A modeling approach for locating logistics platforms for fast parcel delivery in urban areas

Olivier Guyon, Nabil Absi, Dominique Feillet and Thierry Garaix

École des Mines de Saint-Étienne - CMP Georges Charpak

June, 8th 2011

Outline

1 Project PLUME

- 2 Marseilles field survey
- 3 Modeling approach
- 4 Screenshots of the decision-making tool

Outline

Context

Context

- duration : 18 months
- contributor : French Ministry of Ecology, Sustainable Development, Transport and Housing
- partners :
 - École Nationale Supérieure des Mines de Saint-Étienne (graduate school of science and technology)
 - Jonction

(research team specialized in logistics and transport of goods)

SOGARIS

(company involved in logistic real estate and associate services)

• Cluster Paca Logistique (association which manages projects in logistics in the French region PACA)

Context

Context

- PLUME addresses the come back of urban logistics platforms in the heart of the town
- a real case study : Marseilles, with ARENC

Location of logistics platforms for an urban use

From the past ...

limiting the presence of logistics platforms in urban areas:

- urbanistic reasons (regulation rules)
- political reasons (less noise and pollution for inhabitants)
- economical (available surfaces are rare and expensive)

... to the future ?

- \hookrightarrow this location, far from the city, is now questioned:
 - long vehicle tours
 - more traffic pollution
 - more traffic congestion
 - impossibility to schedule several successive routes

Our study

Our study

- given a set of available surfaces in and outside of the city,
- given an average distribution activity of the city,
 - how many logistics platforms have to be built ? where should they be located ? and how should they be sized ?
 - how should be the vehicle fleet of each logistics platform composed of ?
 - what should be the (approximate) daily route of each vehicle ?
- \hookrightarrow so that the distribution is performed at optimal performance regarding a set of criteria including economic, environmental and social impacts

Targets

- a field study in Marseilles
- a mathematical model
- a decision-making tool (software)

Outline

Framework

Fast parcel deliveries

transport of small goods, volume of $0.10-0.20\,m^3$ for an average weight of 30-70kg

Logistics specialists

 \approx 30 companies in Bouches-du-Rhône

 \hookrightarrow 12 majors ones: 80% of the market

Surfaces

Surfaces

- Bouches-du-Rhône : \approx 95000 m^2 (docks + office)
- 2 main areas (outside the city)
- Marseilles : 40 à 50% of the market share of each company \hookrightarrow surface dedicated to Marseilles : \approx 45000 m^2

Transport of goods in Marseilles

Tours (1/2)

- \bullet 320 in delivery and 215 in collect (coupling \approx 20%)
- length : from 50 to 180km
- 35 customers per tour
- average weight for a delivery: 100kg
- \bullet organization : ≈ 1 tour / borough

Transport of goods in Marseilles

Tours (2/2)

- vehicles :
 - capacities: 40% <3.5t, 40% 7 13t, 20% more thant 13t
 - gasoline engines
- many subcontractors : 2/3 of the total number of vehicles
- volume : delivery 1120 T / day, collect 770 T / day
- customers : delivery 12 500, collect 7 000

Evaluation

More and more organisational difficulties for planning tours

professionals (later and later) \neq people (earlier and earlier)

E-business

more and more deliveries : necessity to be close to customers

- \hookrightarrow towards several tours per day
- \hookrightarrow a platform in Marseilles becomes a necessity

Outline

3 key points in the modelling approach

- criterion to optimize ?
 - economical
 - environmental
 - social
- a lot of actors (different models)
 - local authorities
 - logistics companies
 - customers / inhabitants
- how to evaluate distribution costs

Criterion to optimize

9 criterion

- economical criterion
 - platforms: investment cost (fixed + variable/dock)
 - platforms: operating cost (depends on the number of docks)
 - vehicles: investment cost
 - vehicles: operating cost
- environmental criterion
 - vehicles: pollution
 - plateforms: pollution
- social criterion
 - platform: acceptability by the riparian
 - vehicle: congestion
 - platform: interest in terms of employment

How to estimate transportation costs ?

- Necessity to deal with costs of entering and leaving the city
 - impact on the location of logistics platforms
- Necessity to deal with the fleet of vehicles
 - cost per km, autonomy (electric engines)
 - implies to manage tours of vehicles
- hypothesis
 - \hookrightarrow fixed costs to distribute goods into zones of demand
 - one tour = cost of entering the city + service of *near* zones + cost of leaving the city

Extract of a mathematical model: constraints (1/2)

$$w_l \leq q_l \cdot u_l \qquad \forall l \in L$$
 (1)

$$\sum_{l \in L} \sum_{v \in V} x_{lvd} = 1 \qquad \qquad \forall d \in D \tag{2}$$

$$\sum_{l \in L} \sum_{d \in D} z_{lvd}^{\alpha} \le 1 \qquad \qquad \forall v \in V$$
(3)

$$\sum_{l \in L} \sum_{d \in D} x_{lvd} \le \mathcal{M} \cdot \sum_{l \in L} \sum_{d \in D} z_{lvd}^{\alpha} \qquad \forall v \in V$$
(4)

$$\sum_{l \in L} \sum_{d \in D} z_{lvd}^{\beta} \le 1 \qquad \qquad \forall v \in V$$
(5)

$$\sum_{l \in L} \sum_{d \in D} x_{lvd} \le \mathcal{M} \cdot \sum_{l \in L} \sum_{d \in D} z_{lvd}^{\beta} \qquad \forall v \in V$$
(6)

$$z_{lvd}^{\alpha} + z_{lvd}^{\beta} \le x_{lvd} \qquad \forall l \in L \; \forall v \in V \; \forall d \in D \tag{7}$$

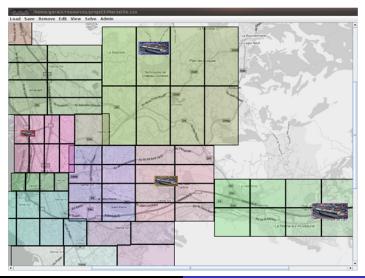
$$\sum_{l \in L} x_{lvd} + \sum_{l \in L} x_{lvd'} \le 1 \qquad \qquad \forall v \in V \; \forall d \in D \; \forall d' \in \bar{D}_d \tag{8}$$

$$\sum_{l \in L} \sum_{d \in D} \left(z_{lvd}^{\alpha} M_{ld} + z_{lvd}^{\beta} M_{ld} + x_{lvd} \operatorname{dist}_{d} \right) \le \mathfrak{s}_{v}^{\operatorname{dist}} \qquad \forall v \in V$$
(9)

$$\sum_{l \in L} \sum_{d \in D} \left(z_{lvd}^{\alpha} \mathcal{T}_{vld} + z_{lvd}^{\beta} \mathcal{T}_{vld} + x_{lvd} \mathcal{S}_{vd} \right) \le \min(a_v^{\text{tps}}, \mathcal{T}_{\text{max}}) \qquad \forall v \in V$$
(10)

avec: $\mathcal{M} \geq \operatorname{card} \{D\}$

O. Guyon, N. Absi, D. Feillet, T. Garaix PLUME

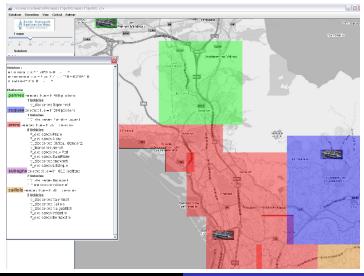

Extract of a mathematical model: constraints (2/2)

$\sum_{I \in L} x_{Ivd} \leq J_{vd}$	$\forall v \in V \; \forall d \in D$	(11)
$\sum_{I \in L} \sum_{d \in D} x_{lvd} \cdot \gamma_d \le b_v$	$\forall v \in V$	(12)
$\sum_{v \in V} \sum_{d \in D} x_{lvd} \cdot \gamma_d \leq \Theta \cdot w_l$	$\forall I \in L$	(13)
$u_l \in \{0,1\}$	$\forall l \in L$	(14)
$w_l \in \mathcal{N}$	$\forall l \in L$	(15)
$x_{vd} \in \{0,1\}$	$\forall v \in V, \forall d \in D$	(16)
$z_{lvd}^lpha \in \{0,1\}$	$\forall l \in L, \forall v \in V, \forall d \in D$	(17)
$z^{eta}_{l\!v\!d} \in \{0,1\}$	$\forall l \in L, \forall v \in V, \forall d \in D$	(18)

Outline

Screenshot: instance

O. Guyon, N. Absi, D. Feillet, T. Garaix


Screenshot: optimization tool

	5					
solution name						
Marseille						
Platform						
name	_	available			fixed	
pennes		N				
cuques		F				
arenc aubagne	_	¥ ¥				
caillols	_	~	-			
Callions						
Vehicle						
name				availat	le	
Pelec				2		
P ther						
M ther						
M_elec				*		
G ther						
economic weig		50	1		1	10
environmental	weight	_				
	-	50	1			1
-	-	50	1	'	'	10
0 social weight		<i>⊳</i> 50				10
0	-	50 50 50		1	•	
o social weight						10
o social weight						10

PLUME

O. Guyon, N. Absi, D. Feillet, T. Garaix

Screenshot: solution

O. Guyon, N. Absi, D. Feillet, T. Garaix

PLUME