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Abstract: this paper describes a block that can 
be added to a crypto-processor embedded on a 
FPGA. This block enables to simulate the co-
processor behaviour when faults are injected. Three 
fault models are used and an example with AES is 
given. The aim of such a block is to speed up the 
test of countermeasures on a FPGA before running 
the chip in fab.  

1. Introduction  

Some works have proven that injecting 
faults during a cryptographic process (AES for 
example) is an efficient way to recover the Cipher 
Key ([1], [2]): this is called the “Differential Faults 
Analysis” (DFA). There are many known 
techniques to induce faults into a device: variations 
in supply voltage, variations in the clock frequency, 
temperature, laser…This latter technique is very 
often used because a small area of a circuit can be 
targeted precisely thanks to laser properties [3].  

In order to protect crypto-processors 
against fault attacks, we focus on using prototyping 
to evaluate the strengths of countermeasures. This 
approach is a trade-off between long Hardware 
Description Language simulations and expensive 
real chip laser benchmarks [4].  

This paper deals with a way to induce 
faults during a cryptographic algorithm. A parallel 
block called “fault generator” is added: it can 
simulate different kinds of faults at any step during 
the course of the execution.  

In Section 2, we present the different fault 
models we decided to insert in our block. Section 3 
describes our block in more detail. Section 4 
illustrates with an example of application, which is 
its insertion in AES algorithm. The last section 
concludes this paper. 

 

2. Different fault models 

The “fault generator” can inject three 
different types of fault chosen by the user  
(evaluator): the “bit-flip” model (the value of the  
affected bit is inverted), the “stuck-at-fault zero” 
model (SAF0: the value is forced to 0) and the 
“stuck-at-fault one” model (SAF1: the value is 
forced to 1). Other kinds of faults could be 
implemented as well, but we consider that these 
models emulate most of the faults used in existing 
fault attacks.  

The choice of these faults is not harmless. 
The “stuck-at” model is very convenient, because it 
is representative of numerous kinds of physical 
failures [5]. It can also be used to emulate a laser 
attack. For example, if a circuit is attacked during a 
long time by a laser, we assume that some wires 
may be stuck at a constant value.  

The “bit-flip” model is the most used by 
attackers.  

3. Description of the “fault generator” 

The specifications of such a block are the 
following: first, it has to be as generic as possible in 
order to be adapted to any cryptographic system; 
second, it must consider the three fault models 
described in Section 2; third, it has to inject these 
faults at any moment during the execution.  

Obviously, the insertion of this block must 
have a limited impact on the execution time of our 
initial system. Area and power consumption are not 
critical parameters, because we implement this 
structure in a FPGA platform, not in an ASIC.  

Thanks to this structure, the user will be 
able to choose the address of corrupt bits, the kind 
of faults and the moment of injection. Here is 
described the structure of our block. The “fault 
generator” is built with two blocks called “n_bits” 
and “decoder” (see Figure 1). 
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Thanks to the decoder, the user can induce 
three different kinds of faults: bit-flip, SAF0, and 
SAF1. This decoder has a clock, an asynchronous 
reset and an input which initializes the start of an 
internal counter. The result computed by the 
decoder, called “injected_fault”, is sent to one of 
the inputs of the block “n_bits”. 

 
Figure 1: Structure of the “fault generator”  

 
The result “injected_fault” has a particular 

size. Indeed, the kind of fault for each input bit is a 
2-bit vector.  

The decoder has 3 components, which are 
called “counter”, “comparator” and “fault_selector” 
(see Figure 2). The component “counter” is a 
counter which starts with a synchronisation signal 
provided by the cryptographic algorithm. 
“Comparator” compares the counter with the 
injection time chosen by the user: when equal, it 
enables the “fault_selector”. Thus, the chosen fault 
is injected into the circuit at the right time. 
 

 
Figure 2: Structure of the “decoder”  

4. Illustration: Fault injection on AES 

In order to inject some faults at the right 
round and at the right transformation of the AES 
[6], we have to insert the block “n_bits” before 
each transformation of the algorithm, which are 
called SubBytes, ShiftRows, MixColumns, and 
AddRoundKey (and in the Key Schedule). 
However, due to the linearity of ShiftRows and 
AddRoundKey transformations, there is no use to 

implement the “n_bits” block before 
AddRoundKey and ShiftRows (see Figure 3).  

All the blocks “n_bits” are linked to their 
own decoder. Thus, a fault can be injected at the 
right transformation thanks to synchronisation 
signal sent to it.  

Moreover, the synchronisation input of the 
counter is linked to the Key Schedule start signal. 
Thus, this block is able to put a fault in any round 
of the AES algorithm: it allows a space-time 
insertion of faults. 

 

 
Figure 3: Insertion of the block “n_bits” in AES  
 

The user of this block should only respect 
the following format: the input format of the block 
“n_bits” must be adapted to the input format of the 
temporary results of transformations (which are 
called “states”) to avoid conflicts. Thus, in our 
application, the states format is a subtype in a 
package, defined as a (4×4)-byte matrix. Moreover, 
another subtype must be defined for the 
“injected_fault”, which is a (4×4) 16-bit matrix. 

5. Experimental results  

We implemented our structure on a 
XCV2000E+ Logic Module from Xilinx, Virtex − 
E™ family. The design was developed with the 
Xilinx ISE framework. The synthesis was 
performed with XST application and all the 
simulations (functional, post-synthesis and post 
place and route) with ModelSim. 

First, a reference version of AES with no 
fault injection was implemented on this FPGA. 
This implementation takes 1005 slices for a 60 
MHz clock frequency. A slice is made up of two 
logic cells which are the basic elements in a 
Xilinx’s family FPGA. This basic element is 
composed of a four variable logic function 
generator, a carry logic and a memory element. 

A second version of the AES with the fault 
generator was realized. It takes 1150 more slices. 
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Area was not a critical criterion; this version 
represents less than 10% of the total amount of 
available space on the device. The speed 
requirement matched: only two gates were added in 
the critical path and the required clock frequency 
stays unchanged. 

6. Conclusion 

The block “fault generator” has been 
approved thanks to its implementation on a FPGA: 
it respects our specifications. 

Thus, we are able to validate 
countermeasures against DFA faster than before: 
the required time to execute simulations is greatly 
decreased due to this method. 

Unfortunately, this block is able to inject 
at most three faults at each round. The next step is 
to modify our structure in order to inject the 
number of faults we want, at any moment of the 
execution. This new architecture is under 
development.  

The results concerning this new block will 
be provided during the “Academic Poster session”. 
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