advances in
Cryptology− CRYPTO ’97, volume 1294 ofLecture Notes in
Computer Science, pages 513–525. Springer, 1997.

[CCD01] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous.
Differential power analysis in the presence of hardware coun-
termeasures.Lecture Notes in Computer Science, 1965:252–??,
2001.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Ro-
hatgi. Towards sound approaches to counteract power-analysis
attacks. InCRYPTO ’99: Proceedings of the 19th Annual In-
ternational Cryptology Conference on Advances in Cryptology,
pages 398–412, London, UK, 1999. Springer-Verlag.

[CY03] Chien-Ning Chen and Sung-Ming Yen. Differential fault anal-
ysis on AES key schedule and some countermeasures. In
R. Safavi-Naini and J. Seberry, editors,Information Security
and Privacy− ACISP 2003, volume 2727 ofLecture Notes
in Computer Science, pages 118–129. Springer, 2003.



7

[DLV03] Pierre Dusart, Gilles Letourneux, and Olivier Vivilo. Differ-
ential fault analysis on A.E.S. In J. Zhou, M. Yung, and
Y. Han, editors,Applied Cryptography and Network Security−
ACNS 2003, volume 2846 ofLecture Notes in Computer Science,
pages 293–306. Springer, 2003.

[GHM+04] Sylvain Guilley, Philippe Hoogvorst, Yves Mathieu, Renaud
Pacalet, and Jean Provost. Cmos structures suitable for secured
hardware. InDATE, Los Alamitos, CA, USA, 2004. IEEE
Computer Society.

[GHMP05] Sylvain Guilley, Philippe Hoogvorst, Yves Mathieu, and Renaud
Pacalet. The ”backend duplication” method. InCHES, pages
383–397, 2005.

[Gir05] Christophe Giraud. DFA on AES. In H. Dobbertin, V. Rijmen,
and A. Sowa, editors,Advanced Encryption Standard− AES,
volume 3373 ofLecture Notes in Computer Science, pages 27–
41. Springer, 2005.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power
analysis (the ”duplication” method). InCryptographic Hardware
and Embedded Systems− CHES 1999, pages 158–172, London,
UK, 1999. Springer-Verlag.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential
power analysis. InCRYPTO ’99: Proceedings of the 19th Annual
International Cryptology Conference on Advances in Cryptol-
ogy, pages 388–397, London, UK, 1999. Springer-Verlag.

[KKT04] Mark G. Karpovsky, Konrad J. Kulikowski, and Alexander
Taubin. Robust protection against fault injection attackson smart
cards implementing the Advanced Encryption Standard. In2004
International Conference on Dependable Systems and Networks
(DSN 2004), pages 93–101. IEEE Computer Society, 2004.

[KWMK02] Ramesh Karri, Kaijie Wu, Piyush Mishra, and Yongkook Kim.
Concurrent error detection scheme for fault-based side-channel
cryptanalysis of symmetric block ciphers.IEEE Transactions
on Computer-Aided Design, 21(12):1509–1517, 2002.

[MDS02] Thomas S. Messerges, Ezzat A. Dabbish, and Robert H.Sloan.
Examining smart-card security under the threat of power anal-
ysis attacks.IEEE Trans. Comput., 51(5):541–552, 2002.

[Mes00] Thomas S. Messerges. Using second-order power analysis to
attack dpa resistant software. InCryptographic Hardware and
Embedded Systems− CHES 2000, pages 238–251, London, UK,
2000. Springer-Verlag.

[MM00] Subhasish Mitra and Edward J. McCluskey. Which concurrent
error detection scheme to choose. InIEEE International Test
Conference 2000, Lecture Notes in Computer Science, pages
985–994. IEEE Computer Society, 2000.

[MSY05] Tal G. Malkin, François-Xavier Standaert, and Moti Yung. A
comparative cost/security analysis of fault attack countermea-
sures. InSecond Workshop on Fault Detection and Tolerance
in Cryptography (FDTC 2005), pages 109–123, Edinburgh, UK,
September 2, 2005.

[OGOP04] Siddika Berna Ors, Frank Gürkaynak, Elisabeth Oswald, and
Bart Preneel. Power-analysis attack on an asic aes imple-
mentation. In ITCC ’04: Proceedings of the International
Conference on Information Technology: Coding and Computing
(ITCC’04) Volume 2, page 546, Washington, DC, USA, 2004.
IEEE Computer Society.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault
attack technique against SPN structures, with applicationto
the AES and Khazad. In C.D. Walter, editor,Cryptographic
Hardware and Embedded Systems− CHES 2003, volume 2779
of Lecture Notes in Computer Science, pages 77–88. Springer,
2003.

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Opticalfault
induction attacks. In B.S. Kaliski Jr., Ç.K. Koç, and C. Paar,
editors, Cryptographic Hardware and Embedded Systems−

CHES 2002, volume 2523 ofLecture Notes in Computer Sci-
ence, pages 2–12. Springer, 2002.

[Sha00] Adi Shamir. Protecting smart cards from passive power analysis
with detached power supplies. InCryptographic Hardware and
Embedded Systems− CHES 2000, pages 71–77, London, UK,
2000. Springer-Verlag.

[SMB05] Design and analysis of dual-rail circuits for security applications.
IEEE Trans. Comput., 54(4):449–460, 2005. Danil Sokolov and
Julian Murphy and Alexander Bystrov and Alex Yakovlev.

[TAV02] K. Tiri, M. Akmal, and I. Verbauwhede. A dynamic and differ-
ential cmos logic with signal independent power consumption
to withstand differential power analysis on smart cards. In

29 European Solid-State Circuits Conference (ESSCIRC 2002),
2002.

[TMC+02] George Taylor, Simon Moore, Paul Cunningham, Ross Ander-
son, and Robert Mullins. Improving smart card security using
self-timed circuits.async, 00:211, 2002.

[TV04] K. Tiri and I. Verbauwhede. Place and route for securestandard.
In CARDIS’04, 2004.

[YJ00] Sung-Ming Yen and Marc Joye. Checking before output may not
be enough against fault-based cryptanalysis.IEEE Transactions
on Computers, 49(9):967–970, 2000.


