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Abstract.  

Alloy 230 which contains 22wt.% chromium could be a promising candidate material for 

structures and heat exchangers (maximum operating temperature: 850°-950°C) in Very High 

Temperature Reactors (VHTR). The feasibility demonstration involves to valid its corrosion 

resistance in the reactor specific environment namely impure helium. The alloys surface 

reactivity was investigated at temperatures between 850 and 1000°C. Two main behaviours 

have been revealed: the formation of a protective Cr/Mn rich oxide layer at 900°C and its 

following destruction at higher temperatures. Actually, above a critical temperature called TA, 

oxide is reduced at the oxide/metal interface by carbon in solution in the alloy. To ascribe the 

scale destruction, a model is proposed based on thermodynamic interfacial data for the alloy 

(chromium and carbon activity), oxide layer morphology and carbon monoxide partial 

pressure in helium. The proposed mechanism is then validated regarding experimental results 

and observations on alloy 230 and model alloys. 

Introduction 

Despite a high-level of gas-tightness and purification, cooling helium of advanced Gas-

Cooled Reactors (GCR) is expected to be polluted by low levels of impurities, such as 

hydrogen, water vapor, methane, carbon monoxide… in the ppm to hundreds of ppm range. 

Structural metallic materials for pipes and heat exchangers must be resistant against corrosion 

at temperatures as high as 850°-950°C in this unique atmosphere which has a low oxidizing 

potential and a significant activity of carbon. Based on their mechanical properties and 

oxidation resistance, candidate alloys are nickel-based with about 20-25wt.% chromium. 

Experience from former helium-cooled reactors shows that phenomena such as oxidation, 

carburization or decarburization may occur in impure helium depending on temperature, gas 

chemistry, and alloy composition. As in any other high temperature process, in GCR the 

corrosion resistance of chromium-rich alloys relies on the growth of a surface oxide scale that 

can act as a diffusion barrier. In any case, GCR environment must thus stabilize chromia. 

However above a critical temperature, called TA by Brenner [1], it was observed that 
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chromium oxide become unstable at the alloy surface under impure helium and that carbon 

monoxide is released [1-6]. It is elsewhere demonstrated [7] that chromia scale is reduced by 

carbon from the alloy Csol according to: 

 

CrgCOCOCr sol 2)(3332 +=+  (1) 

This paper focuses on the high temperature behavior of candidate material Haynes 230
®

 

and model Ni-Cr-W-C alloys in GCR helium. It is evidenced that Eq. 1 occurs for these alloys 

and the critical temperature TA is measured in various helium atmospheres. Then we 

characterize the system involved in the scale reduction and we develop a model based on the 

thermodynamic of the reaction. 

Experimental set up 

Materials 

Haynes® alloy 230 was purchased at Haynes Int. annealed for 10 min at 1230°C then water 

quenched. Model alloys were manufactured with a simplified composition compared with the 

commercial cast: Ni22CrWC (with 22wt.% Cr — HT: 10hrs at 1350°C then 14hrs at 1100°C) 

and : Ni18CrWC (with 18wt.% Cr — HT: 2hrs at 1325°C then 48hrs at 1150°C). Their 

complete fabrication process is described elsewhere [7]. Table 1 reports the chemical 

composition of the alloys. For testing, 2-mm thick specimens (surface: 6 cm²) are ground to 

2400 grit then finished with 1 µm alumina powder. 
 

Table 1 Chemical composition of nickel base alloys [in wt.%]; Haynes 230
®

: metals by ICP-

AES (CEA Saclay, DEN/DPC/SCP/LRSI); model alloys: metals by weighting; C and S by 

LECO® analysis (CEA Saclay, DEN/DPC/SECR/LSRM and ENSM-SE, SMS Centre) 

Alloy Ni C Cr W Mo Fe Mn Al Si Co Ti Cu La S 

Haynes 

230
® base 0.105 22.0 14.7 1.3 1.3 0.5 0.4 0.4 0.2 0.1 0.02 0.005 0.002 

Ni22CrWC base 0.103 22 14        <0.001 <0.001 <0.001 

Ni18CrWC base 0.103 18 14          <0.001 

 

Test conditions 

The test procedure is fully described elsewhere [7].Generally speaking, the thermal program 

for the measurement of TA consists of two steps: 

step 1: heating to 900°C at 1°C/min and keeping the temperature constant for 25hrs 

under impure helium, 

step 2: heating to 980°C (Haynes 230
®

) or 1050°C (model alloys) and keeping the 

temperature constant for 20hrs (Haynes 230
®

) or 3hrs (model alloys) under impure 

helium, 

cooling: cooling at about 7.5°C/min under pure helium. 

The gas flow rate is approx. 0.7ml/s per cm² of metallic surface and two heating rates were 

applied in step 2 (the heating was either continuous at 0.5°C/min or step-by-step with steps of 

2°C and a dwell time of 30min). Table 2 gives the impurity concentrations and the water 

vapor partial pressure in experimental helium mixtures. In any case, oxygen, nitrogen and 

carbon dioxide partial pressures were below the GPC detection limit (about 0.1 µbar). As 

shown in Fig. 1, gas phase analysis by GPC allows to determine TA based on the CO 

production: TA is the temperature for which the increase in the CO partial pressure between 

the furnace inlet and outlet is equal to 1 µbar. 
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Table 2 Test helium composition, heating rate and measured critical temperature TA 

Helium Alloy CO [µbar] H2 [µbar] H2O [µbar] CH4 [µbar] Heating TA [°C] 

He-1 Haynes 230 6.1±0.1 205±4 5.0±2.4 20.0±0.4 0.5°C/min 895±5 

He-2 Haynes 230 22.4±0.4 198±4 0.8±0.4 21.1±0.4 0.5°C/min 938±5 

He-3 Haynes 230 21.8±0.4 200±4 0.4±0.2 19.2±0.4 2°C every 30min 940±5 

He-4 Haynes 230 49.0±1.0 195±4 4.0±1.6 21.0±0.4 0.5°C/min 961±5 

He-5 Haynes 230 49.0±1.0 195±4 1.6±0.8 21.0±0.4 0.5°C/min 963±5 

He-6 Haynes 230 50.3±1.0 188±4 1.5±0.8 20.2±0.4 0.5°C/min 963±5 

He-7 Haynes 230 52.5±1.0 196±4 0.5±0.2 21.1±0.4 0.5°C/min 969±5 

He-8 Ni22CrWC 21.0±0.4 196±4 0.4±0.2 18.0±0.4 0.5°C/min 900±5 

He-9 Ni22CrWC 51.4±1.0 196±4 0.8±0.4 21.1±0.4 0.5°C/min 932±5 

He-10 Ni18CrWC
1
 51.2±1.0 198±4 1.1±0.6 21.1±0.4 0.5°C/min 905±5 

Specimen observation and analysis 

Specimens were observed either after step 1 of the test procedure or after the whole thermal 

program was completed (step 1 plus step 2). Surface scales were analyzed by X-Ray 

Diffraction (XRD with Co-Kα radiation — CEA Saclay, DEN/DPC/SCP/LRSI). Then 

coupons were sputtered with a gold film using cathodic evaporation and then coated by an 

electrolytic nickel deposit. After mounting, they were ground to 2400 grit and finished with 1 

µm alumina powder. The surface was then characterized using Field Emission Scanning 

Electron Microscopy and Energy-Dispersive X-ray Spectroscopy (FESEM and EDS — CEA 

Saclay, DEN/DMN/SRMP). Thin sheets were prepared by ion sputtering and observed by 

Transmission Electron Microscopy (TEM and EDS — Université Paul Sabatier de Toulouse).  
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Figure 1: Thermal program and analysis of PCO and PCH4 at the furnace outlet by GPC 

during testing of Haynes 230
®

 in helium He-2 

 

 

                                                           
1 The Ni-18Cr-W-C specimen did not undergo step 1 but was ex-situ pre-oxidised in Ar/1% H2/33500 µbar H2O 

at 900°C for 25 hrs ; it was rapidly heated to 850°C, then to 900°C at 0.5°C and finally followed step 2.  
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Results 

Characterization of Haynes 230
®
 after step 1 

After step 1 of the test procedure (25 hrs at 900°C in gas mixtures of the Table 2), Haynes 

230
®

 has formed a surface scale, about 0.5-1 µm thick, as shown in the left-hand side of Fig. 

2 for a treatment in helium He-5. Fig. 3 demonstrates that after exposure in atmosphere He-4 

the scale is made of chromia and a mixed Cr-Mn oxide with a spinel structure. TEM 

observations coupled to EDS analysis, presented in Fig. 4 and Table 3, evidenced that the 

inner part of the scale consists of chromia (Spots � and �), while manganese concentrates in 

the outer part (spots � and �).  

 

   
Figure 2: FESEM images of Haynes 230

®
 surface after exposure in helium He-5;  

left-hand side: step 1 (25 hrs at 900°C) and right-hand side: step 1 + step 2 (20 hrs at 980°C) 
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Figure 3: Low angle XRD analysis (1°) of Haynes 230
®

 surface after step 1 in helium He-4 
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Figure 4: TEM image of Haynes 230
®

 surface scale after step 1 in helium He-4 

Numbers refer to the EDS analyses shown in Tables 3 and 4 

In Fig. 4, the initial alloy surface is marked by small alumina nodules which develop in the 

very early stages of oxidation (spots � and � with their composition given in Table 3). 

Aluminum is also detected in the internal oxide either as alumina or dissolved in chromia 

(spot �).  

Fig. 4 and Table 4 also show that, underneath the oxide/metal interface, the substrate has been 

depleted in chromium due to Cr-rich oxide growth. This depletion is significant (15wt.% at 

spot � for an initial concentration of 22wt.%), but steep: at a depth of 500nm the alloy 

recovers its bulk chromium content. This marked Cr profile is in agreement with the 

observations made by Tawancy et al. [8] on Haynes 230
®

 oxidized in air and could be due to 

the high content of tungsten, element that is known to lower the diffusion rates within the 

matrix [9]; therefore the transport of Cr from the bulk to the surface may be slowed down.  

Table 3: EDS analyses in the oxide scale — Numbers refer to the EDS spots in Fig. 4 

 

Spot 
Cr [at.%] Al [at.%] Si [at.%] Ni [at.%] Mn [at.%] O [at.%] 

���� 29   2.5 10.6 57 

���� 28   4.0 10.0 57 

���� 34   3.0  63 

���� 31 4.8  1.6  62 

���� 40 10.3 0.6 2.0  47 

���� 18.2 17.3 3.7 1.6  59 

 

Table 4: EDS analyses in the metal — Numbers refer to the EDS spots presented in Fig. 4 

Spot Cr [wt.%] W [wt.%] Ni [wt.%] Mo [wt.%] 

���� 15 14 68 1.8 

���� 16 14 68 1.0 

				 18 12 68 1.6 
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Characterization of Haynes 230
®
 after step 2 

Cr-rich surface oxide is destroyed during step 2 of the thermal program (heating up to 980°C 

and maintain for 20 hrs) with a carbon monoxide release (see Fig. 1). The extent of the scale 

removal depends on gas composition in helium. Fig. 4 evidences that the ~1 µm-thick Cr/Mn-

oxide scale, grown after step 1 in atmosphere He-5 (left-hand side), is partly reduced during 

step 2 (right-hand side). Inclusions of aluminum oxide remain, as Al can not react in the given 

temperature range [6].  

Characterization of model alloys 

After step 1 of the test procedure (25 hrs at 900°C) in atmospheres He-8 to He-10, model 

alloys have developed a scale made of pure chromia as other elements (Ni, W) are not able to 

react in the given conditions. During step 2, this scale is reduced in impure helium and a 

production of carbon monoxide is observed (see ref. [7]).  

Determination of the critical temperature TA 

Following the test procedure previously described, TA is measured for Haynes 230
®

 and 

model alloys under various helium atmospheres. The results are reported in Table 2.  

 

Discussion 

Reaction mechanism 

During heating at the beginning of step 2, the surface scale is reduced by carbon from the 

alloy following Eq. 1 (see demonstration in ref. [7]). As carbon is not soluble in chromium-

oxide [10], the reaction inevitably occurs at the oxide/metal interface where carbon can be in 

contact with the oxide. Fig. 4 shows that in Haynes 230
®

 the interfacial oxide is made of 

chromia with some alumina. Model alloys, whose only oxide-former element is Cr, quite 

obviously form chromia scale. So at the very first step of the reaction, reduction of the scale 

occurs at the oxide/metal interface and affects the following system: chromia (possibly doped 

in Al in the case of Haynes 230
®

) plus carbon in solution in the alloy according to:  

 
bccii

sol CrgCOCOCr 2)(3332 +=+  (2) 

 

where the suffix i refers to the oxide/metal interface and Cr
bcc

 is pure chromium.  

The observation of carbon monoxide production starting at TA requires that two main steps 

take place: the reaction between chromia and carbon at the oxide/metal interface (Eq. 2) to 

give CO and pure chromium - with then a dissolution of chromium in the alloy since no pure 

chromium area could have been evidenced - and the transport of the produced carbon 

monoxide through the scale from the interfacial reaction site to the gas phase. Thus at TA, Eq. 

2 is on the right hand side and P(CO
i
)≥P(CO

gas
). Table 2 (He-2 and He-3) shows that the rate 

of heating in step 2 does not influence the value of TA. This implies that the transport of CO 

through the scale is fast compared to reaction Eq. 2. This transport is so high (see Fig. 1) that 

it shall occur via gas diffusion. Because no microcracks have been evidenced by FESEM into 

the oxide layer, the high diffusion paths are probably of nanometric size, some authors talk 

about nanochannels. A lot of mechanisms for the formation of nanochannels in oxides have 

been proposed [11,12,13] but what is most likely in this case is the presence of insoluble 

phases such as carbides or aluminum rich oxides that early segregate on the original surface 

and prevent the Cr-rich oxide layer from growing perfectly gas-tight [13]. Thus the 
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nanochannel network should already exist at the oxidation step (step 1) although it would 

have a negligible role in the overall oxide development mainly driven by outward growth.  

As a consequence of this high diffusion of CO through the oxide layer, we will consider that 

P(CO
i
)=P(CO

gas
). This observation is in agreement with the proposition made by 

Quadakkers [2] who stated that TA is the equilibrium temperature of the chromia reduction by 

carbon (Eq. (1)). Assuming that TA is the equilibrium temperature of Eq. 2, the reaction 

constant can be then written as:  

 

( )
3

3
3

3

2

2

)(
)(.

.
)(

32
i
sol

i
sol

bcc

C

gas
i

COCr

Cr

A
a

COP
COP

aa

a
TK ==  (3) 

 

with the activities of pure phases Cr2O3 and Cr
bcc

 taken as unity.   

 

Determination of the activity of carbon at the oxide/metal interface a(Csol
i
) 

At high temperature, the activity of carbon in multiphase alloys depends on the carbide nature 

as well as on the chemical composition, especially the content in carbide-former elements. 

ThermoCalc
®

 [14] is used to calculate a(Csol
i
) at TA. This thermodynamics software 

minimizes the free energy of a complex system (CALPHAD
®

 method). Two relevant 

databases are available for nickel-base alloys under the brand names: SSOL2 [15] and TTNi7. 

For the Haynes 230
®

 chemical composition (see Table 1) in the temperature range 850°-

1000°C, TTNi7 predicts the precipitation of M6C-type carbides whereas SSOL2 proposes 

carbides of the M23C6 type. 

Carbides within as-received and aged specimens of Haynes 230
®

 were characterized by TEM; 

heat treatment were performed at 850°, 900° and 950°C for 25, 1000 or 5000 hrs: 

- The as-received alloy contains large intragranular carbides. EDS analyses, given in 

Table 5, is in good agreement with the results of Grimmer 

(Ni1.9Fe0.1Cr1.6Si0.2)(W1.6Mo0.6)C [16]. Because of their size, it is not possible to 

obtain diffraction images but the composition corresponds to the stoichiometry M6C 

with a likely structure of the Ni3W3C type [17]. Besides few small Cr-rich carbides of 

the M23C6 type are evidenced at grain boundaries (see Table 5).  

- Ageing for 25 hrs induces a significant formation of Cr-rich M23C6 carbides within 

grains, at grain boundaries and around primary M6C carbides (see Table 5). Fig. 5 

shows the development of M23C6 carbides next to a primary M6C after 25 hrs at 

900°C. Growth of M23C6 carbides in the vicinity of the M6C might result from a 

partial dissolution of the M6C at the expense of M23C6 [18]. The precipitation of 

M23C6 is observed at any temperature and enhances with the ageing time. 

Thus M23C6 seem to be the more stable carbides in Haynes 230
®

 above 850°C. 

XRD analysis of as-received model alloys shows that the only carbides present are M23C6. 

These carbides are maintained after ageing for 25 hrs at 900°C.  
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Figure 5: TEM image of Haynes 230
®

 aged for 25 hrs at 900°C - M23C6 (�) carbide next to a 

primary carbide M6C (�) 

Table 5: Chemical composition of carbides [at.%] in Haynes 230
®

 

specimens carbide Ni Cr W Mo Fe 

as-received M6C 36 27 30 6 1 

as-received M23C6 14 74 8 4 / 

aged for 25 hrs � in Fig. 5 35 27 30 6 1 

aged for 25 hrs � in Fig. 5 (M23C6) 12 76 8 4 / 

 

SSOL2 database was selected for further work since it gives a better description of the phases 

present in the system at 850°-1000°C with stable M23C6 carbides. The activity of carbon at the 

oxide/metal interface a(Csol
i
) is then estimated by inputting the interfacial chemical 

composition of the alloy in the software with SSOL2 database. It is noteworthy that 

ThermoCalc
®

 basically calculates the carbon activity (with graphite as the reference phase at 

all temperatures) by the equilibrium: 

 
i

sol

i
CMCM 623623 +=  (4)  

 

with M= 86at.% Cr, 8at.% W, 6at.% Ni. 

Considering the high chromium content in the M23C6 carbides, the chromium activity plays a 

key role in Eq. 4 and consequently on a(Csol
i
). Therefore, the chromium activity at the 

oxide/metal interface a(Cr
i
) must be accurately known.  

 

Determination of the chromium activity at the oxide/metal interface a(Cri) 

The chromium activity is determined at the oxide/metal interface via the formula: 

 
i

Cr
CrTTa i ).%()( γ=  (5) 

 

with %Cr
i
 the interfacial weight percentage of chromium (at any temperature, the reference 

state is the pure bcc Cr). %Cr
i
 was measured by TEM-EDS as shown in Fig. 4 and Table 3. 

γ(T) is extrapolated in the range 850-1000°C from data published in ref. [19] for higher 

temperatures. For a given alloy, it is assumed that γ(T) is independent of %Cr. 

 

 

 

200µm 

����

����
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Assessment of the model 

Fig. 6 summarizes the steps used in the model that allows to evaluate the relationship between 

P(CO) and TA: %Cr
i
 is analyzed at the oxide/metal interface using the EDS detector in a 

TEM, a(Cr
i
) is deduced via Eq. 5 with γ respect to ref. [19, 20], then a(Csol

i
) is computed 

using ThermoCalc
®
 software with the SSOL2 database. Finally, Eq. 3 correlates P(CO) and 

1/TA by taking K2(T) from ref. [21]. 

 

 

Figure 6: Model developed to correlate theoretical TA to experimental TA 

Table 6 gives, for the three alloys, the interfacial concentrations of chromium analyzed by 

TEM-EDS after step 1 of the test procedure (25 hrs at 900°C). The method depicted in Fig. 6 

was applied. Taking into account the experimental uncertainties on %Cr
i
 (by TEM/EDS) as 

well as on γ (by Knudsen cells [19]), one obtain minimum and maximum values for a(Csol
i
). 

Table 7 develops the calculations for Haynes 230
®
. 

Table 6: Experimental %Cr
i
 by TEM-EDS analysis after step 1 of the test procedure 

 Haynes 230
®

 Ni22CrWC Ni18CrWC 

%Cr
i 
[wt.%] 15-16 15-16 13-14 

 

Table 7: Lower and upper theoretical values of log[P(CO)] at different temperatures 

calculated by the model shown on Fig. 6 considering the data of Tables 6 and 7 

  (%Cr
i
)
min

 = 15 wt.% (%Cr
i
)
max

 = 16 wt.% 

T[°C] γ(T) a(Cr
i
)
min 

a(Csol
i
)
min

 Log(PCO)
min 

a(Cr
i
)
max 

a(Csol
i
)
max

 Log(PCO)
max 

900 3.73±0.22 0.53  4.8.10
-3

 -5.08 0.63 2.4.10
-3

 -5.39 

950 3.21±0.19 0.45 1.1.10
-2

 -4.23 0.54 5.6.10
-3

 -4.54 

1000 2.79±0.17 0.39 2.5.10
-2

 -3.44 0.47 1.3.10
-3

 -3.75 

 

Fig. 7 reports the results on TA from Table 2 and plots the theoretical lines log(P(CO)) vs. 

1/TA for the commercial Haynes 230
®
 (see Table 7) and two model alloys. Because of the 

uncertainties on a(Csol
i
), the model gives a scatter band delimited by a lower curve 

corresponding to the minimum a(Csol
i
) and an upper curve for the maximum a(Csol

i
). For all 

three alloys, the experimental critical temperatures TA exactly fall within the theoretical 

scatter band. This excellent fit in the whole temperature range, is a further hint that the 

transport of CO through the oxide scale does not affect the kinetic of reaction (2).  

It is however worth noticing that the slope of the experimental curves seems to be slightly 

less than predicted by the theory. On the one hand, one should recall that an experimental TA 

is not exactly the equilibrium temperature of Eq. 2, but actually the temperature for which the 

CO production reaches 1µbar (see section ‘Experimental’). This could be a reason why the 

measured TA globally fall in the upper part of the scatter band. On the other hand, the activity 

coefficients were measured in the range 1150°-1300°C then extrapolated to intermediate 

temperatures (850°-1000°C). The chromium activity at the lowest temperatures (850°-900°C) 

may thus be overestimated. As a consequence, the theoretical curves would bend a little 

HSC Chemistry 

P(CO)=f(1/TA) γγγγ.%Cri %Cr
i
 by TEM iCr

a  
i
solC

a  K2(TA) 

γγγγ extrapolated 

from [16, 17] 

ThermoCalc
®
 

(SSOL2) 
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towards the higher log[P(CO)] values at the lower temperatures as is observed for the 

experimental results.  
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Figure 7: Log(P(CO))=f(1/TA) for Haynes 230
®

 and model alloys – experimental data and 

theory 

Conclusion 

A model is developed to rationalize the variation of the critical temperature for surface 

oxide removal TA as a function of the CO partial pressure in the gas phase. It was proposed 

that at the early stages of the scale reduction the relevant thermodynamic system is: chromia 

plus carbon in solution in the alloy at the oxide/metal interface. The interfacial activity of 

carbon in the alloy is calculated based on measurements of the interfacial weight percentage 

of chromium in equilibrium with Cr rich M23C6 carbides and using the ThermoCalc
®
 

software. Excellent agreement is observed between experimental values TA and the theoretical 

predictions. 
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