
HAL Id: emse-00481468
https://hal-emse.ccsd.cnrs.fr/emse-00481468v1

Submitted on 9 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Differential Behavioral Analysis
Bruno Robisson, Pascal Manet

To cite this version:
Bruno Robisson, Pascal Manet. Differential Behavioral Analysis. Workshop on Cryptographic Hard-
ware and Embedded Systems, Sep 2007, Vienne, Austria. pp.413-426, �10.1007/978-3-540-74735-
2_28�. �emse-00481468�

https://hal-emse.ccsd.cnrs.fr/emse-00481468v1
https://hal.archives-ouvertes.fr

Differential Behavioral Analysis

Bruno Robisson and Pascal Manet

CEA-LETI, SESAM Laboratory,
Centre Microélectronique de Provence.

Avenue des Anémones, 13541 Gardanne, France
bruno.robisson@cea.fr, pascal.manet@cea.fr

Abstract. This paper describes an attack on cryptographic devices
called Differential Behavioral Analysis (or DBA). This is an hybrid at-
tack between two already powerful attacks: differential power analysis
(DPA) for the statistical treatment and safe-error attack for the fault
type. DBA, simulated on an algorithmic model of AES appears to be
very efficient. The attacker is able to recover the entire secret key with
byte-wise “stuck-at” faults injected repetitively. A theorical as well as a
more realistic approach are presented.

Keywords. Differential Behavioral Analysis, Differential Power Analy-
sis, Fault Attacks, Safe-Error, Block Ciphers, AES.

Introduction

Several methods, called “attacks”, have been proposed to retrieve the secret in-
formation stored in cryptographic devices like smart cards. One of the most pow-
erful and studied method, called Differential Power Analysis (or DPA [KJJ99],
[BCO04]), exploits the fact that the power consumption of the chip depends
on its internal computations (among them several depend on the value of the
secret key). It is of particular concern, since it does not destroy the physical
integrity of smart cards and it can be quickly mounted with cheap instrumen-
tation equipments. A second type, called “fault attacks”, consists in modifying
the circuit’s behavior in order to bypass hardware or software protections or
to exploit computational errors to find the cryptographic keys([BDL97], [BS97],
[Gir05], [PQ03], [CT05], [BK06]). The faults are injected into the device by
various means as laser, glitches on clock, spikes on voltage supply or electromag-
netic perturbations [BECN+04]. Among fault attacks, safe-error attack (SEA)
only checks if the computation is correctly performed or not ([YJ00], [BS03]).
A third type, which is far more complicated, consists in analyzing the design of
the chip by using destructive means such as abrasion, chemical etching or SEM
and then probing the most informative signals with, for example, focused ion
beam [KK99].

We propose in this paper a new attack, called Differential Behavioral Analysis
(DBA), which exploits both SEA principle and DPA statistical approach. This

2 Bruno Robisson and Pascal Manet

“hybrid attack” combines a large part of the qualities of these two methods.
The attack is validated by simulation on an algorithmic model of AES and the
obtained results lead us to conclude that DBA may be performed on a real
device.

The rest of this paper is organized as follows: in the first section, DBA algo-
rithm is presented. Section 2 applies monobit DBA to AES and some improve-
ments are proposed. Then, multibit DBA is performed on AES. Comparison
with existing attacks will be done before concluding.

1 Differential Behavioral Analysis

DBA consists in matching the behavior of the chip to be analyzed in the presence
of a fault with a model of behavior which is parameterized by the value of a
partial key (that is a restricted number of bits of the key). This attack thus
borrows the study of the behaviors of a chip in the presence of faults from safe-
error attack and the mathematical treatment from DPA attacks.

1.1 Hypothesis

DBA concerns hardware implementations of cryptographic algorithms that are
subject both to DPA and to fault attacks (particularly DES and AES). Just like
these attacks, the implemented algorithm has to be known and to be executed
with known variable plaintexts (chosen or not) and with or without perturba-
tions. These perturbations should have the following properties:

• Type: they should induce a “stuck-at” fault but this value is not necessarily
known;

• Location: the fault should occur on bits corresponding to some particular
intermediate values;

• Focalization: they should affect only a small number of bits (typically less
than 8);

• Value: the “stuck-at” value is the same for all the affected bits;
• Repetitivity: they should induce the same “stuck-at” fault on the same bits

for different plaintexts.

At last, the attacker has to distinguish between the normal or abnormal
behavior in presence of the perturbations described above. To detect these two
types of behaviors, the attacker can be led to distinguish between the correct
and faulty ciphering, the start of an alarm or not, the raise time of the alarm
or a more or less premature stop in computation (by a simple analysis of power
consumption, for example).

1.2 Algorithm

Let a chip perform a known cipher function from a plaintext and a key K0

(unknown and to be found). Let T and K be respectively the set of possible

Differential Behavioral Analysis 3

values for plaintexts and keys. T ⊂ T is the set of plaintexts used to perform
DBA. This set T can be either chosen or not, depending on the means of the
attacker. The DBA consists of the four following stages:

• Stage 0 (choice of parameters): first, the attacker chooses two sets K and B
from the knowledge that he has on the cryptoalgorithm under study. K ⊂ K

is the set of values of the partial key and B is the set of N attackable bits
so that each one is a function of the plaintext and a partial key. Let us note
{b0, b1, ..., bN−1} the elements of B.
Second, the attacker chooses from the knowledge that he has on his fault
injection benches, two parameters M and f . M ≤ N corresponds to the
maximum number of bits that are supposed to be modified by the fault in-
jection. For example, if the attacker knows that his fault injection method
creates only single faults, he will choose M = 1. But with no information on
the impact of the fault injection, he will prefer to choose M = N . Let SM

be all the possible partial sets Sj
M from B with at most M elements and at

least one, such that:
s1

M = {b0}
s2

M = {b1}
...
sN

M = {bN−1}
sN+1

M = {b0, b1}
...
s

CM
N

M = {b0, b1, ..., bN−1}

In the same way, the attacker chooses a value f ∈ {0; 1} which corresponds
to the value of the “stuck-at” that is supposed to be injected.
At last, for each partial key kp ∈ K and each plaintext ti ∈ T , let us note

rf

S
j

M

(kp, ti) the function which returns 0 if all the bits of Sj
M are stuck at f

and 1 otherwise (meaning at least one of the bits has the value not(f)).
• Stage 1 (experimentations): for all ti in T :

- Step 1: ciphering of plaintext ti, and storing the behavior C0(ti) (in this case
normal) of the chip during the first round.

- Step 2: ciphering of plaintext ti with a perturbation such as described in
subsection 1.1 and storing the behavior C′(ti) of the chip during the first
round.

- Step 3: associating plaintext ti with value c(ti) so that c(ti) is 0 if C′(ti) =
C0(ti) and 1 otherwise. After stage 1, we obtain a function c(ti) that returns
1 if the fault injected during ciphering of plaintext ti with key K0 did produce
an error during the first round, and returns 0 in the other case.

• Stage 2 (model matching): for each Sj
M in SM , each kp ∈ K and each ti ∈ T ,

let us compute theorical values of the bits rf

S
j

M

(kp, ti).

We then calculate the sum of the matching behaviors of these two sets with

4 Bruno Robisson and Pascal Manet

the following formula (which is a correlation measurement but not a corre-
lation coefficient):

∆T
(

kp, r
f

S
j

M

)

=

∑

ti∈T

[

rf

S
j

M

(kp, ti) × c (ti) + (1 − rf

S
j

M

(kp, ti)) × (1 − c (ti))
]

|T |

• Stage 3 (interpretation): the curve made of the points {kp, ∆
T (kp, r

f

S
j

M

)}, is

called DBA curve associated with the bits Sj
M , the texts T and the “stuck-at

f” fault model. We overlay on a same graphic the DBA curves associated
with all the possible combinations of bits stuck and examine this graphic.
We will see in this paper that in most case ∆T (kp, r

f

S
j

M

) reaches its maximum

for Sj
M being the real injected fault and for kp = K0. Thus, DBA enables to

retrieve information about the partial key kp but also which logical value is
induced by the perturbation.

In the following section, we propose to apply DBA to an algorithmic model of an
AES-128 ([NIS01], [DR02]). No fault injection campaign has still been done on
a real device to validate DBA but simulation of faulty cryptographic algorithm
has been performed.

2 Mono-bit DBA on AES-128

2.1 Case study

For pedagogical purpose, we suppose in this section that T can be chosen by the
attacker and that he knows:

• which S-box outputs are impacted by the faults,
• that the injected “stuck-at” value is equal to zero,
• that his fault injection method modifies just one bit. That’s why we also call

such a restricted attack “mono-bit” DBA.

2.2 DBA parameters

In the conditions described above, the attacker will choose M = 1 and f = 0.
In AES, the 128 bits of the first round key is XORed bitwise with the 128 bits

of the plaintext. This result is split into 16 blocks of 8 bits. Each of them becomes
the input of a S-box, which returns 8 bits in a non linear way. Consequently,
each of the 128 bits which constitutes the output of the S-boxes depends on only
8 bits of the plaintext and 8 bits of the key. This analysis of the AES algorithm
allows us to choose the set K of partial keys and the set B of attackable bits:
K is chosen as the whole set of the 28 = 256 distinct values of the key which
exhausts all the possible values at the entry of the considered S-box and B is
chosen as the set of the 8 bits at the output of this S-box. At last, T is the
whole set of the 28 = 256 distinct values of the plaintext which exhausts all the
possible values at the entry of the considered S-box.

Differential Behavioral Analysis 5

Experimentations: faulty simulations Simulations of the AES behavior in
the presence of faults are performed with a modified software description of the
algorithm. In this description, the “state” defined in the FIPS standard, can
be modified at the ouput of each transformation (AddRoundkey(), SubByte(),
etc.). The modifications can simulate a transient or permanent “stuck-at” fault
or a “bit-flit”.

In this experimentation, a transient “stuck-at” zero fault is injected on a
given bit at the output of the S-box during the first round. It is important to
note that even if this faulty bit is chosen during the simulation process, it is
a priori unknown during the real attack. Correct and faulty encryptions have
been performed for all the elements ti. The normal and abnormal behaviors have
been obtained by comparing output results. The key used for the encryption is
chosen randomly.

Model matching and interpretation The 8 DBA curves, each of them cor-
responding to an element Sj

1, are computed thanks to the algorithm described
in subsection 1.2. They are depicted on Figure 1. We observe that a peak ap-
pears clearly. It is associated with the curve which corresponds to the bit that
was corrupted during simulation (in this case S4

1). The peak is located at the
decimal value corresponding to the partial key used for encryption (in that case
139). As, the amplitude of this peak is positive on the top plot, the attacker can
conclude that the value of f that has been injected is indeed 0. At last, as the
amplitude of the peak is equal to one, the attacker can conclude that the fault
injection impacts the circuit in an identical manner for all the faulty executions
of the algorithm.

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

Partial Key decimal value

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

Fig. 1. Mono-bit DBA results on a simulated AES

6 Bruno Robisson and Pascal Manet

Note that if the value of f is unknown, the attacker will also test with f = 1
and, as M = 1, will obtain the set of inverted curves.

2.3 Improvements of single-bit DBA on AES-128

We show in this section that the attack described above is still successful with
relaxed constraints on the fault injection in terms of location and repetitivity.

Location In previous paragraphs, the set B, called attack bits, is composed
of bits at the output of S-boxes and the faults are injected on those bits. In
AES, some bits are perfectly correlated (that is either identical or opposed for
all plaintexts) to these attack bits.

For example, ShiftRows which switches the orders of bytes, does not affect
the value of the bits but only their location. MixColumns multiplies four bytes
by constants and adds them to obtain a four new bytes value. Assuming that
three of the input bytes are constant (it is the case when the attacker can choose
as plaintexts the set which exhaustes the values at the input of the S-box), the
values of two of the four output bytes are identical or opposed (depending on the
values of the other constant bytes) to the corresponding input byte. In the same
way, as AddRoundKey just adds a constant value (the key does not change), the
value at the output of this transformation if perfectly correlated to its input.

As a consequence, in the case of chosen plaintexts, the DBA will be successfull
if faults are injected at the output of SubBytes, ShiftRows, MixColumns and
AddRoundKey even if the attack bits B of the DBA algorithm are the ouputs
of the SubBytes.

Furthermore, the same attack can be performed on the last round of the
AES. In this case, the hypothesis is made on the last RoundKey and the fault
has to occur before the last SubBytes. In such a case, inverse S-box will be used
instead of S-box.

Repetitivity

Minimum number of faulty texts The DBA described in section 2.1 was realized
with 256 chosen plaintexts. We evaluate in this paragraph what would be the
minimum number of plaintexts necessary to retrieve the whole key. For this
purpose, for each of the attack bit Sj

1 , we defined as a criterion the value, called
d

S
j
1

(T), of the highest peak, divided by the value of the highest peak in the set

of all the other partial keys, that is:

d
S

j
1

(T) =
∆T

(

kp = K0, rS
j
1

)

max
{

∆T

(

kp, rS
j
1

)

| kp 6= K0

}

Note that if the fault injections are strictly repetitive, the highest peak value
(associated with the correct partial key) is always 1.

Differential Behavioral Analysis 7

In order to make this criterion independent of the values of the texts in T and
of the value of K0, we have chosen randomly 100 sets T (with a chosen cardinal
|T |) and computed the mean of d

S
j
1

(T) for all these sets. Then, this value, called

D
S

j

1

(|T |), has been computed for cardinals |T | varying from 10 to 128.

Figure 2 depicts the curves associated with each Sj
1 ⊂ B, made of the points

{|T |, D
S

j
1

(|T |)}. DBA clearly points out that the fault has been injected on bit

number 7 at the output of the S-box. This figure also shows that for this bit, the
criterion is always higher than 1 and that the second peak is about 15% smaller
when |T | > 16. It means that with a set T made of only sixteen plaintexts,
the attacker is able to recover the correct partial key with no ambiguity. Such
an identical analysis has been performed for faults injected on every bit at the
output of a S-box.

Fig. 2. Evaluation of the criterion for different numbers of random plaintexts for all
the bits at the output of S-box 1. On the right, zoom on the lowest numbers.

This study shows that the partial key can be recovered with only about
sixteen plaintexts whatever the bit impacted by the fault injection is. So, the
whole key may be retrieved with approximately 16× 16 = 256 faulty cipherings.

Wrong injection The DBA described above requires repetitivity of the injection
process. As it seems to be a strong assumption, we studied if DBA is still suc-
cessful when this hypothesis is not strictly true. To this aim, we used the method
described above but forced 10 and 20% wrong values in the results of the fault
injections. As some faults don’t match the model anymore, the highest peak
value is no more equal to 1 and decreases along with the wrong injection rate
(for example 0.9 for 10% wrong values). Results are given on Figure 3. With 10%
wrong injections, 25 plaintexts are required to reach the same criterion value and
60 for 20% wrong injections.

8 Bruno Robisson and Pascal Manet

Fig. 3. Evaluation of the criterion for different number of plaintexts when faults don’t
match the model (left 10%, right 20%).

This study shows that even with a non strictly repetitive injection process,
DBA is successful. But the higher the wrong injection rate is, the more plaintexts
required to recover the key are.

3 Multibit DBA on AES-128

Because the attacker is not sure that the injected faults affect only one bit, we
suppose in this section that he just knows which S-box is impacted by a fault
potentially multiple but with the same “stuck-at” value.

3.1 DBA parameters

In the conditions described above, the attacker will choose M = 8 and f taking
its values in {0;1} (because he does not know which “stuck-at” value is injected).
B, K and T are the same sets than those defined in 2.1. S8, which is the set of
all the possible partial sets from B with at most 8 elements and at least one, is
constituted of 255 elements. At last, each rf

S
j
8

(kp, ti) takes the value 0 if all the

bits of Sj
8 are equal to f and 1 if one at least has another value, as explained in

subsection 1.2.

3.2 Experimentations: faulty simulations

The same kind of faulty simulations as described in 2.1 are done but in this case,
“stuck-at” of a unique value p can be injected on a given number q of bits at the
output of the S-box during the first round. Note that p and q are the “really”
injected values when f and M are the hypothesis made during the computations.

Differential Behavioral Analysis 9

3.3 Case study with q = 3 stuck-at wires

Figure 4 shows the results obtained when faulty simulations are made with q = 3
arbitrary chosen bits that are stuck at p = 0. There are 255 curves on each plot
(f = 0 and f = 1) corresponding to the 255 possible combinations Sj

8 of stuck
bits on one byte. There are 8 levels of curves, each level corresponding to a
number m < M of bits supposed to be stuck.

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
or

re
la

tio
n

fo
r

st
uc

k−
at

 0
 m

od
el

0 50 100 150 200 250
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

fo
r

st
uc

k−
at

 1
 m

od
el

Partial Key decimal value

Fig. 4. Multibit DBA with q = 3 bits “stuck-at” p = 0: upper graph stands for f = 0
model and lower for f = 1.

On each plot, the 8 lower curves are identical to the curves in single-bit DBA
and stand for one stuck bit. Above these are C2

8 = 28 curves standing for two
stuck bits. The level of the curves increases with the number of bits stuck m.

The highest peak is obtained for the curve corresponding to the correct fault
injected and the correct key value, showing that the DBA is clearly successful.

3.4 Case study with q > 4

We performed the same attacks with q = 5, 6, 7 and 8 bits stuck at p = 0. Some
results are shown on Figure 5. In order not to complicate the figures, we only
kept one plot (corresponding to f = 0) on the following figures.

Note that for q = 7 or q = 8, wrong key values (at most 3) may appear due
to the small number of correct behaviors (2 for 7 stuck bits and 1 for 8).

This study shows that the more bits are stuck during injection campains, the
worse signal to noise ratio is (d

S
j
8

(T) is close to 1).

10 Bruno Robisson and Pascal Manet

0 50 100 150 200 250

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

fo
r

st
uc

k−
at

 0
 m

od
el

Partial Key decimal value
0 50 100 150 200 250

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

fo
r

st
uc

k−
at

 0
 m

od
el

Partial Key decimal value

Fig. 5. Multibit DBA with q = 5 bits stuck-at p = 0 on the left and q = 7 on the right.

3.5 Effect of wrong injection

We repeated the method described in paragraph 3.3 but forced wrong values in
the simulations of the fault injections. The results obtained for a fault injected
on q = 3 bits but with probabilities of 10% and 40% wrong values are depicted
on Figure 6. It appears, that the worse the injections are, the lower the peaks.
But there is also an interesting result: the peaks corresponding to other fault
models (and the same partial key) are still high and lead to a good detection
until 40% probability of wrong injection. It also appears to be true for a number
of stuck bits between 1 and 4.

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

fo
r

st
uc

k−
at

 0
 m

od
el

Partial Key decimal value
0 50 100 150 200 250

−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

fo
r

st
uc

k−
at

 0
 m

od
el

Partial Key decimal value

Fig. 6. multibit DBA with q = 3 bits “stuck-at” p = 0: results with probabilities of
10% (left) and 40% (right) wrong values for the fault injection.

The peak that points out the correct partial key appears also on lower curves.
These peaks stand for unperfect fault model but do have a correlation. Detection
can thus be made by checking if the peaks for one key value appear for different

Differential Behavioral Analysis 11

number of bits stuck. We can thus consider a new way to compute the criterion
based on a combination of these curves. Let’s consider only one curve for each
number of stuck bits, the curves that has the highest peak. The sum of these
curves enables to give a better discriminancy to the peak.

For example, the results obtained for a fault injected on q = 6 bits, with
probabilities of 10% wrong values are depicted on Figure 7-left. It shows that it
is difficult to see the correct key because there are only 1/26 of computations
that lead to a non-faulty behavior (that is, in that case, only 4 from the whole
set of 256 plaintexts). From Figure 7-right, even with 10% injections that don’t
match the 6-bit stuck model, multibit DBA can retrieve the correct partial key
from the whole set of plaintexts.

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

fo
r

st
uc

k−
at

 0
 m

od
el

Partial Key decimal value
0 50 100 150 200 250 300

5.85

5.9

5.95

6

6.05

6.1

6.15

Partial Key decimal value

S
um

 o
f t

he
 h

ig
he

st
 c

or
re

la
tio

ns

Fig. 7. multibit DBA with q = 6 bits “stuck-at” p = 0: correlations (left), sum of
correlations (right) with a probability of 10% wrong behaviors.

4 Comparison with previous attacks

The claim of DBA is to keep the advantages of DPA and SEA, that is:

• SEA and DBA only exploit the fact that the computation is correctly per-
formed or not, contrary to DFA which needs correct and faulty ciphertexts
to retrieve the key.

• SEA and DBA may use the means that are implemented to counteract DFA
([BBKP02], [KWMK02], [KKT04], [MSY05] and even [MRL+06]).

• A DPA or DBA attack on one bit leads to several bits of the key, thanks to
the non-linearity of the S-boxes.

• The attacker means to retrieve information about the secret key are not
restricted to the “logical” bits targeted by these attacks.

• DBA (resp. DPA) requires few information about the behavior of the cir-
cuit in presence of faults (resp. the power consumption of the chip). It only
requires that this behavior (resp. this power) depends on the data.

12 Bruno Robisson and Pascal Manet

• As DBA and DPA are based on correlation of models to measurements, these
two attacks provide introspection i.e. the attacker can improve his injection
means and its models through experiments.

But contrary to other published SEA, DBA does not require the knowledge of
the “stuck-at” value and supports fault injection on several bits.

We also show that DBA is particularly well-suited to attack asynchronous
circuits. Some protocols, widely used in such chips, are designed such that the
data transfer is controlled by the data themselves. The fault injections on those
data thus modify the behavior of the entire circuit (by inducing delay or dead-
lock). This property may theoretically be an effective counter-measure against
DFA [MR06] but it renders the shape of the power consumption of the chip
related to the value of the plaintext (and on the key). This property may un-
fortunately be used to mount DBA with light changes: permanent “stuck-at”
zero (on a wire not a logical value) and the ability to get power consumption
measurements. More details can be found in appendix.

Conclusion

We described in this paper an attack on cryptographic devices which mixes the
principles of SEA and the probabilistic treatment of DPA. In the paper, the DBA
has been validated in simulation on an AES. It appears that the attacker is able
to recover the whole secret key with quite realistic means: the fault injection has
to be repetitive, has to affect a small number of bits (less than 8) and has to
induce a “stuck-at” value of an identical but possibly unknown value.

We also showed that when the attacker is able to inject fault on just one bit,
the minimum number of faulty injections is about sixteen in order to recover 8
bits of the AES key. Such results have been obtained when fault injection affects
more bits (less than 8) but we noted that the more bits are stuck the worse the
signal to noise ratio is.

We also showed that even if fault injection is not strictly repetitive, DBA
retrieves the partial key. But the highest the wrong injection rate is, the more
plaintexts needed to recover the key are. For example, when the attacker injects
fault on just one bit but with 20% wrong injections, he needs around sixty
executions to retrieve the 8 bits of the key.

Further work will consist in relaxing again the means of the attacker (espe-
cially the assumption concerning the constant value of the “stuck-at”) and in
applying DBA on real devices. Two crypto-processors (an AES and an asyn-
chronous DES), on which structure we tested the theorical attack, have been
designed for this purpose.

Differential Behavioral Analysis 13

Acknowledgements

This work was funded by the CIMPACA/Micro-PackS [CIM] BTRS Project.
The authors also would like to thank Michel Agoyan, Jean-Baptiste Rigaud,
Julien Francq and Selma Laabidi for their support during the simulations and
their useful comments.

References

[ADI] http://cmp.imag.fr/information/gallery/details.php?id circ=64&y=2005.

[BBKP02] Guido Bertoni, Luca Breveglieri, Israel Koren, and Vincenzo Piuri. Fault
detection in the Advanced Encryption Standard. In Proceedings of
MPCS 2002, Ischia, Italy, 2002.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In CHES, pages 16–29, 2004.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of checking cryptographic protocols for faults. In W. Fumy, editor,
Advances in Cryptology − EUROCRYPT ’97, volume 1233 of Lecture Notes
in Computer Science, pages 37–51. Springer, 1997.

[BECN+04] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and
Claire Whelan. The sorcerer’s apprentice guide to fault attacks. In First
Workshop on Fault Detection and Tolerance in Cryptography, Florence,
Italy, June 1, 2004.

[BK06] Johannes Blömer and Volker Krummel. Fault based collision attacks on
aes. In FDTC, pages 106–120, 2006.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key
cryptosystems. In B.S. Kaliski Jr., editor, Advances in Cryptology −

CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages
513–525. Springer, 1997.

[BS03] Johannes Blömer and Jean-Pierre Seifert. Fault based cryptanalysis of the
Advanced Encryption Standard (AES). In R.N. Wright, editor, Finan-
cial Cryptography − FC 2003, volume 2742 of Lecture Notes in Computer
Science, pages 162–181. Springer, 2003.

[CIM] http://www.arcsis.org/micro-packaging.0.html.

[CT05] Hamid Choukri and Michael Tunstall. Round reduction using faults. In
FDTC ’05: Proceedings of the second Workshop on Fault Diagnosis and
Tolerance in Cryptography, pages 13–24, 2005.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer,
2002.

[Gir05] Christophe Giraud. DFA on AES. In H. Dobbertin, V. Rijmen, and
A. Sowa, editors, Advanced Encryption Standard − AES, volume 3373 of
Lecture Notes in Computer Science, pages 27–41. Springer, 2005.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
Lecture Notes in Computer Science, 1666:388–397, 1999.

[KK99] Oliver Kömmerling and Markus G. Kuhn. Design principles for tamper-
resistant smartcard processors. In Proceedings of the USENIX Workshop
on Smartcard Technology, Chicago, 10–11 May, 1999., pages 9–20, 1999.

14 Bruno Robisson and Pascal Manet

[KKT04] Mark G. Karpovsky, Konrad J. Kulikowski, and Alexander Taubin. Robust
protection against fault injection attacks on smart cards implementing
the Advanced Encryption Standard. In 2004 International Conference
on Dependable Systems and Networks (DSN 2004), pages 93–101. IEEE
Computer Society, 2004.

[KWMK02] Ramesh Karri, Kaijie Wu, Piyush Mishra, and Yongkook Kim. Concur-
rent error detection scheme for fault-based side-channel cryptanalysis of
symmetric block ciphers. IEEE Transactions on Computer-Aided Design,
21(12):1509–1517, 2002.

[MR06] Yannick Monnet and Marc Renaudin. Designing resistant circuits against
malicious faults injection using asynchronous logic. IEEE Trans. Comput.,
55(9):1104–1115, 2006. Member-Regis Leveugle.

[MRL+06] Yannick Monnet, Marc Renaudin, Régis Leveugle, Christophe Clavier, and
Pascal Moitrel. Case study of a fault attack on asynchronous des crypto-
processors. In FDTC, pages 88–97, 2006.

[MSY05] Tal G. Malkin, François-Xavier Standaert, and Moti Yung. A comparative
cost/security analysis of fault attack countermeasures. In Second Work-
shop on Fault Detection and Tolerance in Cryptography, pages 109–123,
Edinburgh, UK, September 2, 2005.

[NIS01] NIST. Announcing the Advanced Encryption Standard (AES). Federal
Information Processing Standards Publication, n. 197, November 26, 2001.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack tech-
nique against SPN structures, with application to the AES and Khazad.
In C.D. Walter, editor, Cryptographic Hardware and Embedded Systems
− CHES 2003, volume 2779 of Lecture Notes in Computer Science, pages
77–88. Springer, 2003.

[YJ00] Sung-Ming Yen and Marc Joye. Checking before output may not be
enough against fault-based cryptanalysis. IEEE Transactions on Com-
puters, 49(9):967–970, 2000.

Differential Behavioral Analysis 15

A DBA applied to an asynchronous DES

We have designed and fabricated an integrated asynchronous circuit which im-
plements the DES algorithm. All the blocks communicate thanks to the four
phase RTZ (Return To Zero) protocol; the data are dual-rail encoded and the
invalid or NULL state is “00”. The targeted technology was the 0.13 µm from
STMicroelectronics. The circuit is 0.94 mm2 large (with a serial interface and
an synchronous/asynchronous interface) and it computes a DES encryption (or
decryption) in 180 ns. More information about the chip are available at [ADI].

Simulations of the DES behavior in the presence of faults are performed with
Modelsim simulator on the post-place-and-route simulation model. We record
the switching activity of the chip at each simulation steps. This count is a rough
estimation of the power consumption of the chip. The fault, a permanent “stuck-
at” zero, is injected on a wire of a dual rail (at the output of the S-box) by using
the command force of the simulator. It appears that when a “stuck-at” zero fault
is applied on one wire of a dual-rail, the behavior of the circuit depends on the
expected value of the wire : if the stuck wire was to transmit a zero, the circuit’s
behavior is unchanged for the first round. On the contrary, if this wire was to
transmit a one, the data on the rail remains invalid and the circuit stops. In
other words, the chip stops its computation after a time which depends on the
value of the plaintext (and of the key). In order to illustrate this claim, power
estimation curves are depicted on Figure 8 in the case when circuit functions
normally (left), in the case when circuit stops during round 1 (middle) and during
round 2 (right).

Fig. 8. Power estimation of the chip when it computes normally (left) and when fault
injection stops the chip during round 1 (middle, behavior Cf) and during round 2
(right, behavior C0).

As the power consumption of an asynchronous chip is representative of the
circuit’s activity, the attacker is able to distinguish C0 and Cf only by analyzing
the power consumption of the chip: if the wire that was “stuck-at” zero was to
transmit a 0 during the first round, the consumption peak during this round
appears normally (behavior C0) even if the chip will probably stop later; if this
wire was to transmit a 1, the chip’s consumption falls to zero before the end of
the first round (behavior Cf). This simple power analysis allows the attacker to
mount DBA as described in section 1.

