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Abstract

In this article, we show that the algorithm proposed by

Karnopp and Rosenberg for converting a circuit into a

bond graph is not fully adapted to the bond graph for-

malism. This formalism implicitly deletes information

which is useless for describing the circuits' functioning.

But this information is not systematically deleted in the

bond graphs obtained with their algorithm. We propose

an algorithm based on another of their method, called the

inspection method. It was not yet formalized and allows

to obtain bond graphs where the useless information is

entirely deleted. This algorithm uses the Tutte decom-

position of graphs and associates a unique bond graph

with a given circuit.
1 INTRODUCTION

Since the introduction of the bond graph representation

[1], algorithms have been proposed to convert a physical

system to a bond graph. This step is central for simulat-

ing the system because it determines the eÆciency of the

bond graph algorithms. Some physical systems can eas-

ily be represented by linear graphs. Electrical circuits are

examples of such systems. In this special case, Karnopp

and Rosenberg recommended an algorithm in [2] which

transforms a linear graph into a bond graph. It is now

widely used and it will be called from now on the straight-

forward algorithm. They also vaguely described another

conversion procedure called the inspection method. This

paper describes the advantages of this last method. An

algorithm which formalizes it is proposed.

An interesting property of the bond graph formalism
is �rst pointed out: it does not encode information which

is contained in the classical component-connection repre-

sentation but which is useless for analyzing the circuits'

functioning. In a second step, the bond graphs obtained

with the straightforward algorithm and with the inspec-

tion method are compared. This study shows that the

useless information is not entirely deleted in the bond

graphs obtained with the �rst method but is systemati-

cally suppressed with the second one. In other words, the

bond graphs obtained with the straightforward method

are not fully adapted to their formalism. An algorithm

which formalizes the inspection method is proposed in

the third part.
2 BOND GRAPH FORMALISM

2.1 Hypothesis

Physical electrical circuits are modeled by discrete ele-

ments, connected to each other with ideal wires. The

circuits are supposed to be composed entirely of dipoles,

selected among ideal current sources (noted Sf ), voltage

sources (Se), resistors (R), inductances (L) or capaci-

tors (C). In this article, the dipoles are physically non-

oriented, that is, capacitors are not polarized and sources

are reversible. Given these hypothesis, a component-

connection representation of an electrical circuit is an

edge-labeled graph. Each dipole in the circuit is asso-

ciated with an edge in the component-connection repre-

sentation and each equipotential connection is associated

with a vertex. Consequently, there is one and only one

component-connection representation for a given circuit.

From now on they will not be distinguished.

Besides, the circuit's functioning is supposed to be en-

tirely described by Kirchho�'s and Ohm's laws. Conse-

quently, two circuits are said equivalent or \functioning

in the same way" if there exists a bijection between the

edges of the component-connection representation such

that corresponding edges are associated with the same
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dipole and such that the same current ows through

those corresponding dipoles. The two circuits in Figure

1 have equivalent systems of equations obtained by ap-

plying Kirchho�'s and Ohm's laws. Therefore, the same

current will ow through corresponding dipoles, which

means that these two circuits are equivalent. This ex-

ample shows that two circuits functioning in the same

way may have distinct component-connection represen-

tations. In other words, this representation encodes a

piece of information which is useless for describing the

circuit's functioning. This piece of information is speci-

�ed in the next paragraph.
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Figure 1: Circuits 1 and 2 are equivalent.

2.2 Useless Information

By de�ning the 2-isomorphism and by comparing the

electrical properties of circuits which are 2-isomorphic,

Whitney has formalized in [3] a well known property of

electrical circuits. This property is that the permutation

of elements or blocks of elements in series does not modify

the circuit's functioning. For example, the two circuits

of Figure 1 are equivalent because they only di�er from

the order of their blocks of elements in series. In other

words, the information about the order of elements or

blocks of elements in series is useless for studying the cir-

cuit's functioning. In the next paragraph, we show that

the bond graph representation uses a formalism which

implicitly deletes this useless information.
2.3 An Interesting Property of the Bond

Graph Formalism

Bond graphs are vertex-labeled graphs used to represent

physical systems and especially electrical networks [4].

With the bond graph formalism, dipoles are connected to

each other with edges called bonds and with parallel or

serial vertices called junctions. By de�nition, a parallel

junction connects two elements having identical terminal

voltages and the same current ows through elements

which are connected by a serial junction. The parallel

and serial junctions are symbolized respectively with \0"

or \1". Figure 2 shows a circuit and a bond graph asso-

ciated with this circuit. The �ve dipoles are connected

using two junctions and six bonds. The resistor R1, the

capacitor and the voltage source are connected using a

serial junction because the same current ows through

them. This set of three dipoles, the resistors R2 and R3

are connected using a parallel junction because the same

voltage appears between their terminals.

Se R2
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1 0

Se

R1

C

R3
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Figure 2: A circuit and an associated bond graph.

With this formalism, the order of elements in series

may be deleted. For example, if the capacitor and the

voltage source are permuted in the circuit of Figure 2, the

component-connection representation is modi�ed but not

the bond graph. In other words, a property of Kirchho�'s

laws is integrated in the bond graph formalism. But hav-

ing a suitable formalism is not suÆcient: the bond graph

associated with a circuit has to be computed.
3 FROM A CIRCUIT TO A

BOND GRAPH

3.1 The Inspection Method

The inspection method consists in identifying the cir-

cuit's topology in terms of serial and parallel connections.

Then, elements in series are connected by using a serial

junction and elements in parallel are connected by using

a parallel junction. The bond graph of Figure 2 is for

example obtained by using this method. Karnopp and

Rosenberg did not propose an algorithm formalizing this

method but they have instead proposed the algorithm



briey described in the next paragraph.

3.2 The Straightforward Algorithm

The algorithm proposed by Karnopp and Rosenberg can

be decomposed into two main steps. In the �rst step, each

equipotential connection of the circuit is associated with

a parallel junction in the bond graph and each dipole of

the circuit is inserted between these parallel junctions by

using a serial junction. In the second step, an arbitrary

parallel junction is deleted and simpli�cation rules are

applied. The deleted parallel junction may correspond

to the ground of the circuit. Figure 3 shows a circuit

and the two main steps of the algorithm proposed by

Karnopp. In this example, the point A is chosen as the

ground.
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Figure 3: The two main steps of Karnopp's transforma-

tion algorithm.

3.3 Comparison of the Two Methods

The two methods are obviously not equivalent because

a choice of a particular equipotential connection is nec-

essary in the straightforward algorithm but not in the

inspection method.

The information about the order of elements in series

is not entirely deleted in bond graphs obtained with the
straightforward algorithm. For example, by permuting

the voltage source and the capacitor in the circuit of Fig-

ure 3, the bond graph is modi�ed. This is an important

drawback because it contradicts the interesting property

of the bond graph formalism described in paragraph 2.3.

The algorithm has such a drawback because every serial

(resp. parallel) connection is not expressed, that is, two

dipoles which are in series (resp. in parallel) in the cir-

cuit are not systematically connected in the bond graph

using a serial (resp. parallel) junction. For example, the

capacitor and the voltage source are in series in the cir-

cuit of Figure 3 but they are not connected using a serial

junction in the bond graph. Birkett and Roe have pro-

posed another algorithm in [5]: the bond graph depends

on a particular planar representation of the initial circuit.

Unfortunately it has the same drawback.

The bond graphs obtained with the inspection method

do not have this drawback because, by de�nition, ele-

ments which are in series in the circuit are systematically

connected by using a serial junction in the bond graph.

The next section describes an algorithm which formalizes

this method.
4 FORMALISATION OF THE

INSPECTION METHOD

The proposed transformation algorithm can be decom-

posed into three main steps. The �rst step consists in

identifying the serial and parallel connections in the cir-

cuit: a particular decomposition of graphs proposed by

Tutte is used. Next, each element of this decomposition

in transformed into a bond graph compound. In the last

step, these compounds are connected to each other to

obtain the �nal bond graph.

The important notion of m-connexity is presented

briey here but Berge describes the graph theory termi-

nology more precisely in [6]. Let G be a connected graph.

An n-separation of G is a pair (H;K) of edge-disjoint

subgraphs of G satisfying the following three conditions:

H [K = G, H and K have exactly n common vertices

and H and K have at least n edges. A graph is said to

be m-connected if it has no n-separations for any n < m.

4.1 Tutte Decomposition

The Tutte decomposition decomposes a 2-connected

graph G into its set of \3-blocks". These blocks which

are not exactly subgraphs of G, are either a 3-connected

graph, a polygon (i.e., a cycle having a least 3 edges) or

a bond (i.e., a connected loopless graph on two vertices

but with at least 3 edges). An algorithm for computing



recursively the set of \3-blocks" is proposed in [7]. A tree

can be associated with the Tutte decomposition: its ver-

tices are the \3-blocks" and its edges correspond to a 2-

separation of G. Figure 4 shows the tree associated with

the decomposition of the circuit 2 of Figure 1. This cir-

cuit is decomposed into one 3-connected graph (H4), two

polygons (H1 and H3) and two bonds (H2 and H5). The

eight dotted edges are called virtual edges because they

are not element of the initial graph. The edges of the tree

associated with the decomposition are represented with

bold segments. By merging and deleting virtual edges of

3-blocks adjacent in the tree, the graph G is rebuilt.

H4

H1 H3H2

H5

Figure 4: The Tutte decomposition of the circuit 2 of

Figure 1 .

4.2 Bond Graph Compounds

Each \3-blocks" is then associated with a bond graph

compound. The transformation depends on the type of

the \3-blocks" as follows:

1. When dipoles are element of a polygon, they are

in series. So, the bond graph compound associated

with a polygon is a serial junction linked with the

elements of the polygon.

2. When dipoles are element of a bound, they are in

parallel. So, the associated bond graph compound

is a parallel junction linked with the elements of the

bound.

3. When dipoles are element of a 3-connected graph,

the bond graph compound is obtained by applying

the �rst step of the algorithm proposed by Karnopp.

Figure 5 shows a polygon, a bond, a 3-connected graph

and their associated bond graph compounds.

4.3 Connection of the Bond Graph Com-

pounds

In the last step, these bond graph compounds are con-

nected to each other if their antecedents are adjacent in
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Figure 5: Three examples of graph transformation.

the tree associated with the Tutte decomposition. For

that, the two vertices corresponding to virtual edges are

merged and suppressed. Next, the two edges which were

connected to these two vertices are merged. The acausal

bond graph of Figure 6 is obtained from the circuit 2 of

Figure 1.
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Figure 6: The acausal bond graph associated with circuit

2 of Figure 1.

4.4 Remark: Assignment of Causality

When a graph contains no 3-connected component, the

procedure for assignment of causality can be directly ap-

plied. But when the circuit contains 3-connected sub-

graphs, the problem is slightly di�erent: the bond graph

compounds which are associated with 3-connected sub-

graphs are similar to bond graphs obtained with the

�rst step of the straightforward algorithm. In the al-

gorithm proposed by Karnopp, a parallel junction is sup-



pressed because it is supposed to be connected with a

zero voltage source. Without using this arti�cial zero

voltage source, the particular parallel junction is a par-

allel junction with no causal stroke pointing at it. In

the bond graphs obtained with the algorithm described

in 4, for each bond graph compound associated with a 3-

connected subgraph, a parallel junction is �rst arbitrary

chosen. Then, the causal strokes of the bonds connected

to these junctions are chosen such that they do not point

at the particular parallel junctions. At last, the proce-

dure for assignment of causality is normally applied. This

procedure applied to the acausal bond graph of Fig. 6

leads to the bond graph of Fig. 7.
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Figure 7: The bond graph of 6 after the procedure for

assignment of causality.

4.5 Properties

As Tutte proved that his decomposition of graphs is

unique, the algorithm proposed above associates a unique

bond graph with a given circuit. Obviously, the reverse

procedure described in [8] does not provide a unique cir-

cuit from a given bond graph. The algorithm presented

above formalizes the inspection method because dipoles

in series (resp. in parallel) in the circuit are systemati-

cally connected using a serial (resp. parallel) junction in

the associated bond graph. The obtained bond graphs

are fully adapted to the bond graph formalism. There-

fore, they can be considered as canonical.

This inspection method was not yet formalized be-

cause it is neither equivalent to the algorithm proposed

by Karnopp nor to the one proposed by Birkett. For ex-

ample, by using the straightforward algorithm, it is not

possible to obtain the bond graph of Figure 6 from the

circuit 2 of Figure 1.

At last, the obtained bond graphs fully express some

mathematical properties of Kirchho�'s laws because the

information about the order of elements in series and

in parallel is totally deleted. With this representation,
modifying the order of any pair of elements in series or

in parallel in a circuit does not a�ect the associated bond

graph. For example, the circuits 1 and 2 of Figure 1 are

both associated with the bond graph of Figure 6 because

they only di�er from the order of their elements in series.
5 CONCLUSION

In this paper, the two procedures proposed by Karnopp

to construct a bond graph from a circuit have been com-

pared. The more suitable one, called the inspection

method, has been formalized. With this algorithm, a

representation which fully expresses some mathematical

properties of Kirchho�'s laws is obtained. Based on this

representation, an eÆcient method for generating the set

of electrical circuits has been proposed in [9]. It must be

generalized to circuits composed of oriented dipoles and

to networks which contain n-port elements.
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