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I. Introduction

Most heavy metals and metalloids (HMM) are toxic for plants, animals and humans. Chromium, which can contaminate soils, ground-and surface waters, is one of the major environmental pollutants. The toxicity of chromium, like other HMM, depends on its oxidation state and bioavailability. For example, Cr(VI) is a highly toxic and soluble oxyanion, whereas Cr(III) is cationic, less toxic and less mobile because it tends to form insoluble hydroxides. The assessment of HMM bioavailability with analytical methods such as sequential extraction and mathematical modeling is difficult, expensive and time-consuming. The redox speciation of chromium can be accomplished by separate preconcentration of Cr(III) and Cr(VI) fractions using chelating resins, coprecipitation, ion chromatography, and solvent extraction, but such procedures are obviously complicated. The colorimetric analytical method at 543 nm for chromium using diphenylcarbazide as reagent is known to be selective for Cr(VI) but not Cr(III). However, 72 foreign ions are known to interfere by clouding or discoloring the sample. The measuring range of this method is 0.05-2.00 mg l-1 Cr or 0.11-4.46 mg l-1 CrO42-(Kit MERCK spectroquant® 1.14552.0001). Cr(III) can be indirectly determined by analyzing the total chromium (in the form of Cr(VI)) after high acidification and oxidation of the solution that leads to Cr(III) oxidation in Cr(VI). Biosensors, however, in addition to their specificity, enable rapid, quantitative and in situ measurement of the metallic derivatives that interact with the biomaterial. Several studies have shown that it is possible to make biosensors to quantify metals with genetically engineered microorganisms (D 'Souza, 2001). Recombinant luminescent microorganisms such as Alcaligenes eutrophus [START_REF] Peitzsch | Alcaligenes eutrophus as a bacterial chromate sensor[END_REF] and Saccharomyces cerevisiae [START_REF] Lehmann | Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor[END_REF] have been used to determine chromium [START_REF] Peitzsch | Alcaligenes eutrophus as a bacterial chromate sensor[END_REF], cadmium, zinc, mercury and chromium [START_REF] Ivask | Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil[END_REF], arsenic and antimony [START_REF] Ramanathan | Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria[END_REF], cadmium and lead [START_REF] Tauriainen | Luminescent bacterial sensor for cadmium and lead[END_REF]. Other microorganisms, such as sulfate-reducing bacteria [START_REF] Michel | Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochromes c and hydrogenases[END_REF][START_REF] Tebo | Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV) and Fe(III) as electron acceptors[END_REF][START_REF] Tebo | Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV) and Fe(III) as electron acceptors[END_REF], Enterobacter cloacae [START_REF] Rege | Bacterial reduction of hexavalent chromium by Enterobacter cloacae strain H01 grown on sucrose[END_REF], and Deinococcus radiodurans [START_REF] Fredrickson | Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1[END_REF], are able to reduce Cr(VI) into Cr(III) and could, therefore, also be used in biosensors to differentiate between Cr(VI) and Cr(III). Engineered microorganism-based biosensors are able to detect low metal concentrations, but these whole-cell biosensors have several disadvantages: (1) long induction period (1-2 h before the signal is detected), (2) low specificity (detection of other metals) and (3) interference of other physiological metabolites (sulfate metabolism, metal oxidation-reduction) [START_REF] Peitzsch | Alcaligenes eutrophus as a bacterial chromate sensor[END_REF][START_REF] Tauriainen | Luminescent bacterial sensor for cadmium and lead[END_REF][START_REF] Cai | Use of a luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity of chromated copper arsenate (CCA)[END_REF]. These drawbacks can be avoided with enzymatic biosensors. Enzymatic sensors for metal detection have already been described [START_REF] Kormos | Studies concerning the biomonitoring of the degree of environmental pollution using urea-sensitive enzymatic sensor[END_REF][START_REF] Kormos | Studies concerning the biomonitoring of the degree of environmental pollution using urea-sensitive enzymatic sensor[END_REF][START_REF] Krawczynski Vel Krawczyk | Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor[END_REF]. Potentiometric urease-based sensors sensitive to metals have been developed since some metals are urease inhibitors. Indirect detection of metals such as Pb 2+ , Fe 2+ , Sn 2+ , Zn 2+ and Hg 2+ has been achieved by reduction of the biosensor response to urea. Other proteins such as those involved in metal resistance mechanisms could be used to develop biosensors for direct detection of metals. For example, ChrA, which is involved in chromate resistance, can discriminate between Cr(VI) and Cr(III) [START_REF] Cervantes | Interactions of chromium with microorganisms and plants[END_REF]. Several bacterial redox proteins that have metal-redox properties could also be of interest. For example, cytochromes c 3 and hydrogenases from sulfate-and sulfur-reducing bacteria (Battaglia-Brunet et al., 2002a and[START_REF] Chardin | Bioremediation of chromate; thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria[END_REF] have bioremediation properties because they can reduce various metals such as U(V) and Cr(VI) [START_REF] Assfalg | The metal reductase activity of some multiheme cytochromes c: NMR structural characterization of the reduction of chromium (VI) to chromium (III) by cytochrome c(7)[END_REF][START_REF] Lojou | Kinetic studies on the electron transfer between bacterial c-type cytochromes and metal oxides[END_REF][START_REF] Lovley | Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome[END_REF][START_REF] Michel | Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochromes c and hydrogenases[END_REF]. While most hydrogenases are sensitive towards oxygen [START_REF] Vignais | Classification and phylogeny of hydrogenases[END_REF], cytochromes c3 are not affected by oxygen, temperature, pH, denaturing agents or ageing [START_REF] Bianco | An electrochemical study of the stability of cytochrome c3 from Desulfovibrio desulfuricans Norway strain[END_REF][START_REF] Florens | Thermal stability of the polyheme cytochrome c3 superfamily[END_REF]. They also have a good Cr(VI)-reductase activity [START_REF] Lojou | Kinetic studies on the electron transfer between bacterial c-type cytochromes and metal oxides[END_REF][START_REF] Lovley | Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome[END_REF][START_REF] Michel | Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochromes c and hydrogenases[END_REF]. Cytochromes c3 are multiheme redox proteins with very negative redox potentials and are involved in the respiratory metabolism of sulfate-and sulfur-reducing bacteria [START_REF] Bruschi | The primary structure of the tetrahaem cytochrome c3 from Desulfovibrio desulfuricans (strain Norway 4). Description of a new class of low-potential cytochrome c[END_REF][START_REF] Haser | Structure and sequence of the multihaem cytochrome c3[END_REF]. They are, therefore, well suited for the development of enzymatic biosensors for Cr(VI) quantification. This type of biosensor could be of great interest for measuring Cr(VI) concentrations in surface or ground waters polluted by chromate (tannery effluents, chromium plating effluents, etc.) and assessing the efficiency of water (bio)treatment processes such as bioreactors.

We developed an amperometric biosensor to measure Cr(VI) bioavailability using cytochrome c 3 from Desulfomicrobium norvegicum, a sulfate-reducing bacterium. Various techniques to immobilize the enzyme on the working electrode were tested by applying cyclic voltametry. Biosensor parameters such as sensitivity, specificity, linearity and detection limit were studied using chronoamperometry. Cyt c 3 (M r 13 000) from Desulfomicrobium norvegicum (DSM 1741) was purified as described by [START_REF] Bruschi | Purification and characterization of cytochrome c3, ferredoxin, and rubredoxin isolated from Desulfovibrio desulfuricans Norway[END_REF]. Various concentrations of purified cytochrome c 3 (2.85, 14.3, 28.5, 47.5, 60, 71.25 a Entrapment with a dialysis membrane [START_REF] Haladjian | A permselective-membrane electrode for the electrochemical study of redox proteins. Application to cytochrome c552 from Thiobacillus ferrooxidans[END_REF]. A Spectra/Por ® regenerated cellulose dialysis membrane (6-8.000 MWCO) was used to maintain a 2 μl Cyt c 3 solution in contact with the electrode.

II. Materials and methods

b Adsorption: 2 μl of enzyme solution were deposited on the electrode and aerated for 30 min.

c Entrapment of 5 μl of a Cyt c 3 sample with cellulose nitrate filters (Sartorius AG (Goettingen, Germany), porosity 0.01-0.1 μm).

d Entrapment in poly 3,4-ethylenedioxythiophene (PEDT) films obtained by electropolymerization (at +1400 mV/SCE for 10 s) of a 10 μl solution containing Cyt c 3 (10% v/v) and PEDT (10 mM). II.4.2. Characterization of the biosensors Chronoamperometry was used to determine biosensor characteristics (response time, calibration curve, sensitivity, specificity and detection range). Experiments were conducted at -570 mV/SCE (the reduction potential of the enzyme) (Figure 2, black line), so that all of the 4 hemes except Cr(VI) were reduced at the electrode. When the potential was applied, a current was observed showing the reduction of Cyt c 3 at the electrode. When the current had stabilized, indicating that the cytochrome was totally reduced, Cr(VI), As(V), As(III) or Fe(III) metal ions were added. The linear relationship between metal concentration (x) and the intensity of the current produced (y) was used (y=Ax with A being the sensitivity of the biosensor (nA mg -1 l or nA M -1 )). I II I. .5 5. . C Ch he em mi ic ca al l r re ea ag ge en nt ts s Cr(VI) (as Na 2 CrO 4 ) and As(V) (as As 2 O 5 ) were dissolved in H 2 O, As(III) (as As 2 O 3 ) was dissolved in a NaOH solution, as described by (Battaglia-Brunet et al., 2002b.), and Fe(III) (as FeCl 3 ) was dissolved in 15% HCl. Cr(VI) was quantified using the Merck Spectroquant ® kit 1.14758.0001 based on the oxidation of diphenylcarbazide to the purple-colored Cr(III)-diphenylcarbazone complex. As(V) and As(III) concentrations were determined as described by (Battaglia-Brunet et al., 2002b). Fe(III) was quantified using the Merck Spectroquant ® kit 1.14761.0001.

III. Results and discussion

I II II I. .1 1. . P Pr ri in nc ci ip pl le e o of f t th he e C Cy yt t c c 3 3--b ba as se ed d b bi io os se en ns so or r The Cyt c 3 -based biosensor for Cr(VI) determination is based on the reduction of the metal by oxidation of the immobilized cytochrome that is electrochemically regenerated (Figure 1). The biosensor signal comes from the cytochrome regeneration current at an applied reduction potential when Cr(VI) is added to the solution. Electrons may be transferred directly from the electrode to the cytochrome in the working solution. Chronoamperometry allows the current to be measured as a function of time, I=f(t). When the current has stabilized for an applied potential, an increase in Cr(VI) concentration in the solution causes an increase in the current through the amperometric electrode. Cr(VI) can then be determined with a calibration curve of current change as a function of Cr(VI) concentration. I II II I. .2 2. . C

Co om mp pa ar ri is so on n o of f i im mm mo ob bi il li iz za at ti io on n m mo od de es s--c ch ha ar ra ac ct te er ri iz za at ti io on n o of f t th he e b bi io os se en ns so or rs s The first step in constructing a biosensor is determining how to immobilize the bioreceptor (Cyt c 3 ) on the transducer GCE. We tested five immobilization modes: entrapment in PEDT, physical entrapment with a dialysis membrane, adsorption, adsorption+dialysis membrane and entrapment with a filter (Table 1). The ability of each mode to prevent Cyt c 3 denaturation was studied using cyclic voltametry. The cyclic voltammograms obtained for all of these modes except PEDT entrapment were typical of Cyt c 3 since the immobilized cytochrome was still a rapid and reversible system, and the redox potentials were characteristic of this cytochrome (Figure 2, black line). The catalytic wave observed in the presence of chromate demonstrates the ability of the immobilized enzyme to catalyze the reduction of chromate (Figure 2, grey line). Only in the case of entrapment in PEDT, therefore, does immobilization lead to protein denaturation and loss of Cr(VI)-reductase activity. Amperometric biosensors were therefore constructed with 'dialysis membrane', 'adsorption', 'adsorption+dialysis membrane' and 'filter' immobilization techniques. Figure 3 shows the biosensor response achieved with one of these (the 'dialysis membrane' electrode). Its detection range, linear domain and sensitivity are given in Figure 4, and the characteristics of all of the biosensors are given in Table 1. The very short response time (a few seconds) obtained with all of the cytochrome c 3 -based biosensors is remarkable. This is much shorter than the response times obtained with other enzymatic sensors for metal measurement such as the urease-based biosensor, whose response time varies from 10 min to 1 h (Krawczynski vel [START_REF] Krawczynski Vel Krawczyk | Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor[END_REF].

Experiments with 'filter' immobilization showed that, of all the filters tested, only a 0.1 μM pore size filter enabled the detection of Cr(VI), probably because filters with smaller pore sizes acted as insulators (Table 1). However, experiments with a 0.1 μm pore size filter did not give reproducible results. This mode of Cyt c 3 immobilization is therefore unsatisfactory for the development of a biosensor. The 'adsorption' immobilization technique (Table 1 and Figure 5) had the highest sensitivity, possibly because the dialysis membrane and the filter act as physical barriers, reducing the rate of Cr(VI) ion diffusion from the bulk solution to the Cyt c 3 layer. This might explain the difference in sensitivity observed between the two immobilization techniques using adsorption with and without the dialysis membrane (Table 1).

The 'adsorption' biosensors did not, however, have a detection range (0.20-0.80 mg l -1 Cr(VI)) as broad as that of the 'dialysis membrane' biosensors (0.20-6.84 mg l -1 Cr(VI)). They are, therefore, of less interest (Table 1). While there was no difference in sensitivity between the 'dialysis membrane' and 'adsorption+dialysis membrane' modes (Figure 5), the 'adsorption+dialysis membrane' biosensor had a wider Cr(VI) detection range.

The lowest detection limit of the 'adsorption+dialysis membrane' biosensor is 0.2 mg l -1 , which is greater than the regulatory standard for Cr(VI) (0.05 mg l -1 ). Efforts should therefore be made to decrease the detection limit of the Cyt c 3 -based biosensor. This could be done by (1) testing other techniques that might produce better results than 'dialysis membrane' immobilization, (2) using mediators that optimize electron transfer, and/or (3) decreasing the signal/noise background ratio, in particular by improving the electrochemical device. Various Cyt c3 concentrations, ranging from 2.85 to 114 μM in 2 μl, were used to test the different biosensor configurations (Table 1). We were not able to obtain good sensitivity and reproducible results with 2.85 μM of Cyt c3 (S.D.±4.1, Table 1). The Cyt c3 concentration giving the best sensitivity was determined for each mode of immobilization (Figure 5). For 'dialysis membrane' immobilizations, a concentration of 14.3 μM (372 ng) of Cyt c3 was the lowest concentration that allowed the best sensitivity and a satisfactory detection range (Figure 5). This is a very small amount of enzyme and is, therefore, very interesting for the development of low-cost biosensors. The urea-sensitive enzymatic sensor constructed by [START_REF] Krawczynski Vel Krawczyk | Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor[END_REF] for Pb 2+ , Fe 2+ , Sn 2+ , Zn 2+ and Hg 2+ requires 2.5-15mg of enzyme.

I II II I. .4 4. . S Sp pe ec ci if fi ic ci it ty y f fo or r C Cr r( (V VI I) ) [START_REF] Lojou | Kinetic studies on the electron transfer between bacterial c-type cytochromes and metal oxides[END_REF] reported that cytochromes c3 can also reduce several other metals in addition to Cr(VI). Furthermore, [START_REF] Assfalg | The metal reductase activity of some multiheme cytochromes c: NMR structural characterization of the reduction of chromium (VI) to chromium (III) by cytochrome c(7)[END_REF] have demonstrated that the interaction between Cr(VI) and cytochromes c 3 could be electrostatic since CrO 4 2-ions interact with the protein's lysines (positively charged amino acids). Other heavy metals, in particular, negatively charged ions, could therefore interfere with Cr(VI) detection by Cyt c 3 -based sensors. We therefore studied the possible interference of one metal (Fe(III)) and two metalloids (As(V) and As(III)). In the presence of each of these three ions, as shown in Figure 6 for As(V), no signal was observed, which suggests that there was no electron transfer between the Cyt c 3 -based sensors and these ions. Addition of Cr(VI) caused a response of the biosensor (Figure 6). This strongly indicates that the biosensor was still able to detect Cr(VI) with the same sensitivity as in the absence of As(V), As(III) or Fe(III). As(V), As(III) and Fe(III) do not, therefore, interfere in Cr(VI) detection in the concentration range studied here. However, other HMM must be tested, in particular, Mo, as [START_REF] Turyan | Selective determination of Cr(VI) by a self-assembled monolayerbased electrode[END_REF] have reported that MoO 4 2-interferes with Cr(VI) determination, probably because of its similar structure and size. If a given metal appears to interfere with Cr(VI) detection, selective complexing agents could be used for the determination of individual concentrations. I II II I. .5 5. . I

In nf fl lu ue en nc ce e o of f T Tr ri is s--H HC Cl l b bu uf ff fe er r c co on nc ce en nt tr ra at ti io on n Tris-HCl buffer has often been used in electrochemical studies with Cyt c3 [START_REF] Lojou | Kinetic studies on the electron transfer between bacterial c-type cytochromes and metal oxides[END_REF] to provide an optimal pH value (7.6) for enzyme activity and an optimal ionic strength for electrons transfer between the electrode and the solution. The effect of the Tris-HCl buffer concentration on signal intensity was, therefore, studied by chronoamperometry. We found that the main characteristics (sensitivity and concentration range) of Cyt c 3 -based biosensors were not affected by Tris concentration (Table 2). We therefore used the usual Tris concentration for electrochemical experiments with cytochromes c 3 (0.1 M, [START_REF] Lojou | Kinetic studies on the electron transfer between bacterial c-type cytochromes and metal oxides[END_REF] in this study. I II II I. .6 6. . L Lo os ss s o of f e en nz zy ym me e a ac ct ti iv vi it ty y a at t h hi ig gh h C Cr r( (V VI I) ) c co on nc ce en nt tr ra at ti io on ns s There is no correlation between Cr(VI) concentration and signal intensity for high concentrations of chromate (>4.5 mg l -1 Cr(VI)) (Figure 3). This indicates the loss of enzyme activity. NMR experiments with cytochrome c7, a c3-type cytochrome, have shown that Cr(VI) reduction is due to (1) an interaction between CrO 4 2-and some lysines located near heme IV, (2) an intramolecular electron transfer from all of the hemes to heme IV and (3) an electron transfer from heme IV to Cr(VI) [START_REF] Assfalg | The metal reductase activity of some multiheme cytochromes c: NMR structural characterization of the reduction of chromium (VI) to chromium (III) by cytochrome c(7)[END_REF]. An accumulation of Cr(III) ions near heme IV (due to Cr(VI) reduction) might, therefore, prevent Cr(VI) access to the reduction site, decreasing the Cr(VI) reduction capacities of Cyt c 3 . In this case, the enzyme might be able to recover its activity and it would therefore be possible to regenerate the biosensor by eliminating Cr(III). Another explanation for the loss of enzyme activity could be that high Cr(VI) concentrations denature the enzyme. In this case, regeneration would not be possible.

In our experiments with Cyt c 3 -based biosensors, no recovery of enzyme activity was observed after incubation of the biosensor in a Tris buffer solution or after application of a very negative potential (-1000 mV/SCE). This suggests a denaturation of the Cyt c 3 . However, this result should be confirmed with other regeneration techniques (such as pH variation, EDTA and thioacetamide in a Tris-HCl buffer, cysteine in a phosphate buffer, NaI and EDTA, NaI alone, and any other reagents that could complex Cr(III) [START_REF] Krawczynski Vel Krawczyk | Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor[END_REF]).

Conclusion

Enzymatic sensors based on Cyt c 3 immobilized with a dialysis membrane are suitable for the detection of Cr(VI) bioavailability using an amperometric method. The principal characteristics and main advantages of the Cyt c 3 -based biosensor developed in this study are: rapid Cr(VI) quantification (a few minutes), a detection range of 0.20-6.84 mg l -1 , good sensitivity (35 nA mg -1 l or 1.82 nA μM -1 ), small amount of enzyme needed, and specificity for Cr(VI) (no detection of As(V), As(III) and Fe(III)). Interference with other metals or metalloids should nevertheless be studied. Loss of enzyme activity at high Cr(VI) concentrations and sensor regeneration also require further investigation. Undeniably, cytochromes c 3 isolated from sulfate-reducing bacteria are attractive enzymes for the development of biosensors for Cr(VI) quantification because of their selective Cr(VI)reductase activity, chemical stability and high production rate in the bacterial cells. 

I

  II I. .3 3. . A Ap pp pa ar ra at tu us s Cyclic voltametry and chronoamperometry techniques were done with an EG&G 273A potentiostat controlled by a microcomputer with an EG&G M270 software program (Princeton Applied Research, Oak Ridge, TN). The electrochemical cell consisted of a working electrode (a polished GCE with immobilized Cyt c 3 ), an auxiliary electrode (platinum wire), and a reference saturated calomel electrode (SCE). Potential values with respect to the normal hydrogen electrode can be obtained by adding 240 mV. Measurements were done in 20 ml of trishydroxymethyl aminomethane (Tris-HCl) buffer (0.1 M, pH 7.6), deoxygenated under N 2 atmosphere. All experiments were carried out at 25 °C under stirring conditions I II I. .4 4. . B Bi io os se en ns so or r c ch ha ar ra ac ct te er ri iz za at ti io on n II.4.1. Stability of the immobilized Cyt c 3 Once the Cyt c 3 was immobilized on the GCE, cyclic voltametry was used to evaluate the stability of the immobilized protein.
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  and 114 μM in water) were used to optimize the biosensor response to Cr(VI).

	I II I. .2 2. . I Im mm mo ob bi il li iz za at ti io on n o of f C Cy yt t c c 3 3 o on n t th he e w wo or rk ki in ng g e el le ec ct tr ro od de e
	Four methods were tested to immobilize the enzyme on the working glassy carbon electrode
	(GCE):

Acknowledgements

This work was carried out under the European Commission's Fifth Framework Programme, Contract no EVK1-CT 1999-00033, project METALBIOREDUCTION. It also received financial support from the BRGM Research Directorate, who authorized the publication of this paper under reference No. 02496.