

SAME 2006 Forum

SESSION: TOOLS & METHODOLOGIES

Material Emulation of Faults on Cryptoprocessors

Julien Francq
1

Pascal Manet
1

Jean-Baptiste Rigaud
2

1
CEA-LETI

2
Ecole Nationale Supérieure des Mines de St Etienne

1,2
Centre Microélectronique de Provence, Laboratoire SESAM

Avenue des Anémones - Quartier Saint-Pierre, 13541 GARDANNE
E-mail: francq@emse.fr – Telephone number: +33 (0)4 42 12 68 74

Abstract: this paper describes a block that can
be added to a crypto-processor embedded on a
FPGA. This block enables to simulate the co-
processor behaviour when faults are injected. Three
fault models are used and an example with AES is
given. The aim of such a block is to speed up the
test of countermeasures on a FPGA before running
the chip in fab.

1. Introduction

Some works have proven that injecting
faults during a cryptographic process (AES for
example) is an efficient way to recover the Cipher
Key ([1], [2]): this is called the “Differential Faults
Analysis” (DFA). There are many known
techniques to induce faults into a device: variations
in supply voltage, variations in the clock frequency,
temperature, laser…This latter technique is very
often used because a small area of a circuit can be
targeted precisely thanks to laser properties [3].

In order to protect crypto-processors
against fault attacks, we focus on using prototyping
to evaluate the strengths of countermeasures. This
approach is a trade-off between long Hardware
Description Language simulations and expensive
real chip laser benchmarks [4].

This paper deals with a way to induce
faults during a cryptographic algorithm. A parallel
block called “fault generator” is added: it can
simulate different kinds of faults at any step during
the course of the execution.

In Section 2, we present the different fault
models we decided to insert in our block. Section 3
describes our block in more detail. Section 4
illustrates with an example of application, which is
its insertion in AES algorithm. The last section
concludes this paper.

2. Different fault models

The “fault generator” can inject three
different types of fault chosen by the user
(evaluator): the “bit-flip” model (the value of the
affected bit is inverted), the “stuck-at-fault zero”
model (SAF0: the value is forced to 0) and the
“stuck-at-fault one” model (SAF1: the value is
forced to 1). Other kinds of faults could be
implemented as well, but we consider that these
models emulate most of the faults used in existing
fault attacks.

The choice of these faults is not harmless.
The “stuck-at” model is very convenient, because it
is representative of numerous kinds of physical
failures [5]. It can also be used to emulate a laser
attack. For example, if a circuit is attacked during a
long time by a laser, we assume that some wires
may be stuck at a constant value.

The “bit-flip” model is the most used by
attackers.

3. Description of the “fault generator”

The specifications of such a block are the
following: first, it has to be as generic as possible in
order to be adapted to any cryptographic system;
second, it must consider the three fault models
described in Section 2; third, it has to inject these
faults at any moment during the execution.

Obviously, the insertion of this block must
have a limited impact on the execution time of our
initial system. Area and power consumption are not
critical parameters, because we implement this
structure in a FPGA platform, not in an ASIC.

Thanks to this structure, the user will be
able to choose the address of corrupt bits, the kind
of faults and the moment of injection. Here is
described the structure of our block. The “fault
generator” is built with two blocks called “n_bits”
and “decoder” (see Figure 1).

 SAME 2006 Forum- October 4th & 5th 2006 1

Thanks to the decoder, the user can induce
three different kinds of faults: bit-flip, SAF0, and
SAF1. This decoder has a clock, an asynchronous
reset and an input which initializes the start of an
internal counter. The result computed by the
decoder, called “injected_fault”, is sent to one of
the inputs of the block “n_bits”.

Figure 1: Structure of the “fault generator”

The result “injected_fault” has a particular

size. Indeed, the kind of fault for each input bit is a
2-bit vector.

The decoder has 3 components, which are
called “counter”, “comparator” and “fault_selector”
(see Figure 2). The component “counter” is a
counter which starts with a synchronisation signal
provided by the cryptographic algorithm.
“Comparator” compares the counter with the
injection time chosen by the user: when equal, it
enables the “fault_selector”. Thus, the chosen fault
is injected into the circuit at the right time.

Figure 2: Structure of the “decoder”

4. Illustration: Fault injection on AES

In order to inject some faults at the right
round and at the right transformation of the AES
[6], we have to insert the block “n_bits” before
each transformation of the algorithm, which are
called SubBytes, ShiftRows, MixColumns, and
AddRoundKey (and in the Key Schedule).
However, due to the linearity of ShiftRows and
AddRoundKey transformations, there is no use to

implement the “n_bits” block before
AddRoundKey and ShiftRows (see Figure 3).

All the blocks “n_bits” are linked to their
own decoder. Thus, a fault can be injected at the
right transformation thanks to synchronisation
signal sent to it.

Moreover, the synchronisation input of the
counter is linked to the Key Schedule start signal.
Thus, this block is able to put a fault in any round
of the AES algorithm: it allows a space-time
insertion of faults.

Figure 3: Insertion of the block “n_bits” in AES

The user of this block should only respect
the following format: the input format of the block
“n_bits” must be adapted to the input format of the
temporary results of transformations (which are
called “states”) to avoid conflicts. Thus, in our
application, the states format is a subtype in a
package, defined as a (4×4)-byte matrix. Moreover,
another subtype must be defined for the
“injected_fault”, which is a (4×4) 16-bit matrix.

5. Experimental results

We implemented our structure on a
XCV2000E+ Logic Module from Xilinx, Virtex −
E™ family. The design was developed with the
Xilinx ISE framework. The synthesis was
performed with XST application and all the
simulations (functional, post-synthesis and post
place and route) with ModelSim.

First, a reference version of AES with no
fault injection was implemented on this FPGA.
This implementation takes 1005 slices for a 60
MHz clock frequency. A slice is made up of two
logic cells which are the basic elements in a
Xilinx’s family FPGA. This basic element is
composed of a four variable logic function
generator, a carry logic and a memory element.

A second version of the AES with the fault
generator was realized. It takes 1150 more slices.

 SAME 2006 Forum- October 4th & 5th 2006 2

Area was not a critical criterion; this version
represents less than 10% of the total amount of
available space on the device. The speed
requirement matched: only two gates were added in
the critical path and the required clock frequency
stays unchanged.

6. Conclusion

The block “fault generator” has been
approved thanks to its implementation on a FPGA:
it respects our specifications.

Thus, we are able to validate
countermeasures against DFA faster than before:
the required time to execute simulations is greatly
decreased due to this method.

Unfortunately, this block is able to inject
at most three faults at each round. The next step is
to modify our structure in order to inject the
number of faults we want, at any moment of the
execution. This new architecture is under
development.

The results concerning this new block will
be provided during the “Academic Poster session”.

Table of contents

 1. Introduction
 2. Different fault models
 3. Description of the “Fault generator”
 4. Illustration: Fault injection on AES
 5. Experimental results
 6. Conclusion

References

[1] Eli Biham and Adi Shamir. Differential Fault
Analysis of secret key cryptosystems. In B.S.
Kaliski Jr., editor, Advances in Cryptology −
CRYPTO’97, volume 1294 of Lecture Notes in
Computer Science, pages 513–525. Springer, 1997.

[2] Hagai Bar-El, Hamid Choukri, David Naccache,
Michael Tunstall and Claire Whelan. The
sorcerer’s apprentice guide to fault attacks. In First
Workshop on Fault Detection and Tolerance in
Cryptography − FDTC 2004, Florence, Italy, June
2004.

[3] Sergei P. Skorobogatov and Ross J. Anderson.
Optical fault induction attacks. In B.S. Kaliski Jr.,
C¸ .K. Ko¸c, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems − CHES 2002,
volume 2523 of Lecture Notes in Computer
Science, pages 2–12. Springer, 2002.

[4] Olivier Faurax, Laurent Freund, Frédéric
Bancel and Traian Muntean. Une méthode
générique pour l’injection de fautes dans les
circuits. To be published in Journées Nationales du
Réseau Doctoral en Microélectronique 2006 −
JNRDM 2006, May 2006.

[5] F. Azaïs, S. Bernard, Y. Bertrand, M.L. Flottes,
S. Pravossoudovitch, C. Landrault, M. Renovell, P.
Girard, L. Latorre and B. Rouzeyre, Test de
Circuits et de Systèmes Intégrés. EGEM Collection,
Hermès Editor, 2004.

[6] NIST. Announcing the Advanced Encryption
Standard (AES). Federal Information Processing
Standards Publication, n. 197, November 26, 2001.

 SAME 2006 Forum- October 4th & 5th 2006 3

