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Advantages of the analytic element method for the solution
of groundwater management problems

Shishir Gaur,* Djamel Mimoun and Didier Graillot
SITE, Ecole Nationale Supérieure des Mines de Saint-Etienne, Saint Etienne, France

In the simulation-optimization approach, a coupled optimization and groundwater flow/transport model is used to solve 
groundwater management problems. The efficiency of the numerical method, which is used to simulate the groundwater flow, is 
one the major reason to obtain the best solution for a management problem. This study was carried out to examine the 
advantages of the analytic element method (AEM) in the simulation-optimization approach, for the solution of groundwater 
management problems. For this study, the AEM and finite difference method (FDM) based flow models were developed and 
coupled with the particle swarm optimization (PSO)-based optimization model. Furthermore, the AEM-PSO and FDM-PSO 
models developed were applied in hypothetical as well as real field conditions to address groundwater management problems 
and the results were compared. For the real field situation, the models developed were applied to the Dore River basin in France 
to minimize the installation and operational cost of new pumping wells taking the location and discharge of the pumping wells 
as decision variables. The constraints of the problem were identified with the help of stakeholders and water authority officials. 
The AEM flow model was developed to facilitate the management model particularly when at each iteration, the optimization 
model calls for a simulation model to calculate the values of groundwater heads. The results show that, at some points, the 
AEM-PSO model is efficient in identifying the optimal location of wells and consequently results in optimal costs, sometimes 
difficult when using the FDM. 

KEY WORDS groundwater modelling; groundwater management; analytic element method; finite difference method; particle
swarm optimization

INTRODUCTION

Groundwater management problems are typically solved

by researchers using the simulation-optimization ap-

proach. In the simulation-optimization approach, a cou-

pled optimization and groundwater flow/transport model

is used to establish the best management practices to

address the groundwater management problems in ques-

tion. During the past two decades, several computer codes

have been developed to address groundwater manage-

ment problems by linked groundwater flow/transport and

optimization models (Shamir et al., 1984; Ahlfeld et al.,

1986; Lefkoff and Gorelick, 1986; Willis and Finney,

1988; Finney and Samsuhadi, 1992; Emch and Yeh,

1998; Zheng and Wang, 2002). These codes differ in the

numerical model used to represent the groundwater flow

system or contamination transport system, the type of

groundwater management problems and the approaches

used to solve these management problems (Ahlfeld et al.,

2005). Extensive literature reviews have been made on

this topic by different researchers (Gorelick, 1983; Willis

and Yeh, 1987; Das and Datta, 2001; Qin et al., 2009).

These reviews show that in all previous groundwater

management studies, the finite difference method (FDM)-

or finite element method (FEM)-based flow model was

* Correspondence to: Shishir Gaur, SITE, Ecole Nationale Supérieure des
Mines de Saint-Etienne, Saint Etienne, France.
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used, and are thus affected by the limitation of these

methods such as domain discretization error, selection of

appropriate boundary conditions, numerical stability, and

approximate location of well over the cell.

The analytic element method (AEM) is a computa-

tional method based on the superposition of analytical

expressions to represent two-dimensional (2D) vector

fields. Analytic element models can superimpose hun-

dreds of exact analytic solutions to solve groundwater

flow problems and are capable of simulating streams,

lakes, and complex boundary conditions (Strack, 1989).

The AEM is a grid independent method and has certain

advantages over grid-based methods. A few researchers

have made some comparison studies on the AEM with

grid based methods such as FDM, but not in the context

of optimization problems. They found that AEM presents

some advantages compared with grid-based methods or

to facilitate complex FDM- or FEM-based models. Hunt

et al. (1998) performed a study to analyze the benefits

of an AEM model as a screening tool that can improve

the calibration of more complicated FDM and FEM mod-

els. The AEM was used to remove the error in an FDM

model due to incorrect specification of boundary con-

ditions. They found that the AEM has the potential of

being a powerful screening model that can help achieve

better calibration of complicated FDM and FEM mod-

els. Olsthoorn (1999) performed comparative analysis

of AEM- and FDM-based models. Both the AEM- and
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FDM-based models were developed for the area used for

the Amsterdam city water supplies. The study concluded

that the AEM model was more efficient than the FDM

model, on some conditions. With the AEM, wells are

directly represented by their exact co-ordinates (Matott

et al., 2006). Also, the AEM flow solutions are inher-

ently continuous over the domain and give a more accu-

rate water budget for the area. In the AEM model, the

computational effort depends on the number of features

and their discretization level, not on the spatial extent of

the domain, thus making it possible to model the main

features of large geographic areas at high resolution with-

out excessive computation time (Bandilla et al., 2007).

Although these types of limitation in the FDM/FEM

based solutions can be overcome by spatial grid adapta-

tion methods, such methods give rise to a more compli-

cated linkage between the simulation-optimization model

and the computational burden (Matott et al., 2006).

Groundwater management models are often charac-

terized as nonconvex, nonlinear programming problems

(Willis and Yeh, 1987). Most of the traditional optimiza-

tion techniques are gradient based and the solutions from

these methods produce local optimal values rather than a

global optimal solution. Consequently, the application of

gradient-based optimization techniques may be difficult

in real-life problems related to well optimization. On the

other hand, global search methods are efficient in finding

a global solution to the problem. Constraints in global

optimization methods can be incorporated into the for-

mulation and do not require derivatives with respect to

decision variables as in nonlinear programming (McKin-

ney and Lin, 1994). In recent years, applications of global

search methods have grown in number and these methods

have been applied to solve different kinds of groundwater

quantity and quality management problems. Genetic algo-

rithms were applied by Wang and Zheng (1998), Gold-

berg (1989), Wang (1991), Rogers and Dowla (1992),

and McKinney and Lin (1993, 1994). Simulated anneal-

ing (SA) was applied by Dougherty and Marryott (1991)

and Marryott et al. (1993). Ritzel et al. (1994), Cieni-

awski et al. (1995), and Johnson and Rogers (1995) used

global search methods in their studies and found that

these methods were more efficient and robust in com-

parison with other methods such as linear, nonlinear, and

mixed integers. McKinney and Lin (1994) developed the

genetic algorithm (GA)-based groundwater simulation-

optimization models to solve three groundwater man-

agement problems. They found that genetic algorithms

could effectively and efficiently be used to obtain glob-

ally (or, at least near globally) optimal solutions to these

groundwater management problems. Particle swarm opti-

mization (PSO), which is also an evolutionary computa-

tion technique, was developed by Kennedy and Eberhart

(1995). It has been applied in various fields of engi-

neering research and has proved to be an effective and

efficient method. Limited application of PSO has been

found suitable in the field of water resources and par-

ticularly groundwater management. Wegley et al. (2000)

used PSO for optimizing pump operations in water dis-

tribution systems. The objective of their study was to

minimize energy costs, while maintaining pressure heads

and tank levels within acceptable bounds. Finally, pump

speeds for variable frequency drive pumps were pro-

posed. The study suggested that PSO converged to global

optimal solutions and gave good results. Matott et al.

(2006) solved pump and treatment optimization problems

using the AEM-based flow model. The AEM model was

coupled with the optimization model and results were

generated with different optimization techniques, i.e. GA,

SA, conjugate gradient (CG), and PSO were compared.

The PSO was found to produce good results in compari-

son with other methods.

This study describes the benefits of using the AEM

model in the simulation-optimization approach. In the

study, the AEM- and FDM-based flow models were

coupled with the PSO-based optimization model. The

comparative analysis was performed between AEM and

FDM, and the abilities of the AEM method to solve

groundwater management problems were investigated.

The influence of both methods on piping cost, the

controlling parameter in identifying the location of wells,

was examined.

FORMULATION OF THE

SIMULATION-OPTIMIZATION MODEL

In the study, AEM- and FDM-based flow models were

developed. A PSO-based optimization model was also

developed and validated with standard functions. After

development and validation of simulation and opti-

mization models, both models were coupled to solve

groundwater management problems. The coupled AEM-

PSO code was developed particularly to facilitate the

simulation-optimization approach, in which the optimiza-

tion model repeatedly calls on the simulation model.

The FDM model was also coupled with the PSO model.

In addition, coupled AEM-PSO- and FDM-PSO-based

simulation-optimization models were used to establish

the maximum discharge from the aquifer and minimum

pumping cost for wells, considering well discharge and

well location as decision variables. The piping cost was

also considered in the objective function and its effect on

the final solution was examined.

AEM flow model

In the AEM model, groundwater flow is often express-

ed in terms of complex potential � (m3/s) as

� D  C i ⊲1⊳

where discharge potential  (m3/s) and the stream

function  (m3/s) fulfil the Cauchy–Riemann condition,

therefore,  and  may be represented as real and

imaginary parts of an analytical function � D �⊲z⊳ of the

complex variable z D x C iy, defined in the flow domain.

As the AEM is based on potential theory, the discharge

potential ⊲x, y⊳ for a given aquifer is determined by
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superimposing the contribution from individual elements

that correspond to particular hydraulic features (e.g. river,

lakes, pumping wells, and zones of different hydraulic

conductivity). Finally the potential is converted into head

� (m) by the following relation:

 D
1

2
k�2 ⊲2⊳

for an unconfined aquifer and

 D kH� �
1

2
kH2

a ⊲3⊳

for a confined aquifer, where Ha is the aquifer thickness

(m) and k the hydraulic conductivity (m/s). The solu-

tion of this equation is achieved by defining boundary

conditions along the border of the hydrogeological ele-

ment, instead of defining the boundary condition along

the model domain boundary. The detailed description of

analytic element functions for different hydrogeological

features can be found in Strack (1989). In this study, the

AEM model was developed following the above method-

ology on the MATLAB 7Ð0 platform.

Finite difference method

The governing groundwater flow equation for a 2D

unconfined aquifer can be given as

∂
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(
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)
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∂
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)

C
∂

∂z
(
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)

� W D Ss

∂h

∂t
⊲4⊳

Equation (4) is a differential equation that can be

used to predict the spatial and temporal variability of

groundwater head (h) in an aquifer system. W is a

flux term that incorporates pumping, recharge, or other

sources or sinks. Equation (4) can be solved with a finite

difference solution by discretizing the domain in a 2D

grid. The solution of the finite difference equation gives

the average value of h for each grid cell. In this study, the

2D steady state groundwater flow model was developed

on the MATLAB platform.

Particle swarm optimization

PSO is an efficient method for solving large non-

linear, complex global optimization problems and, in

some cases, it performs more efficiently in comparison

with other evolutionary computation techniques (Eber-

hart and Kennedy, 1995). PSO is one of the many swarm

intelligence-based methods that are suitable for solving

global optimization problems. PSO is an evolutionary

computation technique, based on the simulation of simpli-

fied social models, such as bird flocking, fish schooling,

and the swarm theory (Kennedy et al., 2001). Put sim-

ply, it can be compared to birds searching for food, which

consider two factors to achieve their goal: their own pre-

vious best experience (i.e. pbest) and the best experience

of all other members (i.e. gbest). This is also similar

to human behaviour in decision making when people

consider their own best past experience and the best expe-

rience of other people around them (Jarboui et al., 2008).

The working steps of the PSO method for the solution

of any optimization problem are as follows:

1. Initialize a population (array) of particles with random

positions and velocities for the dimensions in the

problem space. The decision variables in the PSO are

represented by the dimensions of each particle.

2. Determine the fitness value of each particle by a fitness

function.

3. Compare each particle’s fitness evaluation with the

particle’s pbest. If the current value is better than pbest,

then set the pbest value as equal to the current value

and the pbest location equal to the current location in

d-dimensional space.

4. Compare the fitness evaluation with the population’s

overall previous best. If the current value is better than

gbest, then reset gbest to the current particle’s array

index and value.

5. Change the velocity and position of the particle accord-

ing to Equations (5) and (6) given below,

v
t
ij D �[ωv

t�1
ij C c1r1⊲Pt�1

ij � xt�1
ij ⊳ C c2r2⊲Gt�1

j � xt�1
ij ⊳]

⊲5⊳

xt
ij D xt�1

ij C v
t
ij ⊲6⊳

where i and j D 1, 2, . . ., N, N is the total number of

swarm, c1 and c2 are acceleration constants, r1 and r2 are

random real numbers between 0 to 1. Thus, the particle

flies through potential solutions toward Pt and Gt in a

navigated way while still exploring new areas by the

stochastic mechanism to escape from local optima. ω is

called inertia weight which is used to control the impact

of the previous history of velocities on the current one.

� is the constriction coefficient, used to restrain velocity.

6. Loop to step 2 until a criterion is satisfied, usually

a sufficiently good fitness or a maximum number of

iterations (generations).

Since there is no actual mechanism for controlling

the velocity of a particle, it is necessary to impose

a maximum value Vmax, which controls the maximum

travel distance in each iteration to avoid the particle

flying past good solutions. Also, after updating the

positions, it must be checked that no particle violates the

boundaries of the search space. If a particle has violated

the boundaries, it will be set at the boundary of the search

space. The PSO model was developed on the MATLAB

platform following the above mentioned methodology.

OBJECTIVE FUNCTION

Mathematically, a typical groundwater management prob-

lem can be defined using three main components, i.e.

decision variables, objective function, and constraints
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(Ahlfeld et al., 2005). In this study, two objectives, max-

imum groundwater extraction rate for pumping wells and

minimum pumping cost for wells, have been achieved.

Maximizing the discharge

In this case, the objective function is to determine the

maximum amount of water which can be withdrawn from

the aquifer through a given number of wells (Ayvaz,

2009). Therefore,

f D Max

{

Nw
∑

iD1

Qi � ˇP⊲h⊳

}

⊲7⊳

subject to

Qi,min < Qi < Qi,max ⊲8⊳

hi > hi,min ⊲9⊳

whereas penalty function is defined as

P⊲h⊳ D

{

hi,min � hi if hi < hi,min

0 if hi ½ hi,min
⊲10⊳

where Qi,min and Qi,max (m3/s) are the minimum and

maximum discharge limits for ith well. i D 1, 2, . . ., Nw,

Nw is the total number of wells, ˇ is the weighting factor,

selected according to the problem.

Minimizing the cost

The total cost for a new system of pumping wells

consists of the cost of well installation, piping cost, pump

cost and cost of pumping (operating cost). The well cost

includes the cost of drilling, casing, well screen, filter

pack, sealing, and well development. In the study, well

cost was taken as a constant term, as all wells were taken

to be of the same depth and diameter. Well installation

cost was not included in the optimization function but

was considered when establishing the total cost of the

system to identify the influence of it for calculating the

optimal number of wells.

The piping cost depends on the location of the new

wells along with many other factors. In this study, the

piping length considered was the distance from wells to

a reference location. The reference location consisted of

a water storage tank where water from all the wells will

be stored and subsequently transported to the city. All the

pipes were taken to be of the same diameter and material.

The pump operating cost depends on the volume of water

to be pumped, weight density of the water, hydraulic

head, efficiency of the pump, and energy cost (Moradi

et al., 2003; Sharma and Swamee, 2006).

Therefore, the objective function consists of the cost of

piping, cost of pump units, and the operating cost includ-

ing the annual repair and maintenance cost (Swamee

and Sharma, 1990; Swamee, 1996). So the objective is

defined as follows:

Cp D Min

{

Nw
∑

iD1

(

A2Li C kP

QiHi

�
C

8Ð76REQiHirT

�

)

Cˇ1P⊲h⊳ C ˇ2P⊲Q⊳

}

⊲11⊳

subject to

Qi,min < Qi < Qi,max ⊲12⊳

N
∑

iD1

Qi > Qtotal ⊲13⊳

hi > hi,min ⊲14⊳

whereas penalty function is define as,

P⊲h⊳ D

{

hi,min � hi if hi < hi,min

0 if hi ½ hi,min
⊲15⊳

P⊲Q⊳ D

{

Qtot �
∑

Qi if
∑

Qi < Qtot

0 if
∑

Qi ½ Qtot
⊲16⊳

rT D 1/r where rT D
⊲1 C r⊳T

� 1

r⊲1 C r⊳T , r is the rate of interest

expressed as c/c/year, T is the life of project (in years)

and duration of the project (i.e. T ! 1), kP is the cost

of a pump per unit kwh (c), which can be obtained by

interpolating values from a curve between cost and pump

capacity. The pump parameters were established on the

basis of market surveys of branded pumps of various

heads and capacities.

MODEL APPLICATION

Both AEM-PSO and FDM-PSO models were applied to a

hypothetical problem given by McKinney and Lin (1994)

and real field data for the Dore River basin, France.

Hypothetical problem

This typical sample problem was also solved by var-

ious researchers (Wang and Zheng, 1998; Ayvaz, 2009)

using different optimization methods, i.e. linear program-

ming, genetic algorithm, simulation annealing, and har-

mony search. The hypothetical problem concerns identifi-

cation of the maximum discharge from 10 pumping wells

in a homogeneous, isotropic, and unconfined aquifer. This

hypothetical case consists of no-flow boundaries on two

sides and constant head boundaries on the other two

sides. Hydraulic conductivity = 50 m/day, areal recharge

= 0Ð001 m/day, and constant head = 20 m on both bound-

aries were adopted. The objective function for this prob-

lem was taken as for Equation (7). Two constraints were

considered in the problem, (1) hydraulic head should

be above the aquifer bottom and (2) discharge range

of the pumping wells should be within the limits of

0–7000 m3/ day.

In the existing studies, FDM- and FEM-based flow

models were used. In this study, an AEM-based flow

model was used in which constant head boundaries were

represented by line-sink elements and no-flow boundaries

by thin homogeneity lines, with very low conductivity of

1 ð 10�10 m/day. A total of 25 particles were used with

the dimension of 10 where each dimension represented

the discharge value for one well. The values for different

parameters of the PSO model were established on a
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Table I. Maximum discharge by 10 pumping wells using different
optimization techniques

Well no. Optimization techniques

LP GA SA HS FDM-
PSO

AEM-
PSO

1 7000 7000 7000 7000 7000 7000
2 7000 7000 7000 7000 7000 7000
3 7000 7000 7000 7000 7000 7000
4 6000 5000 6200 5904 6300 6315
5 4500 5000 4700 4590 4600 4600
6 6000 6000 6200 5904 6150 6150
7 6800 7000 6650 6821 6500 6600
8 4100 4000 4000 4121 4100 4055
9 4100 4000 4000 4120 4100 4100
10 6800 7000 6650 6820 6600 6605
Total 59 300 59 000 59 400 59 279 59 350 59 425

trial and error basis. Finally, the value for linearly

varying inertia weight was taken as 0Ð9–0Ð4, whereas

the acceleration constants, i.e. c1 and c2, were defined

as 2. The termination criterion was defined on the basis

of a maximum number of iterations, i.e. 200. After

applying the model to the problem, it was found that the

AEM-PSO solution converged to the optimal value of 59

425 m3/ day after 97 iterations. The results generated by

the AEM-PSO and FDM-PSO models were compared

with the results generated by other methods. Table I

shows the maximum discharge by 10 pumping wells

using different optimization techniques. Figure 1 shows

the representation of the hypothetical case with AEM

and the groundwater head contours generated by the

AEM-PSO model for the maximum pumping values.

The results demonstrate that the AEM-PSO model is

more efficient in comparison with linear programming

and genetic algorithm. The AEM-PSO model gives a

higher value for cost function in comparison with other

methods and it also converges faster than the GA method.

It can also be observed that FDM-PSO performed slightly

better in comparison with other methods. The FDM-

PSO solution was seen to converge to the optimal value

of 59 350 m3/ day after 74 iterations. This exercise

produced two main conclusions: (1) the PSO model

converges faster and performs well in comparison with

other methods and (2) the AEM method is capable of

producing a higher value for the optimal solution in

comparison with other methods. It was also found that

the AEM-PSO model takes more iterations to converge,

in comparison with FDM-PSO and SA.

Real field application

After the application of the AEM-PSO and FDM-PSO

models to the hypothetical problem, they were applied to

the water requirements of the town of Thiers, which is

one of the major towns in the Loire region, France. The

models developed were applied to minimize the pumping

Figure 1. Hypothetical case: plan view in AEM and groundwater head calculated by AEM-PSO model

5



cost by identifying the optimal location and discharge

of wells and satisfying the specific constraints of the

situation. The inhabitants of Thiers total 20 000 and the

population in the local region is 23 500. The Dore River

catchment, which is situated in the eastern part of the

Massif-Central in France (Figure 2), was examined to

establish the new pumping wells. The study area consists

of two rivers, i.e. Allier and Dore, where the Dore River

is an important tributary of the Allier River.

The study area lies between 45°540N to 46°N latitude

and 3°250E to 3°2901000E longitude. The low flow period

in the river occurs in summer, i.e. June–August but can

extend up to November. The major part of the area is

covered by fluvial quaternary sediments underlain by

marl and clay. The quaternary alluvium is composed

of gravel, sand, and pebbles with silt. The impervious

substratum is composed of clay and sand (Oligocene

period). The hydraulic conductivity in the domain varies

from 1 ð 10�3 to 3 ð 10�3 m/s, whereas the thickness

of the aquifer varies from 12 to 15 m. The elevation of

the bottom impervious layer of aquifer varies from 254

to 258 m from mean sea level (MSL). The location of

different hydrological features and other required data

were extracted from the geological maps provided by the

BRGM (Bureau de Recherches Géologiques et Minières).

A total of 12 piezometric measurements are available

in the study area (Figure 2), which show the hydraulic

gradient in the North direction.
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In the AEM model, the rivers considered in the study

area were represented by 39 head line-sink elements. The

water level in the river is monitored at 11 different loca-

tions and was used to define the boundary condition for

line-sink elements. The discharge wells were represented

by well elements. The model was developed with the

given line-sinks and wells with constant hydraulic con-

ductivity in the whole domain. In the model, a constant

elevation for the bottom layer was taken: 257 m. The

model was run in the steady-state condition for the low

flow period, i.e. June 2007. This period was found to

be suitable for the steady-state model run as the river

condition was found to be almost stable along with a

static groundwater head. The computed heads were com-

pared with observed heads at 12 different locations in the

domain to calibrate the model with real field conditions.

In the calibration process, a hydraulic conductivity value

was adjusted systematically and the model output was

compared with observed values. The results of the model

showed that changing the hydraulic conductivity values

by up to 25% did not affect the groundwater head more

than 1 m. In addition, in the calibration process, part of

the river outside the area of interest was included and its

effect on groundwater head was examined. This process

helps establish the effect of far field features on the area

of interest. The model was not found to be very sensi-

tive for the far features as the area of interest is located

between the two neighbouring rivers. Figure 3 shows

the graph between observed and computed groundwa-

ter head. Once the model parameters had been calibrated

from the AEM model, the same parameters were used

to develop the FDM model. The FDM model grid size

was taken as 25 ð 25 m. A calibration graph was also

developed for the FDM model and found to be consis-

tent, as in the case of the AEM model. Figure 4 shows

the groundwater head generated by the AEM as well as

the FDM model and was found to be consistent.
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Figure 4. Groundwater contours generated by AEM and FDM models

In addition, the AEM-PSO and FDM-PSO models

were applied to the Dore River basin to minimize the

well pumping cost (Equation (14)). In the cost function,

values of different parameters were defined: A1 was taken

as 4000 euros which includes steel casing and 12-m well

depth. Based on the experience of the field experts, A2

was taken as 140 euros/m. A market survey was carried

out to collect the information for available pumps. Due

to the availability of pumps for the specific capacity,

the pump power for each well was computed and a

pump with the same or higher capacity was obtained.

The values of other parameters were selected as follows:

RE D 0Ð08 euros per kwh;  D 9810 N/m3; � D 80%,

r D 6% euros/year and T D 25 years. The co-ordinates of

the reference location were defined as X D 687 000 and

Y D 218 000, which used to compute the piping length.

The overall cost for the system and the optimal number

of wells was determined by Equation (15), where the

optimal pumping cost (Equation (9)) and well installation

cost (Equation (8)) were added.

A total of four constraints were defined in the problem.

The constraints of the problem were identified with the

discussion of stakeholders and water authority officials.

A questioner was prepared and filled by stake holders

and officials to identify the maximum discharge limit

and permissible drawdown limit. The first constraint

was established to limit the drawdown of groundwater

under the permissible limit. Since the average saturated

thickness of the aquifer was about 10 m, the permissible

limit of drawdown was defined as 261 m, while the

average level of the aquifer bottom was taken as 257 m.

The second constraint was fixed to assure the minimum

water demand of the area. Per capita water consumption

was considered as 160 l/day/person, which is the standard

value for water consumption in France. Thus, the total

pumping rate for all the wells was defined as equal to

or greater than 820 m3/h. The third constraint was used

to define the maximum and minimum discharge limit

for a single well. On the basis of aquifer properties

and availability of pumps, the discharge limit was set

at 100 m3/h < Qi < 280 m3/h. The fourth constraint

incorporated the minimum distance between the wells.

Taking local practices into consideration and to ensure

a protective zone around the wells, a minimum distance

between any two wells was set at 150 m.

The models were run for different sets of wells

and an overall system cost for the given set of wells

was computed. Sets of four, five, and six wells were

considered in the problem. Finally, the results from

different sets of wells were compared and the optimal

number of wells was determined. The parameters of

the PSO model were taken in similar fashion to the

earlier case. The results of the AEM and FDM models

were compared on two aspects, i.e. piping length and

drawdown. Figure 5 shows the location of optimal wells

as established by the AEM and FDM models. The figure

shows that the optimal piping length differs in the AEM

and FDM models. As the AEM gives the exact location

of the wells, it calculated the exact length of pipe, i.e.

1053 m, whereas the piping length calculated by the

FDM model was 1157Ð2 m. The results show that the

piping cost established by the AEM-PSO model is 9%

less than that with the FDM-PSO model.

To compare the effect of both models on drawdown,

the FDM model was developed with two grid sizes, i.e.

50 ð 50 and 25 ð 25 m. Table II shows the drawdown

according to the AEM and FDM models, it also shows

that the AEM model gives a more accurate drawdown

which helps establish a more accurate cost for pumping.

Although with FDM, the accuracy in measuring the

head can be achieved by reducing the cell size but

the computational burden can be increased excessively

with larger domains. The optimal cost for pumping

according to the AEM model is 97 640 euros, whereas

with the FDM model, it is 96 341 euros with grid size

25 ð 25 m and 94 613 euros with grid size 50 ð 50 m.

The results show that the FDM model with grid size

25 ð 25 decreases the pumping cost by 1.33%, whereas

the 50 ð 50 grid size decreases the cost by 3.1%.

The results conclude that in the simulation-optimization

approach, the minimum value of objective function, in

cost minimization, is not always an accurate value. If

grid-based methods are used in a simulation-optimization

approach, grid size is an important influencing parameter

in identifying the exact value of groundwater head and as

a consequence, the exact value of cost function. Figure 6

shows the graph plotted between overall cost of the
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Figure 5. Optimal locations of wells calculated by AEM and FDM model

Table II. Drawdown by AEM and FDM model

Well no. By FDM (50 ð 50) By FDM (25 ð 25) By AEM

W1 264.7 264.2 263.9
W2 264.6 263.8 263.6
W3 264.7 264.2 264
W4 264.5 264.1 263.8
W5 264.9 264.0 263.7

system and different sets of wells. In this context, the

set of five wells was found to be optimal.
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Figure 6. Optimal cost calculated by AEM-PSO and FDM-PSO model
for the set of five wells
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Convergence of the optimization model was defined

on the basis of maximum number of iterations, i.e.

1000. The model convergence showed that the FDM-

PSO model was found to have converged after 674,

762, and 792 iterations for the set of four, five, and

six wells, respectively, whereas the AEM-PSO model

converged after 789, 841, and 876 iterations for the

set of four, five, and six wells, respectively. Figure 7

shows the convergence of the AEM-PSO and FDM-

PSO models. The results show that the FDM-PSO model

converged with less iteration than the AEM-PSO model.

It was found that identifying the optimal location of wells

increased the number of iterations for convergence of the

model.

As AEM works on potential theory, groundwater head

in the domain is calculated by adding the potential from

all elements. Some modifications were made to the AEM

model to take advantage of potential theory. In the AEM,

hydrogeological elements are defined by unknown and

known elements (Strack, 1989). Therefore, potentials

from all known elements, i.e. river and recharge, and

unknown elements, i.e. wells, were stored in separate

matrixes. Then, the stored matrixes were used to find the

unknown values of elements and generate the potential

through each element and the corresponding groundwater

head values for the whole domain (or at specific points

only). Therefore, the potential for known elements was

not calculated for each run of the simulation-optimization

model. The benefit of this modification is to save time

by exploiting the advantage of the potential theory

approach, arriving at the final solution by adding the

potentials of each individual element. As the potential for

known elements are calculated once, computational time

does not increase even if the model area is increased

and more known elements are used. With FDM, the

model area can be increased by creating more grids

for that part which can increase the computational time,

whereby the whole model needs to be rebuilt. Another

advantage of the AEM, to give the groundwater head

at a desired point without solving the whole domain,

was also examined. In the optimization process, when the

groundwater model was used to establish the groundwater

head on the periphery of the wells, it was found that this

advantage had a very efficient effect on computation time.

After applying these modifications, the AEM model took

less than 5 s to calculate the groundwater head, on the

periphery of wells, for a single run of the model.

Sensitivity analysis was carried out for the piping

length. Sensitivity of the models with respect to piping

cost was examined by changing the per meter pipe length

cost, using 100, 140, and 180 euros. The results show that

a decrease in the cost of pipe length pushes the wells

away from the reference location with a reduction in the

value of the cost function. In this case, the pumping cost

dominates which decreases with drawdown and hence the

model tries to minimize the interference between wells

by shifting the wells away from the reference location.

On the other hand, an increase in the pipe length cost

forces the wells to shift nearer to the reference location,

leading to an overall increase in the value of the cost

function. Sensitivity analysis was also carried out without

considering the piping cost in the objective function. The

analysis was made for the set of five wells which is the

optimal number of wells for the study area. The result

shows that the pumping wells shifted in the south part of

the study area and close to the river side where the aquifer

has more potential. Hence, it brings down the pumping

cost, although it increases the length of pipes and the

associated piping cost. This indicates that consideration

of the piping cost in the objective function influences

the location of the pumping wells hence the importance

of including piping cost in the objective function. This

analysis also validates the importance of AEM as it gives

the exact location of pumping wells.

SUMMARY AND CONCLUSIONS

In this article, the advantages of using the AEM in a

simulation-optimization approach were investigated. The

AEM- and FDM-based simulation-optimization models

were also compared. The AEM-PSO and FDM-PSO

models developed were applied to hypothetical data and

real field data. The models were applied to solve two

kinds of management problems, i.e. maximum groundwa-

ter extraction from aquifer and minimum pumping cost

for wells.

The AEM flow model was found to be efficient in

solving groundwater management problems with some

advantages over grid-based methods. Since the well

coordinates were used as a decision variable, the optimal

location of the wells was identified with both the AEM

and FDM models. The results show that the AEM
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model gives the exact location of wells which helps

establish a more realistic cost of piping compared with the

FDM model. Also, as the groundwater head solution is

continuous over the domain in the AEM model, it gives

a more accurate drawdown near wells. This advantage

helps establish a more realistic value for the cost function

since the value of cost function is highly dependent on the

value of drawdown. The ability of the AEM model to find

the groundwater head directly at the required location,

without solving the whole domain, saves computation

time effectively. This benefit can be more significant

for the larger sizes of domains. The study found that

piping cost influences the locations of new wells and as a

consequence, the value of the cost function. As it results,

it should be considered in the objective function. This

study also concluded that the PSO model is an efficient

method and gives better results in comparison with linear

programming and GA and HS. The results show that

optimizing the location of wells using the AEM-PSO

model increases the number of iterations for convergence

of the model, whereas the FDM-PSO model converges

with comparatively fewer iterations. In this study, high-

order elements were not used. Computational efficiency

can be increased further using these elements.

NOTATIONS

The following symbols have been used in this article.

A1 total cost for single well installation (euros)

A2 total cost for the development per meter of pipe

network (euros)

c any specific currency

Cwi well installation cost (euros)

Cpn capitalized cost of pipelines (euros)

Cp total cost of pumping (euros)

CpE capitalized electricity cost (pumping cost)

Cpu cost of pump units (euros)

Gt global best

hi minimum water head on the periphery of the ith

well (m)

Hq aquifer thickness (m)

H pumping head (m), equal to the head from the

water table in the aquifer to the height of the

storage tank

k hydraulic conductivity (m/s)

K size of the swarm

Li pipe length for ith well from reference location (m)

Nw total number of wells

P particles best

P⊲h⊳ penalty terms which vary linearly with the magni-

tude of constraint violation

P⊲Q⊳ penalty terms which vary linearly with the magni-

tude of constraint violation

Q discharge (m3/s)

Qi discharge (m3/s)

r the rate of interest expressed (c/c/year)

RE the cost of the electricity per kilowatt-hour (c/kwh)

Vmax maximum velocity limit (m/s)

W complex discharge function

 stream function (m3/s)

� groundwater flow (m3/s)

� head (m)

ˇ1, ˇ2 weighting factors which can be selected according

to the problem

 discharge potential (m3/s)

ω inertia weight

� constriction coefficient

 weight density of the fluid (N/m3)

� combined efficiency of the pump and the prime

mover
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