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ANEW APPROACH TO OSTWALD RIPENING : BEHAVIOUR AT EARLY STAGES
AND INFLUENCE OF THE GRAIN CONNECTIVITY

GRUY F. and COURNIL M.
Centre S.P.LN.
Ecole des Mines de Saint-Ftienne,158 Cours Fauriel, 42023 Saint-Etienne, France

ABSTRACT

Tharks to the unidimensional model of Ostwald ripening proposed here, the most general systems, in
particular with high solid volume fraction can be studied and new aspects can be considered : influence
of the spatial arrangement of the grains, first stage of ripening, influence of a non-constant mass
diffusion coefficient.

Ostwald ripening, or coarsening of second phase particles is one of the major causes of changes in the
particle size distribution (PSD) with time for a given population of grains. It is particularly important for
processes such as ageing of precipitates or liquid phase sintering. The first models (1) and (2, 3) (LSW
model) were based on several restrictive assumptions, in particular very small volume fraction of grains
¢ and very dilute matrix or liquid phase. They predicted an asymptotic behaviour characterized by a
cubsic relationship of the mean particle size R versus time, when mass diffusion is the rate-determining
step : -

R} -R} =Kt
—Iio is the initial mean particle radius, K is a rate constant. A quasi stable, left-skewed, PSD was found
in these studies. Many authors (4-8) tried to improve the LSW model by including the effect of the
volume fraction ; they also obtained asymptotic cubic laws, however with ¢ dependent rate constants.
However, their models were valid only for small ¢ values and could not explain the experimental shape
(right-skewed) of the PSD. Other authors (9-16) took into account in a more realistic way the
interaction between a given grain and its neighbours. More concentrated systems could be so studied
and new PSD shapes -closer to the experimental observations- were found. Few researchers have
investigated the transient preasymptotic evolution (14-16).
In this paper, we present several applications of a new mathematical and numerical tool which can be
used to simulate any situation of Ostwald ripening. Compared to the so far existing models, our
approach allows us to study new cases or new aspects, for instance : highly charged systems with high
solubility, initial, transient and asymptotic evolution with time, influence of the spatial distribution and
conmectivity of the grains. This model is one-dimensionnal i.e. it considers Ostwald ripening in a row of
grains. Its validity and its interest were proved in a recent paper (17), in which a detailed description can
be found. The aim of the present paper is to remind the main features of the model and the associated
nurerical procedure and to present several possible applications ; some of them are quite new because
untractable or ignored by the previous approaches. In particular, the possibility of a non constant mass
diffusion coefficient is envisaged too ; for this, the theoretical and experimental results found by
Myerson and co-workers (18) in supersaturated systems are applied.

DESCRIPTION OF THE MODEL
Figure 1 represents the geometry of the unidimensional set of particles. The particles are composed of

the solid A (solute), which is soluble in the liquid B (solvent). A grain i is defined by two boundaries,
LBi and RBi. The left boundary of the whole system is fixed whereas the right boundary may be free to




move. The model can now be built according to the successive steps:

i) mass balance equations:

To be representative of dilute as well as concentrated liquid media, the mass balance equations of A
must be written in the general form (19, 20) :

Pa J D Jpa
—_——-— - 1
ot ax(pAVX A ®
px, andV, are the mass density and mass partial volume respectively of component k ; D is the

experimentally measured diffusion coefficient of A into B ; v is the mean mass velocity along the
coordinate x. The total mass balance is expressed by :

p__9pvy) o

ot ox
where p = pa + ps is the total mass density of the liquid.
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_ Figure 1 : Geometry of the set of particles

ii) state equation of the liquid phase:

p and pj are not independent variables, but are linked by the state equation of the liquid phase which is
assumed by Pascal (21) to be expressed as:

p=py+apy 3)

p% is the density of the pure solvent ; a is an experimentally measured constant. We will consider two
cases: the diffusion coefficient may be constant, as in the classical theory of Ostwald ripening, or
depending on the solute concentration. For the latter case, we adopt the point of view of Myerson (18):
he observes a rapid decline in diffusivity with increasing concentration in the supersaturated region. The
concentration which corresponds to a zero diffusivity is the spinodal concentration pag. We will use a
linear decreasing function for diffusivity versus concentration:

D=D;£ﬂ¥%t @)
Pas = Pae
Pae i5 the solute equilibrium concentration for a plane interface (grainliquid) ; D, is the
corresponding diffusivity.
iif) boundary conditions:
The boundary conditions may be found following Vrentas (22, 17) :
pr (V- D) =ps(vs-U) 5 Pz (Vs-U)=0 ®)

where U and v are respectively the velocity of the phase interface and the mass average velocity in the




solid phase.
Assuming that the surface kinetics is described by a first order law, it follows :

£ps (U-vs)=psk(p, - Pagy) ©)
where k is a kinetic constant, ps the solid phase density, and p, ,, the equilibrium concentration or the
24

solubility of A given by Gibbs Kelvin law:  pp oq = pX,eq eR . The "+" sign corresponds to the
interface RBi, and the "-" sign corresponds to the interface LBi.
From equations (1, 5, 6), boundary conditions at any grain-liquid interface can be obtained (17).
iv) initial conditions: pp = pa._
At instant zero, the concentration in A is assumed to be uniform in the liquid phase.
v) time evolution of the grain radii :
From the different boundary conditions (17), it follows :
d(2R;)
dt

The above set of equations poses a typical moving boundary problem. Generally speaking, exact
solutions of moving boundary problems are available only in a few cases. However, a number of special
techniques have been developed to give an approximate solution to the problem. In the present study,
we apply the simplest method i.e. : Goodman's integral approximation (23, 24, 17).

= (U - Vs)x=RBi + (U - Vs)x=LBi (7)

RESULTS

In this section, we report results of numerical integration of the ODE system setup above.
The application field of our model is too large to examine all the possible cases. A set of typical
parameter values commonly met in other theoretical works has been chosen :
PAed _o3. P g9, PAn_033;a=02;%=10"°
PoB Ps PoB Lo
L0 is the overall initial system size. The ratio Lopsk/D has been so defined that it can be varied if so
desired, because this parameter compares the diffusion to the interfacial reaction rate.

GENERAL BEHAVIOUR

Constant diffisivity : D = Dy

For the first simulations, the initial condition is a set of randomly chosen radii uniformly distributed
between 0 and 2R . The grains are randomly placed. The initial intergranular distances, either Z; (0) or
R; (0) + Z; (0) + Ri+1 (0) are taken to be constant. The results are the same for the two cases.

When the interface reaction is the rate-limiting step, a parabolic law is observed for the variation of the
mean radius with time. When the solute diffiision is the rate-limiting step, a cubic law is observed (Fig.
2). This is true whatever the volume fraction. This result agrees with LSW and related theories. From
now on, we will deal with evolutions where the diffusion is the rate-limiting step. We have verified that
a cubic law is observed not only during the period of asymptotic behaviour, to be in agreement with
these theories, but also as early as the first stage of the process. This behaviour was recently mentioned
by Patterson and co-workers (14, 25). The reduced PSD has been calculated for different steps of

Ostwald ripening (¢ = 0.25 ; Fig. 3). It tends to a quasi-stable form which is independent of the rate-
limiting step. The standard deviation tends to a certain limit (o= 0.35). The skewness is
negative but small (S ;= - 0.25). This indicates that the PSD shape is nearly symmetrical.




1.5 10°® |
----- 6=07 ]
1 10° — =025 P -
5 107°L ,/' _
t
Oo : 0 | | % | { mean
0 0.001 0.002 0 0.5 1 1.5 2 2.5

Figure 2 : R°-R}versus time t (dimensionless Figure 3 : Time evolution of the reduced particle
variables) ‘ size distribution (¢ = 0.25 and constant diffusivity)
Figure 4 represents the kinetic constant of the cubic law K versus the volume fraction ¢ for ¢ values
between 0.02 and 0.95. The shape of the curve K (¢) can be explained in the framework of the De
Hoffis theory (13, 17). Below the value of 0.02, the mean radius versus time does not obey a cubic law.
Both the standard deviation and the skewness take stable values after relatively rapid changes in the
early stages of coarsening. These stable values are not highly dependent upon the volume fraction (Ggs
=0.34+0.02 ; S =-0.25+0.05).
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Figure 4 : Kinetic constant of the cubic law versus Figure 5 : Time evolution of the PSD (¢ =0.25
the volume fraction at constant diffusivity and concentration dependent diffusivity)

Diffusivity dependent on solute concentration.
When the solute diffusion is the rate-limiting step, a cubic law is observed too; the dimensionless kinetic

constant is slightly smaller : 2.65 107 instead of 3.16 107 for a volume fraction equal to 0.25. In fact,
the supersaturation is very close to one ; hence the diffusivity becomes closed to D‘; . On the other

hand, the shape of the PSD is very different (Fig. 5). We observe the presence of the smallest grains,




particularly at the beginning of ripening. This is due to a slower disappearance of small grains because
of the low value of the solute diffusivity in their neighbourhood. Nevertheless, the peak due to the
smallest grains decreases in the long run.

TRANSIENT BEHAVIOUR

Our model is particularly usefil to the study of the first instants of the ripening. We already have
studied the influence of the initial PSD, and the influence of the initial particles arrangement (17). For
example, if all the particles, but one, have the same size Ro, we can observe the propagation of a mass
wave ; in a recent paper (26) we have shown the occurrence of a coherent region behind the
propagation front. This coherent region contains a constant particle number with the same radius equal
to 2R,.

In the early stage of coarsening, one of the relevant parameters is a "smoothing function” of the
particles set.

The simplest way to define the "smoothing fimction" geis:

2

1 2R, -R, -R,,

a =§Z( R LL)
i=1 R

Figure 6 shows the variation of g¢ with time for the two kinds of diffusivity. In the two cases, g¢ tends to
an asymptotic value equal to 0.8, corresponding to the quasi stable state. When the diffusivity is
depending on concentration, the transient period is longer and the smoothing fimction variations are
large. We also observe the same behaviour for the variation of R’ - R} with time (Fig. 7). As the

small grains slowly disappear (because of the low diffusivity), the mean radius does not increase, thus
the size difference between the smallest and the biggest grains remains large, and g¢ increases.
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Figure 6 : Smoothing parameter vs time t (p =025 ; Figure 7: R> - R} versus time t (9 =025 ;
dimensionless variables) ; 1: Constant D;2:1(pa)  dimensionless variables) ; 1 : Constant D ;2 : D(pa)

CONCLUSION

Within a undimensional model of Ostwald ripening, the main results already known on this
phenomenon have been retrieved: asymptotic mean radius variation with time, quasi-stable PSD, ... In




addition to this, new aspects, never studied before have been investigated : influence of high volume
fraction of highly soluble solids, effect of the spatial grain arrangement (which has been characterized
via a "smoothing function"), existence of a coherent mass-wave propagation along the grain
population, first stage of the ripening phenomenon, influence of a non-constant mass diffusion
coefficient ; the results from recent works of Myerson et al. have been applied. Compared to the
behaviour observed for constant diffusivity, ripening is considerably slowed down in its early stage,
however the asymptotic behaviour is little affected apart from the presence of a tail of fine particles.
Due to its simplicity and to the relative rapidity of the calculations, the present model can be used for a
large variety of situations of Ostwald ripening.
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