
HAL Id: emse-00489012
https://hal-emse.ccsd.cnrs.fr/emse-00489012v1

Submitted on 3 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cache Based Power Analysis Attacks on AES
Jacques Jean-Alain Fournier, Michael Tunstall

To cite this version:
Jacques Jean-Alain Fournier, Michael Tunstall. Cache Based Power Analysis Attacks on AES. 11th
Australasian Conference on Information Security and Privacy (ACISP’06), Jul 2006, Melbourne, Aus-
tralia. pp.17-28. �emse-00489012�

https://hal-emse.ccsd.cnrs.fr/emse-00489012v1
https://hal.archives-ouvertes.fr


Cache Based Power Analysis Attacks on AES

Jacques Fournier1,2 and Michael Tunstall3

1 University of Cambridge, Computer Laboratory,
William Gates Building, JJ Thomson Avenue,

Cambridge CB3 0FD, UK
jacques.fournier@cl.cam.ac.uk

2 Gemplus Card International, Security Technologies Department,
Avenue des Jujubiers, La Ciotat, F-13705, France.

jacques.fournier@gemplus.com
3 Smart Card Centre, Information Security Group,

Royal Holloway, University of London,
Egham, Surrey TW20 0EX, UK.

m.j.tunstall@rhul.ac.uk

Abstract. This paper describes possible attacks against software im-
plementations of AES running on processors with cache mechanisms,
particularly in the case of smart cards. These attacks are based on side-
channel information gained by observing cache hits and misses in the
current drawn by the smart card. Two different attacks are described.
The first is a combination of ideas proposed in [2] and [11] to produce
an attack that only requires the manipulation of the plain text and the
observation of the current. The second is an attack based on specific
implementations of the xtime function [10]. These attacks are shown to
also work against algorithms using Boolean data masking techniques as
a DPA countermeasure.

1 Introduction

Several attacks have been published on using cache access events as a side-
channel [2, 3, 11, 16] on DES and AES. These are predominately timing attacks
taking into account the total number of cache misses in the algorithm to de-
termine information on the secret key being used. The use of a side-channel to
analyse the pattern of cache accesses is described in [12].

More recently, an attack was published using the cache lines accessed at each
table look-up in the ByteSub function of an AES implemented on a PC to derive
the secret key [11]. This involves detecting what cache lines are used for every
table look-up to derive the secret key. This was done by having a separate process
running in parallel to observe the change in the cache after each table look-up.
As each process is sharing the same cache, the changes in the lines could be
directly observed by the attacking process.

Attacks using the change in current signature caused by a cache miss have
also been published [2] but only part of the key could be obtained. The amount of



information on the key that is derived is determined by the size of the cache lines
i.e. the larger the cache lines the smaller the amount of information available.

In this paper, an extension to the attack presented in [2] is proposed. This
improvement allows the entire AES key to be derived, and focuses on the cache
hit event rather than the cache misses. The attack is somewhat similar to the
attack described in [11], but less information is retrieved in the initial steps as
the exact cache lines used are unknown. The resulting attack requires no ma-
nipulation of the cache as required in [2, 11] but involves manipulating the plain
text and observing the corresponding patterns of cache hits generated. Further-
more, another attack is described based on optimisations (for performance and
security reasons) used for the xtime function [10]. Both attacks are extended to
show that these attacks are a realistic threat to DPA resistant algorithms that
just use Boolean data masking to protect against DPA [6]. These attacks are
described in the context of smart cards, as smart card chips are available that
use a cache for data and code accesses e.g. [7, 15], and the power consumption
is a readily available side-channel in smart cards.

The remainder of the paper is structured as follows: Section 2 provides some
details about cache mechanisms, while Section 3 explains how the latter mecha-
nisms influence the current to briefly describe the side-channel model. Section 4
describes the first part of the attack where roughly half of the secret key can be
derived. Section 5 shows how the rest of the key can be derived by two separate
methods. Section 6 illustrates how these attacks can be adapted so that they
can be applied to DPA resistant algorithms. Section 8 describes some suitable
countermeasures, which is followed by a conclusion.

Notation: Throughout this paper the algorithm under attack will be AES
where a plaintext P = (p1, p2, p3 . . . p16)256 is enciphered with a secret key K =
(k1, k2, k3 . . . k16)256. Where the subscript 256 means that the values are to this
base. This notation is used throughout this paper e.g. F016 is 240 written in base
16.

2 Cache Description

The shrink of technologies along with the growing need for more sophisticated
applications is currently generating a significant shift in the hardware platforms
used in smart cards, which have traditionally been based on 8-bit CISC-like
CPUs. More sophisticated smart cards are emerging based on 32-bit CPUs con-
taining dedicated peripherals (cryptographic co-processors, memory managers,
large memories . . . ) [7, 15]. Such CPUs are optimised to achieve high perfor-
mance involving dedicated mechanisms that are implemented to compensate for
time consuming operations or long data paths. Details about those sophisticated
mechanisms can be obtained from [5, 8]. In order to understand the attacks pre-
sented in this paper, we focus on two of these mechanisms, namely pipelining
and caching.



Pipelining: Pipelining is a technique whereby the execution of each instruction
is decomposed into elementary and independent steps. Each step is implemented
as a separate hardware block that can work in parallel. Typically, a 3-stage
pipeline can be decomposed into an Instruction Fetch (IF), an Execute (EX)
stage and a Write Back (WB) stage. More sophisticated 5-stage pipelines like [8]
can involve an IF stage, a DC (Decode) stage, an EX stage, a MEM (Memory
access) stage and a WB stage. Each stage is designed to be completed within
one clock cycle, which means that even if each instruction takes 5 clock cycles,
as in the case of a 5-stage pipeline, an instruction can be issued at every clock
cycle.

Caching: Smart card architectures include embedded Non-Volatile Memories
(NVM) like EEPROM or Flash to store code or data. The memories usually have
high read latencies where, for example, reading one byte involves reading a whole
line that takes several clock cycles.This would mean that the IF stage and the
MEM stage would take more than one clock cycle, which would stall the pipeline.
This would considerably reduce the rate in which instructions can be issued. To
compensate for these ‘slow’ memories, cache mechanisms are implemented. A
cache is a small, fast RAM memory whose role is to buffer the lines of NVM
being fetched. Due to their technology and small size (leading to faster decode
and access times) caches allow a word to be fetched in one clock cycle.

When the data or instruction word is to be fetched from the NVM, the CPU
will first check whether this particular word is already in the cache: if yes (this
is a cache hit), the word is fetched directly from the cache. If, on the contrary,
this particular word is not cached this is a cache miss. The CPU will then fetch
a whole line (e.g. 16 bytes) within which the targeted word is found. This means
that even if fetching this word takes more than one clock the other words of this
line will already be in the cache when required.

This mechanism considerably increases the instruction issue rate and there-
fore performance. On Harvard architectures, the cache is applied to both the
instruction and data memories in separate caches. Detailed studies of the per-
formance enhancements of cache mechanisms can obtained from [5]. In order to
keep power consumption low smart card CPUs usually only implement one level
of cache with a granularity in the order of 8 to 16 bytes.

3 The Side Channel

Given the above description of the cache mechanism, we can easily see that in
the case of a cache hit the pipeline is not stalled and normal execution occurs.
In the case of a cache miss the pipeline flow is stalled and the NVM is accessed.
In terms of side-channel information leakage (namely the power consumption)
when reading data from memory:

– In the case of a cache miss, the instruction takes more cycles than a cache
hit.



– In the case of a cache miss, the power consumed by the execution is signifi-
cantly higher than in the case of a cache hit because NVM accesses should
consume more power than a normal CPU.

With these observations we can build a power analysis attack based on the
distinctive signatures of cache hits and cache misses.

The rest of the paper details a method of using this model to build an attack
on AES based on cache hits and cache misses.

In our description, the first assumption is that we have a pipelined CPU
embedding a one level cache mechanism for both the instructions and data. An
example of a hardware simulation of this side-channel is given in [2]. To simplify
our illustration, we suppose that on the architecture being attacked the NVM
is accessed by lines of 16 bytes i.e. each cache miss will mean that 16 bytes are
loaded into the cache.

4 The First ByteSub Function

Our attack is implemented against the AES algorithm as described in [10]. The
first step of the attack targets the ByteSub function of the first round. Just
before entering this function the input data is XORed with the secret key. The
resulting 16 bytes enter the ByteSub function that is usually implemented as a
look-up on a table of 256 entries.

4.1 The Power Consumption

An attack on this function is already described in [2]; a slightly modified version
is stated here. The main difference is this attack relies purely on the observation
of the side-channel described in Section 3, whereas the attack described in [2]
manipulates the cache. Less information is generated but the attack is more
powerful as it only needs to manipulate the messages being ciphered and observe
the cache access pattern generated.

Key information can be derived from the cache access events during the
table look-up depending on the order in which the look-up table is loaded into
the cache. It is assumed that for each acquisition the cache has been flushed,
which can easily be provoked by resetting the smart card under observation.

The first byte of the message is fixed to a value, p1, and different values of
the second byte of the message, p2 can be tried until a cache hit occurs. At which
point it is known that p1 ⊕ k1 ≈ p2 ⊕ k2, which is only an approximation due to
the size of the cache granularity. In the case under study (i.e. we have a cache
with a granularity of 16 bytes) we can only be sure of the high nibble of the
approximation given. Therefore (p1⊕p2)∧F016 will give (k1⊕k2)∧F016 with at
most sixteen different messages i.e. all sixteen possible values for the high nibble
of p2 can be tried until a cache hit is observed.

Once (k1 ⊕ k2)∧ F016 is found, (k2 ⊕ k3)∧ F016 can be found using the same
method by choosing p1 and p2 so that a cache hit is always generated between



the first two look-ups, and varying p3 until another cache hit is generated. It
is important to have a cache hit between the first two look-ups, as otherwise it
is not known which cache line corresponds to the observed cache hit and some
information is lost. If this process is repeated for each subsequent key byte, the
high nibble of each byte will be known as a function of the high nibble of the
first byte. With at most 240 acquisitions the exhaustive search to find the key
of an AES implementation can be reduced from 2128 to 268.

In practice, this will only be true if the implementation is known. The Byte-
Sub function can be implemented before or after the ShiftRow function, as the
ShiftRow function is a bytewise permutation. A permutation is sometimes also
used on the message and key on entry to the algorithm to convert the array
format to the grid format used in the specification [10]. This is an optional
bytewise permutation that will change addressing during the algorithm. Both
permutations will change the order in which the data is treated by the ByteSub
function.

In the following sections we will assume that the implementation details are
known, as the added complexity due to these permutations is negligible. The
grid permutation will be ignored and the ShiftRow function will be assumed to
take place after the ByteSub function.

5 Finding the Rest of the Key

The first step described in Section 4 reduces the keyspace to 268 and is theoret-
ically trivial. There are two ways to continue the attack to derive the rest of the
key using the same side-channel. These two independent methods are described
below.

5.1 The Second ByteSub Function

The second ByteSub function (i.e. the ByteSub of the second round of AES) can
be used to determine the rest of the key in a similar manner to that described
in [11], and the same notation has been used for clarity. Plain texts are chosen
such that there are no cache misses in the first ByteSub function, except for the
first table look-up. The plain text bits that are XORed with the unknown bits
of the key (i.e. the first byte and the lower nibbles of the rest of the plain text)
are randomised for each acquisition. If the first look-up in the second ByteSub
function is a cache hit then information on the unknown key bits can be derived.
In this case the following relationship is known:

(2 • s(p1⊕k1) ⊕ 3 • s(p6 ⊕ k6) ⊕ s(p11 ⊕ k11)

⊕s(p16 ⊕ k16) ⊕ k1 ⊕ s(k8) ⊕ 1) ∧ F016 = (k1 ⊕ k2) ∧ F016

Where the function s(·) represents the look-up table used in the ByteSub
function and • represents multiplication over GF(28).



The value of (k1 ⊕ k2) ∧ F016 is known from the first part of the attack
described in Section 4. The value of k1 is unknown but given k1 the high nibbles
of k6, k11, k16 and k8 can be derived. This means that there are 24 unknown
bits in the equation. The evaluation of the 224 possible combinations of the left
hand side of the equation will be equal to (k1 ⊕ k2)∧ F016 with a frequency of 1
in 16. One plaintext that produces a cache hit in the second ByteSub function
will therefore reduce the unknown bits in the equation from 224 to 220.

A second cache hit with a different plain text can then be analysed, the cor-
rect key values will be in the intersection of the two sets of 220 values produced.
With 6 evaluations of the above equation all the unknown bits can be derived.
This corresponds to 96 acquisitions, as the cache hit occurs with a probability of
1/16 given that the plaintext input is mostly random. This reduces the unknown
key bits from 268 to 244.

The cache misses could also be used as they would reduce the keyspace by
15/16, but given the small amount of acquisitions required this should not be
necessary.

Any acquisition with two successive cache hits can then be used to derive
information on another 5 key bytes. If the second look up in the second ByteSub
function is also a cache hit, the following equation holds.

(2 • s(p2⊕k2) ⊕ 3 • s(p7 ⊕ k7) ⊕ s(p12 ⊕ k12)

⊕s(p13 ⊕ k13) ⊕ k2 ⊕ k1 ⊕ s(k8) ⊕ 1) ∧ F016 = (k1 ⊕ k2) ∧ F016

It is faster to search through the possible values of this equation as there are
20 unknown bits, the values of k1 and k8 being provided by the previous step.
As previously, the evaluation of this equation reduces the unknown values by a
factor of 16. It is expected that 5 such equations need to be evaluated, taking
the intersection as before, to provide one value for all of the key bytes in the
equation. This event occurs with a probability of 1/256 so the acquisition phase
will be lengthier than the previous step. A total of 1280 acquisitions should be
required.

If all of the key bytes in the above equations are derived, the key can then
be found by an exhaustive search of the remaining unknown key bits. This will
be a search in a keyspace of size 224 (i.e. 9 complete key bytes are given by
the formulae above, for the remaining six the high nibble is known, leaving 24
unknown bits), which can easily be exhausted on a PC. This is fortunate as
continuing the attack for three successive cache hits would be difficult as the
probability of seeing such an event is 1/4096, which would make the attack
excessively time consuming.

The last set of equation evaluations are time consuming, which means that it
can be advantageous to acquire less data and let the exhaustive search complete
the key search. If, for example, an attacker takes 768 acquisitions the expected
exhaustive key search would be around 232. Another means of speeding up the
evaluation of the possible key values for the second equation would be to use the
event of a cache hit followed by a cache miss, which occurs with a probability of
15/256, each of which will reduce the unknown keyspace by 15/16.



5.2 The xtime Function

A second method to reduce the key search space is to focus on the xtime func-
tion. The xtime function is a multiplication by 2 over GF(28) and is used in the
MixColumn function as shown in Algorithm 1.

Algorithm 1: The MixColumn function

Input: X = (x0, x1, . . . , x15)256
Output: Y = (y0, y1, . . . , y15)256

for i← 0 to 15 do
yi ← xtime(xi)⊕ xtime(x(i+4) mod 16)⊕ x(i+4) mod 16

yi ← yi ⊕ x(i+8) mod 16 ⊕ x(i+12) mod 16

end

return Y

The xtime function is a bit shift followed by a conditional XOR (as shown
in Algorithm 2). This is difficult to implement securely in smart cards as there
is a danger that the result of the conditional test can be leaked through the
power consumption as the two branches will take different amounts of time to
complete. Even if this is implemented so that the calculation always takes the
same amount of time, there is still a risk of a partitioning attack [14].

Algorithm 2: The xtime function

Input: x = (x7, x6, . . . , x0)2
Output: y = xtime(x)

y ← (x << 1) ∧ FF16

if x7 = 1 then
y ← y ⊕ 1B16

end

return y

In smart cards a possible replacement for this function is with a look-up table
of 256 bytes to avoid any conditional testing. This protects the implementation
against Simple Power Analysis but the table will be in Non-Volatile Memory so
will be accessed via the cache as with the look-up table used in the ByteSub
function. The pattern of cache hits and misses can therefore be analysed in a
similar way to the first phase of the attack described in ection 4. The first look-
up to the xtime table will be a cache miss, if this is followed by a cache hit
then:

s(p1 ⊕ k1) ∧ F016 = s(p6 ⊕ k6) ∧ F016



Where, as previously, the s(.) represents the look-up table in the ByteSub
function. The right hand side of the equation uses p6⊕k6 rather than p4⊕k4, as
defined in Algorithm 1, due to the ShiftRow function. In this equation there are
212 possible combinations given that the high nibble of k6 is known as a function
of k1, from the first part of the attack described in section 4. Searching through
all the combinations will give 28 possible values for the pair (k1, k6). Due to
the non-linear nature of the s(·) function another cache hit can be found with
a different message that will provide a different set of 28 values. The correct
key will be in the intersection between the two sets of possible values. After
three cache hits with three different messages are found there should only be
one hypothesis for both k1 and k6. Each cache hit will occur with a probability
of 1/16, so 48 acquisitions should be enough to find the value of k1 and k6.

The next cache access is the first xtime function call for the next output
byte. The values for p1 and p6 can be fixed so that a cache hit is always generated
between the first two xtime look-ups. If a cache hit occurs for the next xtime

look-up then:

s(p6 ⊕ k6) ∧ F016 = s(p2 ⊕ k2) ∧ F016

In this case k6 is known and the high nibble of k2 is known, as k1 has been
determined the high nibble of all the key bytes are known. The 4 unknown bits
of k2 in the equation can be exhausted for the value of p2 that provokes a cache
hit. One cache hit of this nature would be enough to determine the 4 unknown
bits. This process can be continued with the following equations:

s(p2 ⊕ k2) ∧ F016 = s(p7 ⊕ k7) ∧ F016

s(p7 ⊕ k7) ∧ F016 = s(p3 ⊕ k3) ∧ F016

s(p3 ⊕ k3) ∧ F016 = s(p8 ⊕ k8) ∧ F016

s(p8 ⊕ k8) ∧ F016 = s(p4 ⊕ k4) ∧ F016

s(p4 ⊕ k4) ∧ F016 = s(p5 ⊕ k5) ∧ F016

This can determine the first 8 bytes of the key with 192 acquisitions, leav-
ing an exhaustive search of 232 possible keys. An exhaustive search of 232 is
prohibitive so further analysis would be advantageous. The next set of possible
cache hits follow the equations:

s(p6 ⊕ k6) ∧ F016 = s(p11 ⊕ k11) ∧ F016

s(p7 ⊕ k7) ∧ F016 = s(p12 ⊕ k12) ∧ F016

s(p8 ⊕ k8) ∧ F016 = s(p9 ⊕ k9) ∧ F016

s(p5 ⊕ k5) ∧ F016 = s(p10 ⊕ k10) ∧ F016

There will be no need to compare s(p11 ⊕ k11) with s(p7 ⊕ k7), as if a cache
hit is generated between s(p6 ⊕ k6) and s(p11 ⊕ k11) a cache hit will also be
generated with s(p7 ⊕ k7) due to the selected message.

Acquiring data from these formulae requires a further 64 acquisitions (for a
total of 256 acquisitions) and reduces the amount of unknown key bits to 16.



As an exhaustive search of 216 is trivial, no further acquisitions are required to
derive the key.

6 Application to DPA Resistant Implementations

In smart cards implementations of cryptographic algorithms like AES are im-
plemented with countermeasures to protect against Differential Power Analysis
(DPA) [6]. One of the techniques used to protect the AES is by masking the
data being manipulated with a random value. The data is then manipulated in
such a way that the value present in memory is always masked with the same
random. This mask is then removed at the end of the algorithm to produce the
ciphertext. The most common form of masking is Boolean masking where all
data manipulated is treated after being XORed with a random, such that the
result is also XORed with the same random value. An example of this sort of
implementation can be found in [1].

The size of the random is generally limited as look-up tables need to be
randomised before the execution of the algorithm so that the input and output
values of the s-box leak no information. An example of how this is done is given
in Algorithm 3. As illustrated in the latter, the random used for masking the
input data can be no larger than n, and the random used for the output value
can be no larger that x.

Algorithm 3: Randomising S-Box Values

Input: S = (s0, s1, s2, . . . , sn)x containing the s-box, R a random ∈ [0, n], and r

a random ∈ [0, x).
Output: RS = (rs0, rs1, rs2, . . . , rsn)x containing the randomised s-box.

for i← 0 to n do
rsi ← s(i⊕R) ⊕ r

end

return RS

In the case of AES both R and r are on one byte, which means that the
random mask during the calculation of AES will also be on one byte.

6.1 Implementing the Attack

The described attack can be implemented as described in the above sections, as
the random will provide one byte of variation. In all the equations used to test
key hypotheses, the values generated are always compared with the neighbouring
byte. If, for example, all bytes in the algorithm are masked with the random R

the first phase of the attack described in section 4 will give (k1⊕R⊕k2⊕R)∧F016.
The R’s will cancel leaving (k1 ⊕ k2) ∧ F016 as with the approach detailed in
section 4. The random will just change the order of the cache lines and the order



of the bytes within them, but the same plaintext values will give the same cache
access pattern.

This does not mean that a DPA resistant algorithm is as easy to attack as a
naive implementation. There will be an initialisation phase during the algorithm
execution where the look-up table for the ByteSub function is randomised and
written into RAM, as described in Algorithm 3. In order for the cache to reveal
information as described above, enough time needs to have passed between the
execution of Algorithm 3 and the ciphering algorithm so that the cache no longer
contains the randomised look-up table. In theory, it may be possible to apply the
attack in [3] but it is necessary to know the cache lines that no longer contain
the randomised look-up table.

6.2 The xtime Function

The attack described in Sections 4 and 5 can work against a DPA resistant
algorithm assuming the randomised look-up table is no longer present in the
cache, but this assumption is probably not reasonable. It would be simpler to
directly attack the xtime function instead of the ByteSub function. The xtime

function has the property that if y =xtime(x) then y ⊕ R =xtime(x ⊕ R) for
R ∈ [0, 255] i.e. the data mask will carry across the xtime function. This means
that there is no need to load the xtime table into RAM in a DPA resistant
implementation of AES.

In this case the attack described in Section 5.2 can be extended to recover
all of the key data rather than just the first byte and the lower nibbles. The first
equation for a cache hit between the first and second xtime look-up becomes:

(s(p1 ⊕ k1) ⊕ R) ∧ F016 = (s(p6 ⊕ k6) ⊕ R) ∧ F016

s(p1 ⊕ k1) ∧ F016 = s(p6 ⊕ k6) ∧ F016

In this case there are 16 unknown bits and an evaluation will reduce the
keyspace by a factor of 16. After four evaluations of this equation a single solution
can be found for the pair (k1, k6). This cache hit event occurs with a probability
of 1/16 for a random plain text. An attack therefore requires a maximum of 64
acquisitions before being able to derive the key byte.

The attack can continue in the same manner as the attack described in
Section 5.2 but the total attack will require around 480 acquisitions and an
exhaustive search of 216 to derive the entire key.

7 Countermeasures

Several countermeasures can provide a protection against this attack in smart
cards. These are:

Programming Instructions: On some architectures the caching of data can
be avoided by fetching data without caching it. Such instructions do incur
performance penalties but they have the advantage of always taking the
same amount of time to execute.



Random Delay: The use of dummy code in cryptographic algorithms is a com-
mon countermeasure used to prevent side-channel attacks. Such mechanisms
lower the signal-to-noise ratios of such side-channels, thus adding another
level of difficulty to the implementation of this attack. A discussion of this
effect is given in [4], further discussion in the specific context of side-channel
attacks on cache access patterns appears in [13].

Random Order: If all the functions are conducted in a random order it will
not be possible to determine any relationship between a cache hit/miss and
the actual values being manipulated, which can either be implemented in
hardware [13] or software [9].

An example of this is given in [9] for copying 256 bytes from buffer A to
buffer B and is detailed in Algorithm 4. The same principle can be applied
to the loop in the ByteSub and MixColumn function so that an attacker
does not know which of the 16! possible combinations have been acquired.

In an actual DPA resistant implementation this countermeasure would be
expected, as it renders power attacks exceedingly difficult especially when
combined with data masking.

Algorithm 4: Random Order Data Copying

Input: A = (a0, a1, a2, . . . , a255)256, {x, y, z, w} four random bytes (x odd).
Output: B = (b0, b1, b2, . . . , b255)256.

for n← 0 to 255 do
i← (x× (n⊕ w) + y (mod 256))⊕ z

bi ← ai

end

return B

Calculating the xtime function: On a 32-bit architecture, the xtime opera-
tion can be computed without a performance penalty compared to the table
look-up implementation. On an assembly instruction level, the table look-up
implementation of the xtime would be as illustrated by Algorithm 5 where
the implementation takes 4 × 16 = 64 instruction cycles.

On a 32-bit architecture Algorithm 6 can be implemented, which not only
avoids any memory accesses but may be faster on a 32-bit platform as the
operation would take 8 × 4 = 32 instruction cycles. The side-channel issues
concerning the visibility of the most significant bit of each byte is less of an
issue as four bytes are being manipulated separately.

A more complete discussion of the countermeasures for protecting algorithms
against attacks using a side-channel to observe cache accesses is given in [13].



Algorithm 5: Table Look-up implementation of xtime

Input: A = (a0, a1, a2, . . . , a15)256, X = (x0, x1, x2, . . . , x255)256 table for xtime

look-up.
Output: B = (b0, b1, b2, . . . , b15)256.

for i← 0 to 15 do
LOAD ai

j ← Xai

LOAD xj

STORE bi ← xj

end

return B

Algorithm 6: Calculating xtime

Input: A = (a0, a1, a2, . . . , a15)256.
Output: B = (b0, b1, b2, . . . , b15)256.

for i← 0 to 3 do
LOAD R1 ← (a4i, a4i+1, a4i+2, a4i+3)
R2 ← R1 ∧ 8080808016

R2 ← R2 >> 7
R3 ← R2 ∗ 1B16

R1 ← R1 << 1
R1 ← R1 ∧ FEFEFEFE16

R1 ← R1 ⊕R3

STORE (b4i, b4i+1, b4i+2, b4i+3)← R1

end

return B



8 Conclusion

In this paper we propose an attack against software AES implemented on a smart
card with cache mechanisms. Our attack is based on the observation of the power
consumption information leakage generated by the different mechanisms behind
the caching techniques. We first explain how cache events generate different side-
channel signatures, before showing how varying the input message on the first
round can be combined with this observation to reduce the AES key search space
from 2128 to 268.

We propose two alternatives to find the remaining key bits either by focussing
on cache events during a ByteSub operation of the second AES round, or by
targeting the xtime of the MixColumn operation in the first round. Furthermore,
we argue that these attacks are also valid against implementations where masking
techniques are implemented as a countermeasure against DPA-like attacks.

This shows that when implementing cryptography on a given processor, the
specificities of this processor must be taken into account in order to have a se-
cure implementation. Caches are highly important features in high performance
embedded processors but they need to be carefully used when executing crypto-
graphic algorithms like AES.

References

1. M.-L. Akkar and C. Giraud. An implementation of DES and AES secure against
some attacks. In Ç. K. Koç, D. Naccache, and C. Paar, editors, Cryptogaphic

Hardware and Embedded Systems – CHES 2001, volume 2162 of Lecture Notes in

Computer Science, pages 309–318. Springer-Verlag, 2001.

2. D. J. Bernstein. Cache timing attacks on AES, 2004.
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

3. G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo. AES power
attack based on induced cache miss and countermeasures. In International Sym-

posium on Information Technology: Coding and Computing – ITCC 2005, pages
586–591. IEEE Computer Society, 2005.

4. C. Clavier, J.-S. Coron, and N. Dabbous. Differential power analysis in the presence
of hardware countermeasures. In Ç. K. Koç and C. Paar, editors, Cryptographic

Hardware and Embedded Systems – CHES 2000, volume 1965 of Lecture Notes in

Computer Science, pages 252–263. Springer-Verlag, 2000.

5. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, 2003.

6. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in

Computer Science, pages 388–397. Springer-Verlag, 1999.

7. MIPS-Technologies. SmartMIPS ASE.
http://www.mips.com/content/Products/.

8. MIPS-Technologies. MIPSTMarchitecture for programmers volume I: Introduction
to the MIPS32TMarchitecture. Technical Report MD00082, Revision 0.95, March
2001.



9. D. Naccache, P. Q. Nguy˜̂en, M. Tunstall, and C. Whelan. Experimenting with
faults, lattices and the DSA. In S. Vaudenay, editor, Public Key Cryptography

– PKC 2005, volume 3386 of Lecture Notes in Computer Science, pages 16–28.
Springer-Verlag, 2005.

10. National Institute of Standards and Technology. Advanced encryption standard
(AES) (FIPS–197), 2001.

11. D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: the
case of AES. http://eprint.iacr.org/2005/271, 2005.

12. D. Page. Theoretical use of cache memory as a cryptanalytic side–channel. Cryp-
tology ePrint Archive, Report 2002/169, 2002. http://eprint.iacr.org/.

13. D. Page. Defending against cache based side-channel attacks. Information Security

Technical Report, 8(1):30–44, April 2003.
14. J. R. Rao, P. Rohatgi, H. Scherzer, and S. Tinguely. Partitioning attacks: or how to

rapidly clone some gsm cards. In Proceedings of the IEEE Symposium on Security

and Privacy, pages 31–41, 2002.
15. Infineon Technologies AG Secure and Mobile Solutions Security Group. Security &

chip cards ICs SLE88Cx4000P, preliminary short product information 04.03, 2003.
16. Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi. Cryptanalysis of

DES implemented on computers with cache. In C. D. Walter, Ç. K. Koç, and
C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2003,
volume 2779 of Lecture Notes in Computer Science, pages 62–76. Springer-Verlag,
2003.


