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Abstract.
In this study, the issue of reconstructing the gradients of noisy full-fleld data is

addressed within the framework of solid mechanics. Two approaches are considered,
a global one based on Finite Element Approximation (FEA) and a local one based on
Difiuse Approximation (DA). For both approaches, it is proposed to monitor locally
the flltering efiect in order to adapt the uncertainty to the local signal to noise ratio.
Both approaches are applied to a case study which is commonly considered as di–cult
in solid mechanics (open-hole tensile test on a composite laminate). Both DA and
FEA are successful for detecting local subsurface damage from the measured noisy
displacement flelds. Indications are also provided about the compared performances
of DA and FEA. It is shown that DA is more robust, but the downside is that it is
also more CPU time consuming.
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1. Introduction

In experimental solid mechanics, it is required to measure deformations for
characterizing the response of solids to a given load. Classically, a strain gauge bonded
onto the solid surface provides an average value of the strain across the gauge area. This
is particularly adapted to mechanical tests where the stress fleld is homogeneous in the
zone of the gauge area (abusively called homogeneous tests). Indeed, for these tests,
the deduced stress/strain curves directly represent the constitutive behaviour of the
investigated material. For more complex mechanical tests, the poorness of strain gauge
data has lead experimentalists to consider more sophisticated measurement techniques.

In the recent past, the development of full-fleld optical techniques (FFOTs) to
measure kinematic quantities over a whole surface of interest has shed a new light on
the mechanical tests for material characterization [1, 2]. In the framework of in{plane
problems, the majority of FFOTs provide full-fleld displacement measurements, such
as digital image correlation [3], speckle interferometry [4], moir¶e interferometry [5] and
grid methods [6]. Only few of them are actually able to provide full-fleld strains directly,
which is the case for shearography techniques [7,8]. Details about all these methods can
be found in [9].

Each method has advantages and drawbacks and is eventually more or less adapted
to a given situation. Among them, a technique that seems to be adequate for mechan-
ical testing is the grid method [10], because it can be applied at a large range of solid
materials, be adjusted to study different flelds of view by changing the pitch of the grid
and it is less sensitive to object vibrations than interferometric techniques.

However, most of the users of full-fleld measurement methods require strain flelds
instead of displacement flelds to study the phenomena occurring at difierent scales in
the tested materials. Therefore, except for the shearography techniques, it is necessary
at some stage in the process to difierentiate the data. When the gradients of the
measured displacement flelds are relatively low, for example when the materials still
behave elastically or just beyond the elastic limit, small errors on measurement values
at specifled points may induce large errors on the computed derivatives [11]. So the key
issue is to develop stable algorithms, in which it is possible to quantify explicitly the
efiects induced by noise on difierentiation.

A large number of algorithms can be found in the literature. A survey of these
methods is brie°y presented in [12]. The most common way of difierentiating numerical
data is the flnite difierence method [12]. Simple and efiective with precise data, it is
implemented in most of the softwares providing full-fleld displacement data. However,
when the level of noise is signiflcant, flltering is required.

The difierentiation issue is actually wider than just a noise flltering problem.
Full-fleld measurement methods can provide matrices of data representing more than
100,000 points across a given surface. Therefore, full-fleld measurement methods provide
very densely distributed measurements of the deformation fleld across a given surface.
However, as dense as these measurements can be, they remain discrete. The general
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issue is then: how to reconstruct continuously the deformation flelds and its gradients
from these discrete and noisy data?

One widely used way of doing this consists in interpolating or approximating the
data using smooth basis functions. The difierentiation of the data is then simply the
difierentiation of the basis functions, which is more efiective. For a given basis of
functions, the regularization parameter is tied to the number of functions used in the
basis. The di–culty in controlling this regularization parameter lies within a good
compromise between the faithfulness of the reconstruction (obtained with a large number
of basis functions) and the e–ciency of the low pass flltering (obtained with a small
number of basis functions).

However, a good choice of the basis functions is essential [13]. The basis functions
can be deflned either globally [14], or locally [15]. Previous studies [16] showed that
basis of polynomial functions deflned globally tend to induce parasitic oscillations in
the reconstruction when the degree of the polynomials used in the basis reaches a given
threshold. Indeed, because of the global nature of this type of basis, accuracy cannot
be reached for both the displacement and its gradient. Accordingly, it seems that basis
functions which have limited interactions between each other would be more suitable.

Two approaches fulfllling this requirement were compared in a previous study
[17]. The flrst approach is based on global least-squares minimization using Finite-
Element Approximation shape functions as the basis functions (FEA) [18]. The second
approach is based on local weighted least-squares minimization using a polynomial
difiuse approximation (DA) [19].

After the comparative study published in [17], an issue still remained to be solved
for applying these approaches to the open-hole tensile test carried out on quasi-isotropic
composite laminates [16, 20]. This issue is how to control locally the uncertainty of the
reconstruction. The regularization parameter is the mesh size for the FEA approach, the
span of the weighting function in the DA approach. The open-hole tensile test on com-
posite laminates is widely documented in the literature [7,21{25]. Experimentally, it is a
difflcult case because the strain fleld contains at the same time zones with large gradients
near the hole and zones with small gradients away from the hole [17]. Therefore, on
the one hand, if a large regularization parameter is used to increase the flltering efiect,
the reconstruction of the concentrated gradients near the hole will be afiected. On the
other hand, if the regularization parameter is too small, spurious gradients will occur
because of the presence of the high spatial frequency noise.

In this paper, in order to address the issue of controlling locally the uncertainty of
the reconstruction, an improved regularization approach is implemented in the FEA and
the DA methods. Improved means that the regularization parameter is adapted locally.
The larger the norm of the local gradients, the smaller the regularization parameter.
Accordingly, heterogeneous distributions of the regularization parameters will be used
for the FEA and the DA methods. In other words, the flltering efiect will be tuned
difierently at each reconstruction point, as a function of the local signal to noise ratio.

Before presenting the details of these novel approaches, the principle and the
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e–ciency of the FEA and the DA methods, which was presented by the same authors
in [17], will be detailed and their behaviour with respect to both flltering and
approximation will be discussed. Then a criterion will be deflned for tuning locally
the regularization parameter. The improved versions of the FEA and the DA methods,
considering non uniform regularization parameters, will then be presented and studied
as applied to the open-hole tensile test. The performances of the methods are compared
to help future users choosing what method is the most appropriate to a given fleld
reconstruction problem. Eventually, the two methods are used to detect the local non-
linearities in a composite open-hole specimen.

2. The reconstruction methods

2.1. Framework and illustrative example

2.1.1. Framework The proposed approaches are aimed at deriving strain flelds from a
set of full-fleld displacement measurements. These measurements are derived from the
deformation of a pattern attached to the investigated solid, for instance using digital
image correlation [3] or fringe analysis [10]. These methods yield the displacement u
through its coordinates (ux; uy) on two perpendicular directions (e.g. Figure 1) on a
regular grid of data points, deflning the measurement zone denoted ›. From a standard
CCD camera of 1200£1000 pixels, DIC or fringe analysis yields a grid of data points
typically from 100 to 200 points per side (therefore from 104 to 4 £ 104 data points).
The input data for deriving strain flelds across › are therefore the displacements given
at the N data points and are denoted as:

~u(xi) = uex(xi) + –u(xi) ; i 2 [1; N ] (1)

where the xi’s denote the geometric positions where measurements ~u are obtained
and its coordinates are denoted (xi; yi). uex is denoted as the exact vectorial fleld of
displacements and –u is also a vectorial fleld representing the measurement error. The
sources of uncertainty in optical measurements are numerous because of the complex
measurement chains. However, several studies showed that a significant part of the mea-
surement error is composed of an additive uncorrelated white noise [6,26]. The present
paper is focused on the effects of this additive uncorrelated white noise, denoted as –u,
the measurement random error.

In the case of real experimental data, uex is not known, whereas it is known when
dealing with synthetic data. In the case of real measurement, uex is actually the sum
of the true fleld and the systematic error of the full-fleld algorithm. The latter depends
on the chosen algorithm and some of them furnish some error estimators [27], but its
study is not in the scope of the current paper which focuses on the transformation from
displacement to strain, once the displacement is obtained. The displacements considered
here are two-dimensional vectors as full-fleld measurements are almost always performed
across °at surfaces and the component of the displacement normal to the surface is
usually negligible. The case when the surface is not °at or the case when the component
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of the displacement normal to the surface is not negligible are beyond the scope of this
paper. Indeed, the derivation of strains in these cases requires particular kinematic
assumptions [28], whereas this paper is fully dedicated to data processing and noise
flltering.

The objective is to derive the gradients of uex from ~u, while limiting the in°uence
of –u, and to obtain strains as close as possible to the exact ones.

In the whole paper, only inflnitesimal strains are considered. As a reminder, in
solid mechanics, the inflnitesimal strain tensor † is deflned as the symmetric gradient of
the displacement vector u, which means:

† =
1
2

¡
ru + rtu

¢
(2)

In the notation used here, the tensorial strain components in the (~eX ; ~eY ) basis are
represented in a vectorial format, using the classical convention [29]:

† =

2

64
†XX

†Y Y

†XY

3

75 (3)

In the following, the set of values of ~u(xi), uex(xi) and –u(xi), 8i 2 [1; N ], are stacked
together and denoted as columns which are respectively f~ug, fuexg and f–ug. In this
study, as the noise is assumed additive and uncorrelated, f–ug is a random vector and
its covariance matrix is:

cov(f–ug) = °2[I] (4)

where [I] is the identity matrix.

2.1.2. Illustrative examples In the following sections, two types of data will be used :
experimental data and synthetic data.

Concerning the experimental data, they were obtained on a real quasi-static tensile
test carried out onto a glass/epoxy composite laminate [16]. The specimen used in
the tests is shown in Figure 1, the dashed zone being the zone where displacement are
measured. It is a 4 mm thick glass-epoxy specimen with the following stacking sequence
[¡454=904=454=04]S. Displacement flelds were measured using the grid method [10]. A
periodical pattern (grid) with crossed lines regularly spaced by 0:1 mm was transferred
onto the surface of the specimen. A CCD PCO PixelFly 12 bits camera, with 1360£1024
pixels, was used for capturing images of this grid across a surface of 21.5£16.7 mm
located around the hole. Grid images were analyzed using a dedicated algorithm based
on the theory of spatial phase shifting [10]. The obtained displacement matrices have
a size of 226 £ 170 data points, each component being an independent measurement
corresponding to one period of the pattern (so the assumption of uncorrelated white
noise is satisfled). The data grid spacing is about 9:5 10¡2 mm. An example of measured
displacements is shown in Figure 2.
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Figure 1. Schematic of the open-hole tensile test.
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Figure 2. Examples of measured displacement flelds.

In this paper, most of the examples are based on synthetic data. The interest of
synthetic data is that the exact fleld uex and the measurement random error –u are
known and one can evaluate properly the reconstruction errors, which is the absolute
error of the strain reconstruction process. The synthetic data were obtained from the
numerical simulation of a plate tested in an open-hole tensile conflguration similar to
the one described for the experimental data above, in terms of size and geometry. The
simulation is computed using standard plane stress linear 3-nodes elements with an
isotropic material, with 150 000 nodes, so that the Finite Element flelds, which will
be considered as the exact ones, are realistic. In order to create the measurements,
the Finite Element displacement fleld is evaluated on a regular grid of 224 £ 168 data
points, by interpolating the nodal displacement with the Finite Element shape functions.
The data grid spacing is similar to the experimental one, and therefore equal to about
9:5 10¡2 mm. Some noise can be added to simulate the measurement random error, –u.
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2.2. First reconstruction approach: global least squares/flnite element approximation

A flrst group of methods consists in using global least-squares minimization over
the whole measurement zone ›. The choice of the basis functions on which the
measurements will be projected will afiect the regularity and the precision of the
reconstruction. A Finite Element Approximation (FEA) [18], where the basis functions
have only very low interactions between each other, is chosen in this study because
it limits reconstruction oscillations as the precision increases, contrarily to polynomial
basis functions [16]. The regularization parameter is hence the meshsize of the FEA,
denoted h.

The reconstructed displacement fleld is written like this:

uap(x) = [`(x)] fUg (5)

where [`(x)] is the elementary matrix of the shape functions evaluated at x and fUg is
the column of the nodal displacements. For a given mesh, one has only to determine
fUg to deflne the reconstructed fleld.

In the present example, the elements are triangles with linear shape functions [17].
Let ['] be the matrix made up of all the matrices [`(xi)] stacked together, i 2 [1; N ].
['] collects the shape functions evaluated at the data points. It can be written:

fuapg = ['] fUg (6)

where fuapg is hence the column made up of all the values of uap(xi), i 2 [1; N ].
fUg is found as the solution of the following minimization:

min
fUg

NX

i=1

k[`(xi)] fUg ¡ ~u(xi)k
2 , min

fUg

¡
[']t fUg ¡ f~ug

¢t ¡
[']t fUg ¡ f~ug

¢
(7)

The minimization problem (7) leads to a linear system to be solved, yielding fUg:

fUg = [S]¡1[']tf~ug (8)

where:

[S] = [']t['] (9)

[S] is a sparse matrix, with nonzero components located close to the diagonal.

The strain fleld can be directly derived from uap(x), by difierentiating the shape
functions. It can be written:

†0(x) = [b(x)] fUg (10)

where [b(x)] collects the components of the symmetric gradient of [`(x)] and †0(x) is the
strain fleld evaluated at x. By collecting the strain at the data points, it can be written:

f†0g = [B] fUg (11)
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where f†0g is the column made up of all the values of †0(xi), i 2 [1; N ], and [B] is the
matrix made up of all the matrices [b(xi)] stacked together, i 2 [1; N ].

For the type of applications targeted here, the †0(x) fleld is not suitable as a
reconstructed strain fleld because it is discontinuous. In order to ensure the continuity
of the approximated strain fleld, a second strain fleld, denoted †ap(x), is reconstructed
as a linear combination of the `(x) shape functions, such as:

†ap(x) = [`(x)] fEg (12)

where fEg is the column of nodal strains. It means that the strain fleld †0 is projected
onto the basis of functions `(x). Nodal values fEg are the solution of the following
global least-squares problem:

min
fEg

Z

›
k[b(x)] fUg ¡ [`(x)] fEgk2 d› (13)

In (13), the integrals are estimated using flnite element numerical integration, with
one Gauss point per element and leads to matrices similar to mass or rigidity matrices.
This minimization problem leads to a linear system to be solved, yielding fEg:

fEg = [S]¡1[Sfi][S]¡1[']tf~ug (14)

where: [Sfi] = [B]t['].

2.3. Second reconstruction approach: difiuse approximation/polynomial approximation

A second group of methods is based on the use of local regression [15]. The Difiuse
Approximation (DA) [19] has been initially developed to solve partial difierential
equations (PDE), as an alternative to flnite elements or flnite difierence methods. It
has been used in several flelds, from fleld transfer [30] to optimization through response
surfaces [31]. Here, it is chosen as an approximation operator because it ofiers a wide
range of possibilities, in terms of function basis or in terms of span of the local regression.
Furthermore due to its orientation towards the solving of PDE, its theoretical behaviour
has been thoroughly studied, which is a clear advantage.

The function basis of the DA is chosen as polynomials with various degrees.
As this approach is based on weighted least-squares, a key point is the span of the
weighting function, denoted R. This parameter can be tuned to obtain the best
regularization/precision compromise. As presented below, the (difiuse) derivatives are
directly derived from the measurements with this approach.

The key point of the DA is to deflne a continuous fleld from a discrete number of
data points through the following method. Let us consider a basis of functions, here
monomials, that are collected in a line vector p(x). For example, for a degree 2 basis,
one has:

p(x) =< 1 x y
x2

2
xy

y2

2
> (15)
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The difiuse fleld is then deflned as:

uap(x) = v(x; x) where, v(x; x0) = p(x0 ¡ x) fa(x)g (16)

where fa(x)g is a vector of parameters depending on x that will be determined by the
local least squares associated with x. The introduction of function v is not mandatory
but allows to present the centered Difiuse Approximation whose interpretation is directly
correlated to the Taylor series around the reconstruction point [19]. For a degree 1 basis,
v(x; x0) writes:

v(x; x0) = a1(x) + a2(x)(x0 ¡ x) + a3(x)(y0 ¡ y) (17)

For any reconstruction point x, a(x) is then deflned as the solution of the following
local weighted least-squares problem across the neighbourhood V (x) of x:

min
a(x)

1
2

X

xi2V (x)

w(x; xi) (p(x ¡ xi) fa(x)g ¡ ~u(xi))
2 (18)

x being a constant with respect to the minimization and the function w(x; xi) being the
weighting function evaluated at each data point. This can be rewritten in a matrix form
as follows:

min
fag

1
2

h
[P ]fag ¡ feUg

iT
[W ]

h
[P ]fag ¡ feUg

i
(19)

where [P ] is the matrix collecting the p(x ¡ xi), xi 2 V (x), feUg the column collecting
the points data in V (x) and [W ] is the diagonal matrix with Wii = w(x; xi).

w(x; xi) can be any positive function deflned over a bounded domain. The bounded
domain requirement is aimed at keeping the local character of the reconstruction.
Among several possibilities, the weighting function is deflned as follows, because of
the square grid of data points:

w(x; xi) = wref (
x ¡ xi

Rx
)wref (

y ¡ yi

Ry
) (20)

where wref is a dimensionless window function whose derivative zeroes at 0 and 1 (this
aspect ensures continuity up to the flrst derivative of the reconstructed flelds), [17];
here Rx and Ry are chosen independent of xi but may depend on x. Despite it is not
mandatory, Rx and Ry are taken equal and denoted R, corresponding to the span of the
weighting function.

Then, fa(x)g as the solution of (18) is given by:

fag =
£
P T WP

⁄¡1 P T WfeUg (21)

If the basis is composed of monomials up to at least degree 1, the approximate fleld
and its flrst derivatives are reconstructed as the flrst three components of vector fag:

uap(x) = a1(x);
–uap

–x
(x) = a2(x) and

–uap

–y
(x) = a3(x) (22)

where –u
–x denotes the difiuse derivative which is an approximation of the exact derivative.

This reconstruction can be applied to each component of the measured displacement
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fleld ~u(xi). The strain flelds can be deduced subsequently from the flrst order difiuse
derivatives. Let us flnally mention that this approach implies the resolution of problem
(18) at each evaluation point. This means that one has to choose the evaluation
points. This choice depends on the application of the method, here, they are chosen as
coincident with the data points where data are provided. Accordingly, the reconstruction
is evaluated through the discrete grid of the points xi, i 2 [1; N ].

In summary, the parameters to be tuned in the DA method are the degree of the
polynomial basis and the span of the weighting function, R. As discussed in [17], a
basis with polynomials of degree 2 is a good compromise between the flltering efiect
and the faithfulness of the reconstruction, as the flltering is almost as e–cient as for a
basis of polynomials of degree 1 and the faithfulness of the reconstruction is improved.
Therefore degree 2 is used in the following. Only R, the span of the weighting function,
will be considered as tuning parameter for controlling the uncertainty in the following.

3. Reconstruction errors - efiect of the flltering parameters (h or R)

3.1. Splitting of the error : approximation error and random error

The reconstructed fleld uap(x), at any x, can be split up into three parts as follows:

uap(x) = uex(x) + –uk(x) + –ub(x) (23)

where –uk(x) corresponds to the error due to the approximation of the exact fleld and
can be seen as the systematic error of the strain reconstruction operator. –ub(x) is the
random error implied by the noise on the measurements. In the following, –uk(x) is
called the reconstruction error, –ub(x) is called the random error and –uk(x) + –ub(x)
is called the absolute error. The same splitting is achieved on the reconstructed strain
fleld:

†ap(x) = †ex(x) + –†k(x) + –†b(x) (24)

Since the reconstruction operators are linear, the approximation error –uk(x) is
related to the reconstruction of the exact fleld alone and the random error –ub(x) is
exactly the reconstruction of the noise alone.

Obviously, such splitting cannot be achieved with real data because the exact fleld
is not known in experiments. Nevertheless, one objective of this study is to understand
and control the reconstruction error, therefore the numerical example is useful. Since the
evaluation of the approximation error is not straightforward, we will focus on the random
error in the applications and discuss the limitations of the approach. As suggested in
Section 2.1.2, the actual noise can reasonably be modeled realistically by a white noise
(4), so it is possible to bound the term –ub(x) and then determine the local uncertainty.
This will be presented afterwards.
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3.2. Efiect of h or R on the reconstruction quality

First we illustrate the efiect of the mesh size h (for FEA) and of the span of the weighting
function R (for the DA) on the reconstruction quality and the balance between the
magnitude of –†k(x) and –†b(x) using synthetic data. In this case, the exact fleld is
simulated as described in Section 2.1.2, so it is known. The reconstruction absolute
error can be deduced straight forwardly. In order to assess it, the following criterion,
based on the true error, has been deflned at any x:

e†(x) =
q

(†apXX
¡ †exXX )2 + 2 (†apXY ¡ †exXY )2 + (†apY Y ¡ †exY Y )2 (25)

This criterion is the norm of the absolute error of the three components of the strain
tensor.

Then, a mean error over any area ›0 of N 0 reconstruction points is deflned as:

emean
† (›0) =

1
N 0

N 0X

i=1

e†(xi) (26)

Two reconstructions are performed. The flrst one from measurements without
noise, yielding the approximation error alone. The second one is performed on a white
noise alone yielding the random error. The simulated white noise is Gaussian, with a
standard deviation similar to the one deduced from the experiments, about 5% of the
mean displacement of the studied case.

PSfrag replacements
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Figure 3. Error Map - FEA - h = 6 data points

Figure 3 and 4 present the error maps both in terms of random error and
approximation error, for the two approaches with standard values of h and R (h = 6
and R = 16, in number of data points) ; these values are chosen based on the previous
study [17] and yield a good balanced between the two types of error on our example
as will be conflrmed by Figure 6. One can note that for both cases, the approximation
error is located near the hole where large gradients occur. Concerning the FEA, the
reconstruction is afiected by the mesh, another mesh with the same mesh size would
imply a slightly difierent reconstruction. Since the noise magnitude is constant all over
the domain, the random error is globally uniform in magnitude. Nevertheless, typical
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APPROXIMATION ERROR MAP DA
(a) Approximation error - logscale (b) Random error - logscale

Figure 4. Error Map - DA - R = 16 data points

patterns appear with a characteristic length directly related to the value of h or R and
one can note that the error increases on the edges of the domain; this will be explained
in Section 3.4.

Figure 5. Selected zone around the hole for the mean error emean
²

Results showing the values of the criterion emean
† on an area around the hole with

and without noise have been plotted in Figure 6. The aera is made up of 9821 data
points represented on Figure 5. It can be observed that for small values of h or R, the
term –†k (approximation error) is almost negligible compared to –†b (random error).
When h or R increases, both types of error tend to be balanced, and, beyond, –†k

overtakes –†b.
In this section, a flrst example was used to illustrate the separation of errors and

how they are afiected by h and R. The choice of values for these parameters will be
the result of a compromise between the two types of error. In order to estimate the
approximation error, one would need to construct an error estimator, which does not
seem straightforward. Concerning the random error, one can characterize it from a



13

5 10 15
0

2

4

6

8 x 10 -6

d

e

a
b
c

f

PSfrag replacements

noise alone
with noise

without noise
Radius R

emean
†

Measurements :
(a) Difiuse Approximation

5 10 15 20
0

1

2

3

4

5

6 x 10 -6

d

e a
b
c

f
PSfrag replacements

noise alone
with noise

without noise
Meshsize h

emean
†

Measurements :
(b) Finite Element Approximation

Figure 6. Error emean
² around the hole as a function of R or h

statistical point of view. This is described for the FEA and the DA in the following
sections.

3.3. Random error estimation for the FEA method

The random error is obtained by studying the reconstruction of the noise alone. It can
be studied from a probabilistic point of view using the relationship between the standard
deviation on the input noise and the standard deviation on the output strain fleld. The
study is flrst performed on the FEA.

Assuming the measurement noise is a white noise with a covariance deflned by (4),
fUg deflned in equation (8) for the FEA approach is a random vector. From (8), its
covariance matrix is:

cov(fUg) = °2[S]¡1 (27)

Eventually, fEg is also a random vector. Its covariance matrix is:

cov(fEg) = °2[S]¡1[Sfi]t[S]¡1[Sfi][S]¡1 (28)

In equations (27) and (28), the ofi{diagonal terms are at least one order of magni-
tude lower than the diagonal ones. Therefore, they may be neglected at the flrst order.
Moreover, for nodes away from the boundaries, all the diagonal terms are similar at the
flrst order. Let ¾U be the average square root of the diagonal terms in cov(fUg) and let
¾E be the average square root of the diagonal terms in cov(fEg). From equations (27)
and (28), it appears that:

(
¾U = °fiU

¾E = °fiE
(29)
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where the factors fiU and fiE are called the coe–cients of sensitivity to noise. The
coe–cients of sensitivity to noise are functions of the mesh size h. Using the deflnition
of matrix [S] in equation (9), it has been deduced that:

fiU »=
2:6
h

(30)

This equation has been derived by considering that a given node belongs to six
elements at the same time. This is only true when the node is away from the edges of
the measurement area.

As for fiE, one obtains the following equation:

fiE =
0:12

punith2 (31)

where punit is the spatial resolution of the measurements, i.e. the distance between two
adjacent independent data points.

3.4. Random error estimation for the DA method

The same study on the random error is performed on the DA reconstruction. By
denoting M† the linear strain reconstruction operator, the reconstructed strain fleld
is given by the following relation:

†(x) = M† eUx (32)

where eUx collects the displacements of the data points contributing to the reconstruction
at x.

Assuming that each data set is obtained from a Gaussian white noise with standard
deviation ° as in (4), the covariance of †(x) can be written as:

cov(†(x)) =
›
†(x)†(x)T fi

=
D

M† eU eUT MT
†

E
= °2M†MT

† (33)

Therefore, knowing the noise on the measurement, which can be estimated in
practice, and the reconstructing operator, one can deduce the standard deviation on
the components of the strain.

Knowing the M† operator, one can therefore estimate the value of the ratio of the
output to the input standard deviation (sensitivity to noise). Furthermore, this can
be achieved for reconstruction points located anywhere in the neighbourhood. This
includes the case of points close to an edge. The efiect of R and of the position of the
reconstruction point in the neighborhood, denoted as its ofiset, onto the variance of †XX

are illustrated in Figure 7. It can be observed that the ofiset of the reconstruction point
has an efiect on the variance. The variance is minimum when the reconstruction point
is located at the center of the neighbourhood, and it increases when its position has an
ofiset with regard to the center. This explains why the random error increases along the
edges of the reconstruction domain (Section 3.2). Concerning the efiect of R, Figure 7
shows that the variance decreases with respect to R, with a power law since the log-log
plot is linear.
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Figure 7. Standard deviation on †XX as a function of the span R and the ofiset,
logscale

4. Choice of the reconstruction parameters and related criteria

4.1. Choice of a criterion

In Section 3.2, it was shown that both the random error and the approximation error
depend on x. In the areas where the approximation error remains small, the flltering
can be improved by increasing h or R. Therefore, an interesting option is to tune
these parameters with respect to the space variables. To do so, a criterion has to be
established for the selection of h or R. According to Figure 6, the absolute error is
close to its minimum when both the errors are balanced. A criterion would therefore
be to choose h or R such that the random error and the approximation error are equal.
However, this implies an error estimator for –†k(x) which is not straightforward and
has not been developed yet. Furthermore, concerning the Difiuse Approximation, it can
actually be shown that the error is related to the derivatives of higher order than the
polynomials of the basis. A major drawback of an estimator of the approximation error
is hence that it is based on higher order derivatives, which evaluation needs more care
than the flrst order derivatives that are given by the reconstruction [15].

Nevertheless, an alternative approach is chosen here to derive a criterion. It was
observed that in a large number of heterogeneous tests, the areas with large strains
are limited in space, therefore they also correspond to zones where the gradient of the
strain fleld is large. In these cases, the zones with high strain values will be the zones
where one has to reduce the value of h or R in order to control the approximation error.
This leads to deflne a criterion based on a constant signal to noise ratio (SNR) that is
prescribed onto the reconstructed fleld across the whole measurement area, the objective
being to reach a constant relative error all across the reconstruction area. As expected,
this criterion will yield larger h or R where the strains are larger and therefore is an
improvement with respect to the standard approach where h or R are constant all over
the measurement zone.
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First, a signal to noise ratio (SNR) on the reconstructed strain fleld is deflned as:
†
¾†

= · (34)

where:

† † =
p

†2
XX + †2

Y Y + 2 †2
XY . † is to be estimated. It can be obtained with a flrst

reconstruction, using a strong flltering;
† ¾† is deflned as: ¾† =

p
¾2

XX + ¾2
Y Y + 2 ¾2

XY , where the ¾–† are the standard
deviations on the corresponding †–† (we therefore neglect the coupling efiects).
¾† is directly related to h or R through the relations (29) and (33) established in
Section 3.3 and 3.4.

Then, the criterion is such that a constant SNR · is imposed all over the area.
Imposing · yields therefore a value of R or h at each position of the measurement area.

For example, by flxing the SNR · to 8, the criterion yields respectively an optimal
mesh (flgure 8(a)) or a map of optimal in°uence radii (flgure 8(b)), optimal being deflned
with regard to the criterion of equation (34). The choice of · = 8 is motivated by the
previous study on the absolute error in Section 3.2 and corresponds to the global optimal
signal to noise ratio (see Figure 6). On Figure 8(b) the radius map is not symmetric
since it is based on noisy data. Note that these meshes or maps of optimal radii are
constructed without taking into account the edge efiects. To take them into account,
the mesh size or the radii should be increased near the edges of the measurement area.
Since the key point here is just to illustrate the fact that the h or R parameters can be
tuned accross the measurement area, a simple criterion has been used.

(a) Optimal meshing (b) Map of optimal R

Figure 8. Optimal h and R for · = 8

4.2. Practical use of the criterion for an improved reconstruction

Now, the reconstruction can be achieved by each method with respectively the optimal
mesh or optimal radii distribution. The flelds reconstructed by both improved
approaches have been plotted in Figures 9(b) and 9(c). The reconstruction is very
promising in comparison to all published material regarding full-fleld measurements
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on the open-hole tensile test. It seems that for the DA approach, there are parasitic
oscillations which are more visible than for the FEA approach. This can be explained by
the fact that for the same given standard deviation to achieve, the local zone of in°uence
is much larger for the FEA. The spatial correlation of the reconstructed strain is therefore
higher, leading to strains reconstructed from the noise with the same magnitude as with
the DA but with smoother spatial variations. From a computation point of view, the
FEA method is quicker. But the downside is that it requires a mesh. In each mesh,
the mesh size is prescribed but the position of the nodes is random. This means that
for each mesh, a difierent reconstruction will be obtained. The drawback was well
illustrated in [17] where the reconstructed data were used for identiflcation purpose,
yielding a mesh dependency on the identiflcation results.

(a) †XY , exact (b) †XY , FEA, optimized mesh

(c) †XY , DA, optimized radii R(x)

Figure 9. Reconstructed shear strain flelds with optimized h or R

5. Application to the detection of subsurface damage in a composite
laminate

In this section, the two reconstruction approaches are applied to data obtained from
an open-hole tensile test carried out onto a glass/epoxy laminated plate having a
quasi-isotropic stacking sequence: [¡454; 904; 454; 04]s. In such tests, fracture of the
90– underlying plies occurs quite early. An objective of full-fleld displacement flelds
is to detect the onset and spatial location of this fracture. Thirty snapshots of the
displacement flelds were taken during the test and the grid method [10] used to derive
displacements in a region around the hole of the specimen, for tensile loads ranging
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from 0 to 13:3 kN . It has been proposed in [32] to characterize the fracture process by
detecting local non linearities of the surface response. A flrst estimation of these non-
linearities is obtained by computing the discrepancy between the experimental strain
fleld and the strain fleld resulting from the extrapolation of the linear response. One
has therefore to determine the latter.

The linear response is estimated from the flrst ten strain maps, k 2 f1; ::10g, Fk

being the corresponding load , as the slope of the response at each pixel x:

min
†lin(x)

NlinX

k

(Fk†lin(x) ¡ †(x; Fk))2 with, Nlin = 10 (35)

where †(x; Fk) is the strain at data point x deduced from the response corresponding to
the load Fk. Then, it is possible to deflne the non-linear part of the strain fleld for a
given load F , corresponding to a further strain map:

¢†(x; F ) = F†lin(x) ¡ †(x; F ) (36)

(a) Load 9:7 kN - FEA (b) Load 13:3 kN - FEA

(c) Load 9:7 kN - DA (d) Load 13:3 kN - DA

Figure 10. Non-linear part of the displacement from the reconstructed fields

The ¢† flelds reconstructed by the two approaches are shown for two difierent loads
in Figure 10. The detection of the non-linearities around the hole gives better results
than the previous method used in [16], with a sharper zone providing a more precise
localization. Both methods yield similar results, even if the FEA approach remains
sensitive to the underlying mesh. The DA is more afiected by the random error but
seems to ofier a better contrast. Nevertheless, the perturbations on the measurements
are more severe than in the numerical case and one would have to input more a priori
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information on the flelds to get better results. This suggests considering regularization
approaches, which are considered as one of the major prospects of this study.

6. Conclusion

In this paper, two approaches to obtain the strain fleld from a measured displacement
fleld while controlling the error due to this operation were presented. The flrst method
is based on a global least squares with Finite Element basis functions (FEA) and the
second one is based on the Difiuse Approximation (DA). Both methods yield similar
results in term of random error and approximation. The FEA is numerically more
e–cient but its results sufier from a mesh dependency. The DA appears to be richer,
with a stronger theoretical background, and ofiers more evolution possibilities, such
as the enrichment of the approximation basis by any physical fleld from any a priori
information.

The key point of this paper is that the flltering parameters (h or R) can be tuned
across the measurement area. For this purpose, the behaviour of the two approaches
was characterized, in terms of approximation and random error. The latter has been
studied from a statistical point of view: given the level of noise on the measurement, one
can deduce the standard deviation of the reconstructed strain flelds. A flrst reasonable
choice for a criterion to deflne maps of values for parameters h and R was therefore pro-
posed, based on a constant signal to noise ratio on the reconstructed fleld all across the
measurement area. This criterion applied to an example conflrms the feasibility of the
local tuning of the flltering. It ofiers wide perspectives of improvement, in particular by
deflning more accurate criteria, for example based on cross-validation approaches [15].
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