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Abstract.
In this study, the issue of reconstructing the gradients of noisy full-field data is

addressed within the framework of solid mechanics. Two approaches are considered,
a global one based on Finite Element Approximation (FEA) and a local one based on
Diffuse Approximation (DA). For both approaches, it is proposed to monitor locally
the filtering effect in order to adapt the uncertainty to the local signal to noise ratio.
Both approaches are applied to a case study which is commonly considered as difficult
in solid mechanics (open-hole tensile test on a composite laminate). Both DA and
FEA are successful for detecting local subsurface damage from the measured noisy
displacement fields. Indications are also provided about the compared performances
of DA and FEA. It is shown that DA is more robust, but the downside is that it is
also more CPU time consuming.
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1. Introduction

In experimental solid mechanics, it is required to measure deformations for

characterizing the response of solids to a given load. Classically, a strain gauge bonded

onto the solid surface provides an average value of the strain across the gauge area. This

is particularly adapted to mechanical tests where the stress field is homogeneous in the

zone of the gauge area (abusively called homogeneous tests). Indeed, for these tests,

the deduced stress/strain curves directly represent the constitutive behaviour of the

investigated material. For more complex mechanical tests, the poorness of strain gauge

data has lead experimentalists to consider more sophisticated measurement techniques.

In the recent past, the development of full-field optical techniques (FFOTs) to

measure kinematic quantities over a whole surface of interest has shed a new light on

the mechanical tests for material characterization [1, 2]. In the framework of in–plane

problems, the majority of FFOTs provide full-field displacement measurements, such

as digital image correlation [3], speckle interferometry [4], moiré interferometry [5] and

grid methods [6]. Only few of them are actually able to provide full-field strains directly,

which is the case for shearography techniques [7,8]. Details about all these methods can

be found in [9].

Each method has advantages and drawbacks and is eventually more or less adapted

to a given situation. Among them, a technique that seems to be adequate for mechan-

ical testing is the grid method [10], because it can be applied at a large range of solid

materials, be adjusted to study different fields of view by changing the pitch of the grid

and it is less sensitive to object vibrations than interferometric techniques.

However, most of the users of full-field measurement methods require strain fields

instead of displacement fields to study the phenomena occurring at different scales in

the tested materials. Therefore, except for the shearography techniques, it is necessary

at some stage in the process to differentiate the data. When the gradients of the

measured displacement fields are relatively low, for example when the materials still

behave elastically or just beyond the elastic limit, small errors on measurement values

at specified points may induce large errors on the computed derivatives [11]. So the key

issue is to develop stable algorithms, in which it is possible to quantify explicitly the

effects induced by noise on differentiation.

A large number of algorithms can be found in the literature. A survey of these

methods is briefly presented in [12]. The most common way of differentiating numerical

data is the finite difference method [12]. Simple and effective with precise data, it is

implemented in most of the softwares providing full-field displacement data. However,

when the level of noise is significant, filtering is required.

The differentiation issue is actually wider than just a noise filtering problem.

Full-field measurement methods can provide matrices of data representing more than

100,000 points across a given surface. Therefore, full-field measurement methods provide

very densely distributed measurements of the deformation field across a given surface.

However, as dense as these measurements can be, they remain discrete. The general
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issue is then: how to reconstruct continuously the deformation fields and its gradients

from these discrete and noisy data?

One widely used way of doing this consists in interpolating or approximating the

data using smooth basis functions. The differentiation of the data is then simply the

differentiation of the basis functions, which is more effective. For a given basis of

functions, the regularization parameter is tied to the number of functions used in the

basis. The difficulty in controlling this regularization parameter lies within a good

compromise between the faithfulness of the reconstruction (obtained with a large number

of basis functions) and the efficiency of the low pass filtering (obtained with a small

number of basis functions).

However, a good choice of the basis functions is essential [13]. The basis functions

can be defined either globally [14], or locally [15]. Previous studies [16] showed that

basis of polynomial functions defined globally tend to induce parasitic oscillations in

the reconstruction when the degree of the polynomials used in the basis reaches a given

threshold. Indeed, because of the global nature of this type of basis, accuracy cannot

be reached for both the displacement and its gradient. Accordingly, it seems that basis

functions which have limited interactions between each other would be more suitable.

Two approaches fulfilling this requirement were compared in a previous study

[17]. The first approach is based on global least-squares minimization using Finite-

Element Approximation shape functions as the basis functions (FEA) [18]. The second

approach is based on local weighted least-squares minimization using a polynomial

diffuse approximation (DA) [19].

After the comparative study published in [17], an issue still remained to be solved

for applying these approaches to the open-hole tensile test carried out on quasi-isotropic

composite laminates [16, 20]. This issue is how to control locally the uncertainty of the

reconstruction. The regularization parameter is the mesh size for the FEA approach, the

span of the weighting function in the DA approach. The open-hole tensile test on com-

posite laminates is widely documented in the literature [7,21–25]. Experimentally, it is a

difficult case because the strain field contains at the same time zones with large gradients

near the hole and zones with small gradients away from the hole [17]. Therefore, on

the one hand, if a large regularization parameter is used to increase the filtering effect,

the reconstruction of the concentrated gradients near the hole will be affected. On the

other hand, if the regularization parameter is too small, spurious gradients will occur

because of the presence of the high spatial frequency noise.

In this paper, in order to address the issue of controlling locally the uncertainty of

the reconstruction, an improved regularization approach is implemented in the FEA and

the DA methods. Improved means that the regularization parameter is adapted locally.

The larger the norm of the local gradients, the smaller the regularization parameter.

Accordingly, heterogeneous distributions of the regularization parameters will be used

for the FEA and the DA methods. In other words, the filtering effect will be tuned

differently at each reconstruction point, as a function of the local signal to noise ratio.

Before presenting the details of these novel approaches, the principle and the



4

efficiency of the FEA and the DA methods, which was presented by the same authors

in [17], will be detailed and their behaviour with respect to both filtering and

approximation will be discussed. Then a criterion will be defined for tuning locally

the regularization parameter. The improved versions of the FEA and the DA methods,

considering non uniform regularization parameters, will then be presented and studied

as applied to the open-hole tensile test. The performances of the methods are compared

to help future users choosing what method is the most appropriate to a given field

reconstruction problem. Eventually, the two methods are used to detect the local non-

linearities in a composite open-hole specimen.

2. The reconstruction methods

2.1. Framework and illustrative example

2.1.1. Framework The proposed approaches are aimed at deriving strain fields from a

set of full-field displacement measurements. These measurements are derived from the

deformation of a pattern attached to the investigated solid, for instance using digital

image correlation [3] or fringe analysis [10]. These methods yield the displacement u

through its coordinates (ux, uy) on two perpendicular directions (e.g. Figure 1) on a

regular grid of data points, defining the measurement zone denoted Ω. From a standard

CCD camera of 1200×1000 pixels, DIC or fringe analysis yields a grid of data points

typically from 100 to 200 points per side (therefore from 104 to 4 × 104 data points).

The input data for deriving strain fields across Ω are therefore the displacements given

at the N data points and are denoted as:

ũ(xi) = uex(xi) + δu(xi) , i ∈ [1, N ] (1)

where the xi’s denote the geometric positions where measurements ũ are obtained

and its coordinates are denoted (xi, yi). uex is denoted as the exact vectorial field of

displacements and δu is also a vectorial field representing the measurement error. The

sources of uncertainty in optical measurements are numerous because of the complex

measurement chains. However, several studies showed that a significant part of the mea-

surement error is composed of an additive uncorrelated white noise [6,26]. The present

paper is focused on the effects of this additive uncorrelated white noise, denoted as δu,

the measurement random error.

In the case of real experimental data, uex is not known, whereas it is known when

dealing with synthetic data. In the case of real measurement, uex is actually the sum

of the true field and the systematic error of the full-field algorithm. The latter depends

on the chosen algorithm and some of them furnish some error estimators [27], but its

study is not in the scope of the current paper which focuses on the transformation from

displacement to strain, once the displacement is obtained. The displacements considered

here are two-dimensional vectors as full-field measurements are almost always performed

across flat surfaces and the component of the displacement normal to the surface is

usually negligible. The case when the surface is not flat or the case when the component
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of the displacement normal to the surface is not negligible are beyond the scope of this

paper. Indeed, the derivation of strains in these cases requires particular kinematic

assumptions [28], whereas this paper is fully dedicated to data processing and noise

filtering.

The objective is to derive the gradients of uex from ũ, while limiting the influence

of δu, and to obtain strains as close as possible to the exact ones.

In the whole paper, only infinitesimal strains are considered. As a reminder, in

solid mechanics, the infinitesimal strain tensor ε is defined as the symmetric gradient of

the displacement vector u, which means:

ε =
1

2

(∇u + ∇tu
)

(2)

In the notation used here, the tensorial strain components in the (~eX , ~eY ) basis are

represented in a vectorial format, using the classical convention [29]:

ε =




εXX

εY Y

εXY


 (3)

In the following, the set of values of ũ(xi), uex(xi) and δu(xi), ∀i ∈ [1, N ], are stacked

together and denoted as columns which are respectively {ũ}, {uex} and {δu}. In this

study, as the noise is assumed additive and uncorrelated, {δu} is a random vector and

its covariance matrix is:

cov({δu}) = γ2[I] (4)

where [I] is the identity matrix.

2.1.2. Illustrative examples In the following sections, two types of data will be used :

experimental data and synthetic data.

Concerning the experimental data, they were obtained on a real quasi-static tensile

test carried out onto a glass/epoxy composite laminate [16]. The specimen used in

the tests is shown in Figure 1, the dashed zone being the zone where displacement are

measured. It is a 4 mm thick glass-epoxy specimen with the following stacking sequence

[−454/904/454/04]S. Displacement fields were measured using the grid method [10]. A

periodical pattern (grid) with crossed lines regularly spaced by 0.1 mm was transferred

onto the surface of the specimen. A CCD PCO PixelFly 12 bits camera, with 1360×1024

pixels, was used for capturing images of this grid across a surface of 21.5×16.7 mm

located around the hole. Grid images were analyzed using a dedicated algorithm based

on the theory of spatial phase shifting [10]. The obtained displacement matrices have

a size of 226 × 170 data points, each component being an independent measurement

corresponding to one period of the pattern (so the assumption of uncorrelated white

noise is satisfied). The data grid spacing is about 9.5 10−2 mm. An example of measured

displacements is shown in Figure 2.
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Figure 1. Schematic of the open-hole tensile test.
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Figure 2. Examples of measured displacement fields.

In this paper, most of the examples are based on synthetic data. The interest of

synthetic data is that the exact field uex and the measurement random error δu are

known and one can evaluate properly the reconstruction errors, which is the absolute

error of the strain reconstruction process. The synthetic data were obtained from the

numerical simulation of a plate tested in an open-hole tensile configuration similar to

the one described for the experimental data above, in terms of size and geometry. The

simulation is computed using standard plane stress linear 3-nodes elements with an

isotropic material, with 150 000 nodes, so that the Finite Element fields, which will

be considered as the exact ones, are realistic. In order to create the measurements,

the Finite Element displacement field is evaluated on a regular grid of 224 × 168 data

points, by interpolating the nodal displacement with the Finite Element shape functions.

The data grid spacing is similar to the experimental one, and therefore equal to about

9.5 10−2 mm. Some noise can be added to simulate the measurement random error, δu.
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2.2. First reconstruction approach: global least squares/finite element approximation

A first group of methods consists in using global least-squares minimization over

the whole measurement zone Ω. The choice of the basis functions on which the

measurements will be projected will affect the regularity and the precision of the

reconstruction. A Finite Element Approximation (FEA) [18], where the basis functions

have only very low interactions between each other, is chosen in this study because

it limits reconstruction oscillations as the precision increases, contrarily to polynomial

basis functions [16]. The regularization parameter is hence the meshsize of the FEA,

denoted h.

The reconstructed displacement field is written like this:

uap(x) = [φ(x)] {U} (5)

where [φ(x)] is the elementary matrix of the shape functions evaluated at x and {U} is

the column of the nodal displacements. For a given mesh, one has only to determine

{U} to define the reconstructed field.

In the present example, the elements are triangles with linear shape functions [17].

Let [Φ] be the matrix made up of all the matrices [φ(xi)] stacked together, i ∈ [1, N ].

[Φ] collects the shape functions evaluated at the data points. It can be written:

{uap} = [Φ] {U} (6)

where {uap} is hence the column made up of all the values of uap(xi), i ∈ [1, N ].

{U} is found as the solution of the following minimization:

min
{U}

N∑
i=1

‖[φ(xi)] {U} − ũ(xi)‖2 ⇔ min
{U}

(
[Φ]t {U} − {ũ})t (

[Φ]t {U} − {ũ})(7)

The minimization problem (7) leads to a linear system to be solved, yielding {U}:
{U} = [S]−1[Φ]t{ũ} (8)

where:

[S] = [Φ]t[Φ] (9)

[S] is a sparse matrix, with nonzero components located close to the diagonal.

The strain field can be directly derived from uap(x), by differentiating the shape

functions. It can be written:

ε0(x) = [b(x)] {U} (10)

where [b(x)] collects the components of the symmetric gradient of [φ(x)] and ε0(x) is the

strain field evaluated at x. By collecting the strain at the data points, it can be written:

{ε0} = [B] {U} (11)
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where {ε0} is the column made up of all the values of ε0(xi), i ∈ [1, N ], and [B] is the

matrix made up of all the matrices [b(xi)] stacked together, i ∈ [1, N ].

For the type of applications targeted here, the ε0(x) field is not suitable as a

reconstructed strain field because it is discontinuous. In order to ensure the continuity

of the approximated strain field, a second strain field, denoted εap(x), is reconstructed

as a linear combination of the φ(x) shape functions, such as:

εap(x) = [φ(x)] {E} (12)

where {E} is the column of nodal strains. It means that the strain field ε0 is projected

onto the basis of functions φ(x). Nodal values {E} are the solution of the following

global least-squares problem:

min
{E}

∫

Ω

‖[b(x)] {U} − [φ(x)] {E}‖2 dΩ (13)

In (13), the integrals are estimated using finite element numerical integration, with

one Gauss point per element and leads to matrices similar to mass or rigidity matrices.

This minimization problem leads to a linear system to be solved, yielding {E}:
{E} = [S]−1[Sα][S]−1[Φ]t{ũ} (14)

where: [Sα] = [B]t[Φ].

2.3. Second reconstruction approach: diffuse approximation/polynomial approximation

A second group of methods is based on the use of local regression [15]. The Diffuse

Approximation (DA) [19] has been initially developed to solve partial differential

equations (PDE), as an alternative to finite elements or finite difference methods. It

has been used in several fields, from field transfer [30] to optimization through response

surfaces [31]. Here, it is chosen as an approximation operator because it offers a wide

range of possibilities, in terms of function basis or in terms of span of the local regression.

Furthermore due to its orientation towards the solving of PDE, its theoretical behaviour

has been thoroughly studied, which is a clear advantage.

The function basis of the DA is chosen as polynomials with various degrees.

As this approach is based on weighted least-squares, a key point is the span of the

weighting function, denoted R. This parameter can be tuned to obtain the best

regularization/precision compromise. As presented below, the (diffuse) derivatives are

directly derived from the measurements with this approach.

The key point of the DA is to define a continuous field from a discrete number of

data points through the following method. Let us consider a basis of functions, here

monomials, that are collected in a line vector p(x). For example, for a degree 2 basis,

one has:

p(x) =< 1 x y
x2

2
xy

y2

2
> (15)
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The diffuse field is then defined as:

uap(x) = v(x, x) where, v(x, x′) = p(x′ − x) {a(x)} (16)

where {a(x)} is a vector of parameters depending on x that will be determined by the

local least squares associated with x. The introduction of function v is not mandatory

but allows to present the centered Diffuse Approximation whose interpretation is directly

correlated to the Taylor series around the reconstruction point [19]. For a degree 1 basis,

v(x, x′) writes:

v(x, x′) = a1(x) + a2(x)(x′ − x) + a3(x)(y′ − y) (17)

For any reconstruction point x, a(x) is then defined as the solution of the following

local weighted least-squares problem across the neighbourhood V (x) of x:

min
a(x)

1

2

∑

xi∈V (x)

w(x, xi) (p(x− xi) {a(x)} − ũ(xi))
2 (18)

x being a constant with respect to the minimization and the function w(x, xi) being the

weighting function evaluated at each data point. This can be rewritten in a matrix form

as follows:

min
{a}

1

2

[
[P ]{a} − {Ũ}

]T

[W ]
[
[P ]{a} − {Ũ}

]
(19)

where [P ] is the matrix collecting the p(x − xi), xi ∈ V (x), {Ũ} the column collecting

the points data in V (x) and [W ] is the diagonal matrix with Wii = w(x, xi).

w(x, xi) can be any positive function defined over a bounded domain. The bounded

domain requirement is aimed at keeping the local character of the reconstruction.

Among several possibilities, the weighting function is defined as follows, because of

the square grid of data points:

w(x, xi) = wref (
x− xi

Rx

)wref (
y − yi

Ry

) (20)

where wref is a dimensionless window function whose derivative zeroes at 0 and 1 (this

aspect ensures continuity up to the first derivative of the reconstructed fields), [17];

here Rx and Ry are chosen independent of xi but may depend on x. Despite it is not

mandatory, Rx and Ry are taken equal and denoted R, corresponding to the span of the

weighting function.

Then, {a(x)} as the solution of (18) is given by:

{a} =
[
P T WP

]−1
P T W{Ũ} (21)

If the basis is composed of monomials up to at least degree 1, the approximate field

and its first derivatives are reconstructed as the first three components of vector {a}:

uap(x) = a1(x),
δuap

δx
(x) = a2(x) and

δuap

δy
(x) = a3(x) (22)

where δu
δx

denotes the diffuse derivative which is an approximation of the exact derivative.

This reconstruction can be applied to each component of the measured displacement
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field ũ(xi). The strain fields can be deduced subsequently from the first order diffuse

derivatives. Let us finally mention that this approach implies the resolution of problem

(18) at each evaluation point. This means that one has to choose the evaluation

points. This choice depends on the application of the method, here, they are chosen as

coincident with the data points where data are provided. Accordingly, the reconstruction

is evaluated through the discrete grid of the points xi, i ∈ [1, N ].

In summary, the parameters to be tuned in the DA method are the degree of the

polynomial basis and the span of the weighting function, R. As discussed in [17], a

basis with polynomials of degree 2 is a good compromise between the filtering effect

and the faithfulness of the reconstruction, as the filtering is almost as efficient as for a

basis of polynomials of degree 1 and the faithfulness of the reconstruction is improved.

Therefore degree 2 is used in the following. Only R, the span of the weighting function,

will be considered as tuning parameter for controlling the uncertainty in the following.

3. Reconstruction errors - effect of the filtering parameters (h or R)

3.1. Splitting of the error : approximation error and random error

The reconstructed field uap(x), at any x, can be split up into three parts as follows:

uap(x) = uex(x) + δuk(x) + δub(x) (23)

where δuk(x) corresponds to the error due to the approximation of the exact field and

can be seen as the systematic error of the strain reconstruction operator. δub(x) is the

random error implied by the noise on the measurements. In the following, δuk(x) is

called the reconstruction error, δub(x) is called the random error and δuk(x) + δub(x)

is called the absolute error. The same splitting is achieved on the reconstructed strain

field:

εap(x) = εex(x) + δεk(x) + δεb(x) (24)

Since the reconstruction operators are linear, the approximation error δuk(x) is

related to the reconstruction of the exact field alone and the random error δub(x) is

exactly the reconstruction of the noise alone.

Obviously, such splitting cannot be achieved with real data because the exact field

is not known in experiments. Nevertheless, one objective of this study is to understand

and control the reconstruction error, therefore the numerical example is useful. Since the

evaluation of the approximation error is not straightforward, we will focus on the random

error in the applications and discuss the limitations of the approach. As suggested in

Section 2.1.2, the actual noise can reasonably be modeled realistically by a white noise

(4), so it is possible to bound the term δub(x) and then determine the local uncertainty.

This will be presented afterwards.
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3.2. Effect of h or R on the reconstruction quality

First we illustrate the effect of the mesh size h (for FEA) and of the span of the weighting

function R (for the DA) on the reconstruction quality and the balance between the

magnitude of δεk(x) and δεb(x) using synthetic data. In this case, the exact field is

simulated as described in Section 2.1.2, so it is known. The reconstruction absolute

error can be deduced straight forwardly. In order to assess it, the following criterion,

based on the true error, has been defined at any x:

eε(x) =
√

(εapXX
− εexXX

)2 + 2 (εapXY
− εexXY

)2 + (εapY Y
− εexY Y

)2 (25)

This criterion is the norm of the absolute error of the three components of the strain

tensor.

Then, a mean error over any area Ω′ of N ′ reconstruction points is defined as:

emean
ε (Ω′) =

1

N ′

N ′∑
i=1

eε(xi) (26)

Two reconstructions are performed. The first one from measurements without

noise, yielding the approximation error alone. The second one is performed on a white

noise alone yielding the random error. The simulated white noise is Gaussian, with a

standard deviation similar to the one deduced from the experiments, about 5% of the

mean displacement of the studied case.

PSfrag replacements
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Figure 3. Error Map - FEA - h = 6 data points

Figure 3 and 4 present the error maps both in terms of random error and

approximation error, for the two approaches with standard values of h and R (h = 6

and R = 16, in number of data points) ; these values are chosen based on the previous

study [17] and yield a good balanced between the two types of error on our example

as will be confirmed by Figure 6. One can note that for both cases, the approximation

error is located near the hole where large gradients occur. Concerning the FEA, the

reconstruction is affected by the mesh, another mesh with the same mesh size would

imply a slightly different reconstruction. Since the noise magnitude is constant all over

the domain, the random error is globally uniform in magnitude. Nevertheless, typical
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APPROXIMATION ERROR MAP DA

(a) Approximation error - logscale (b) Random error - logscale

Figure 4. Error Map - DA - R = 16 data points

patterns appear with a characteristic length directly related to the value of h or R and

one can note that the error increases on the edges of the domain; this will be explained

in Section 3.4.

Figure 5. Selected zone around the hole for the mean error emean
ε

Results showing the values of the criterion emean
ε on an area around the hole with

and without noise have been plotted in Figure 6. The aera is made up of 9821 data

points represented on Figure 5. It can be observed that for small values of h or R, the

term δεk (approximation error) is almost negligible compared to δεb (random error).

When h or R increases, both types of error tend to be balanced, and, beyond, δεk

overtakes δεb.

In this section, a first example was used to illustrate the separation of errors and

how they are affected by h and R. The choice of values for these parameters will be

the result of a compromise between the two types of error. In order to estimate the

approximation error, one would need to construct an error estimator, which does not

seem straightforward. Concerning the random error, one can characterize it from a
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Figure 6. Error emean
ε around the hole as a function of R or h

statistical point of view. This is described for the FEA and the DA in the following

sections.

3.3. Random error estimation for the FEA method

The random error is obtained by studying the reconstruction of the noise alone. It can

be studied from a probabilistic point of view using the relationship between the standard

deviation on the input noise and the standard deviation on the output strain field. The

study is first performed on the FEA.

Assuming the measurement noise is a white noise with a covariance defined by (4),

{U} defined in equation (8) for the FEA approach is a random vector. From (8), its

covariance matrix is:

cov({U}) = γ2[S]−1 (27)

Eventually, {E} is also a random vector. Its covariance matrix is:

cov({E}) = γ2[S]−1[Sα]t[S]−1[Sα][S]−1 (28)

In equations (27) and (28), the off–diagonal terms are at least one order of magni-

tude lower than the diagonal ones. Therefore, they may be neglected at the first order.

Moreover, for nodes away from the boundaries, all the diagonal terms are similar at the

first order. Let σU be the average square root of the diagonal terms in cov({U}) and let

σE be the average square root of the diagonal terms in cov({E}). From equations (27)

and (28), it appears that:
{

σU = γαU

σE = γαE
(29)
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where the factors αU and αE are called the coefficients of sensitivity to noise. The

coefficients of sensitivity to noise are functions of the mesh size h. Using the definition

of matrix [S] in equation (9), it has been deduced that:

αU
∼= 2.6

h
(30)

This equation has been derived by considering that a given node belongs to six

elements at the same time. This is only true when the node is away from the edges of

the measurement area.

As for αE, one obtains the following equation:

αE =
0.12

punith2
(31)

where punit is the spatial resolution of the measurements, i.e. the distance between two

adjacent independent data points.

3.4. Random error estimation for the DA method

The same study on the random error is performed on the DA reconstruction. By

denoting Mε the linear strain reconstruction operator, the reconstructed strain field

is given by the following relation:

ε(x) = MεŨx (32)

where Ũx collects the displacements of the data points contributing to the reconstruction

at x.

Assuming that each data set is obtained from a Gaussian white noise with standard

deviation γ as in (4), the covariance of ε(x) can be written as:

cov(ε(x)) =
〈
ε(x)ε(x)T

〉
=

〈
MεŨ ŨT MT

ε

〉
= γ2MεM

T
ε (33)

Therefore, knowing the noise on the measurement, which can be estimated in

practice, and the reconstructing operator, one can deduce the standard deviation on

the components of the strain.

Knowing the Mε operator, one can therefore estimate the value of the ratio of the

output to the input standard deviation (sensitivity to noise). Furthermore, this can

be achieved for reconstruction points located anywhere in the neighbourhood. This

includes the case of points close to an edge. The effect of R and of the position of the

reconstruction point in the neighborhood, denoted as its offset, onto the variance of εXX

are illustrated in Figure 7. It can be observed that the offset of the reconstruction point

has an effect on the variance. The variance is minimum when the reconstruction point

is located at the center of the neighbourhood, and it increases when its position has an

offset with regard to the center. This explains why the random error increases along the

edges of the reconstruction domain (Section 3.2). Concerning the effect of R, Figure 7

shows that the variance decreases with respect to R, with a power law since the log-log

plot is linear.
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4. Choice of the reconstruction parameters and related criteria

4.1. Choice of a criterion

In Section 3.2, it was shown that both the random error and the approximation error

depend on x. In the areas where the approximation error remains small, the filtering

can be improved by increasing h or R. Therefore, an interesting option is to tune

these parameters with respect to the space variables. To do so, a criterion has to be

established for the selection of h or R. According to Figure 6, the absolute error is

close to its minimum when both the errors are balanced. A criterion would therefore

be to choose h or R such that the random error and the approximation error are equal.

However, this implies an error estimator for δεk(x) which is not straightforward and

has not been developed yet. Furthermore, concerning the Diffuse Approximation, it can

actually be shown that the error is related to the derivatives of higher order than the

polynomials of the basis. A major drawback of an estimator of the approximation error

is hence that it is based on higher order derivatives, which evaluation needs more care

than the first order derivatives that are given by the reconstruction [15].

Nevertheless, an alternative approach is chosen here to derive a criterion. It was

observed that in a large number of heterogeneous tests, the areas with large strains

are limited in space, therefore they also correspond to zones where the gradient of the

strain field is large. In these cases, the zones with high strain values will be the zones

where one has to reduce the value of h or R in order to control the approximation error.

This leads to define a criterion based on a constant signal to noise ratio (SNR) that is

prescribed onto the reconstructed field across the whole measurement area, the objective

being to reach a constant relative error all across the reconstruction area. As expected,

this criterion will yield larger h or R where the strains are larger and therefore is an

improvement with respect to the standard approach where h or R are constant all over

the measurement zone.
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First, a signal to noise ratio (SNR) on the reconstructed strain field is defined as:

ε

σε

= η (34)

where:

• ε =
√

ε2
XX + ε2

Y Y + 2 ε2
XY . ε is to be estimated. It can be obtained with a first

reconstruction, using a strong filtering;

• σε is defined as: σε =
√

σ2
XX + σ2

Y Y + 2 σ2
XY , where the σ◦• are the standard

deviations on the corresponding ε◦• (we therefore neglect the coupling effects).

σε is directly related to h or R through the relations (29) and (33) established in

Section 3.3 and 3.4.

Then, the criterion is such that a constant SNR η is imposed all over the area.

Imposing η yields therefore a value of R or h at each position of the measurement area.

For example, by fixing the SNR η to 8, the criterion yields respectively an optimal

mesh (figure 8(a)) or a map of optimal influence radii (figure 8(b)), optimal being defined

with regard to the criterion of equation (34). The choice of η = 8 is motivated by the

previous study on the absolute error in Section 3.2 and corresponds to the global optimal

signal to noise ratio (see Figure 6). On Figure 8(b) the radius map is not symmetric

since it is based on noisy data. Note that these meshes or maps of optimal radii are

constructed without taking into account the edge effects. To take them into account,

the mesh size or the radii should be increased near the edges of the measurement area.

Since the key point here is just to illustrate the fact that the h or R parameters can be

tuned accross the measurement area, a simple criterion has been used.

(a) Optimal meshing (b) Map of optimal R

Figure 8. Optimal h and R for η = 8

4.2. Practical use of the criterion for an improved reconstruction

Now, the reconstruction can be achieved by each method with respectively the optimal

mesh or optimal radii distribution. The fields reconstructed by both improved

approaches have been plotted in Figures 9(b) and 9(c). The reconstruction is very

promising in comparison to all published material regarding full-field measurements
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on the open-hole tensile test. It seems that for the DA approach, there are parasitic

oscillations which are more visible than for the FEA approach. This can be explained by

the fact that for the same given standard deviation to achieve, the local zone of influence

is much larger for the FEA. The spatial correlation of the reconstructed strain is therefore

higher, leading to strains reconstructed from the noise with the same magnitude as with

the DA but with smoother spatial variations. From a computation point of view, the

FEA method is quicker. But the downside is that it requires a mesh. In each mesh,

the mesh size is prescribed but the position of the nodes is random. This means that

for each mesh, a different reconstruction will be obtained. The drawback was well

illustrated in [17] where the reconstructed data were used for identification purpose,

yielding a mesh dependency on the identification results.

(a) εXY , exact (b) εXY , FEA, optimized mesh

(c) εXY , DA, optimized radii R(x)

Figure 9. Reconstructed shear strain fields with optimized h or R

5. Application to the detection of subsurface damage in a composite

laminate

In this section, the two reconstruction approaches are applied to data obtained from

an open-hole tensile test carried out onto a glass/epoxy laminated plate having a

quasi-isotropic stacking sequence: [−454, 904, 454, 04]s. In such tests, fracture of the

90◦ underlying plies occurs quite early. An objective of full-field displacement fields

is to detect the onset and spatial location of this fracture. Thirty snapshots of the

displacement fields were taken during the test and the grid method [10] used to derive

displacements in a region around the hole of the specimen, for tensile loads ranging
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from 0 to 13.3 kN . It has been proposed in [32] to characterize the fracture process by

detecting local non linearities of the surface response. A first estimation of these non-

linearities is obtained by computing the discrepancy between the experimental strain

field and the strain field resulting from the extrapolation of the linear response. One

has therefore to determine the latter.

The linear response is estimated from the first ten strain maps, k ∈ {1, ..10}, Fk

being the corresponding load , as the slope of the response at each pixel x:

min
εlin(x)

Nlin∑

k

(Fkεlin(x)− ε(x, Fk))
2 with, Nlin = 10 (35)

where ε(x, Fk) is the strain at data point x deduced from the response corresponding to

the load Fk. Then, it is possible to define the non-linear part of the strain field for a

given load F , corresponding to a further strain map:

∆ε(x, F ) = Fεlin(x)− ε(x, F ) (36)

(a) Load 9.7 kN - FEA (b) Load 13.3 kN - FEA

(c) Load 9.7 kN - DA (d) Load 13.3 kN - DA

Figure 10. Non-linear part of the displacement from the reconstructed fields

The ∆ε fields reconstructed by the two approaches are shown for two different loads

in Figure 10. The detection of the non-linearities around the hole gives better results

than the previous method used in [16], with a sharper zone providing a more precise

localization. Both methods yield similar results, even if the FEA approach remains

sensitive to the underlying mesh. The DA is more affected by the random error but

seems to offer a better contrast. Nevertheless, the perturbations on the measurements

are more severe than in the numerical case and one would have to input more a priori
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information on the fields to get better results. This suggests considering regularization

approaches, which are considered as one of the major prospects of this study.

6. Conclusion

In this paper, two approaches to obtain the strain field from a measured displacement

field while controlling the error due to this operation were presented. The first method

is based on a global least squares with Finite Element basis functions (FEA) and the

second one is based on the Diffuse Approximation (DA). Both methods yield similar

results in term of random error and approximation. The FEA is numerically more

efficient but its results suffer from a mesh dependency. The DA appears to be richer,

with a stronger theoretical background, and offers more evolution possibilities, such

as the enrichment of the approximation basis by any physical field from any a priori

information.

The key point of this paper is that the filtering parameters (h or R) can be tuned

across the measurement area. For this purpose, the behaviour of the two approaches

was characterized, in terms of approximation and random error. The latter has been

studied from a statistical point of view: given the level of noise on the measurement, one

can deduce the standard deviation of the reconstructed strain fields. A first reasonable

choice for a criterion to define maps of values for parameters h and R was therefore pro-

posed, based on a constant signal to noise ratio on the reconstructed field all across the

measurement area. This criterion applied to an example confirms the feasibility of the

local tuning of the filtering. It offers wide perspectives of improvement, in particular by

defining more accurate criteria, for example based on cross-validation approaches [15].
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noisy data. Revue Européenne de Mécanique Numérique, 17(5-7):857–868, 2008.

[18] Z. Feng and R.E. Rowlands. Smoothing finite-element and experimental hybrid technique for
stress analyzing composites. Computers and Structures, 6:631–639, 1991.

[19] B. Nayroles, G. Touzot, and P. Villon. La méthode des éléments diffus. Comptes rendus de
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