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Résumé — Modélisation de la dissolution/précipitation des solutions solides idéales — Le com-
portement cinétique d’une solution solide idéale est modélisé en mettant en compétition deux réactions :
la dissolution stoechiométrique du solide existant et la précipitation du composé le moins soluble, c’est-
à-dire celui par rapport auquel la sursaturation du fluide est maximum ; les vitesses de ces deux réactions
sont exprimées en fonction des écarts à l’équilibre correspondants, les constantes cinétiques dépendant
du pH. Dans ce modèle idéal, les courbes de saturation et l’évolution du fluide au sein d’un système
réactif simple peuvent être représentées commodément dans des diagrammes en potentiels chimiques.
La simulation d’un système géochimique, constitué d’un aquifère gréseux glauconieux parcouru par
une eau de mer enrichie en carbonates, permet d’analyser l’impact de la prise en compte de deux
solutions solides ferro-magnésiennes, une calcite et une chlorite, sur les échanges Fe-Mg, au cours
de la dissolution des carbonates. Le modèle rend bien compte de la tendance des solutions solides à
se dissoudre de façon congruente avant que la précipitation ne commence et ne ramène le fluide vers
l’équilibre.

Abstract — Modelling the dissolution/precipitation of ideal solid solutions — The kinetic behaviour
of an ideal solid solution is modelled by two competing reactions: the stoichiometric dissolution of
the existing solid and the precipitation of the least soluble compound, i.e. that with respect to which
the oversaturation of the fluid is maximum; both reaction rates are expressed as a function of the
corresponding departure from equilibrium, with a pH-dependent kinetic constant. Within this ideal
model, the saturation curves and the fluid evolution of a simple reacting system may be displayed
conveniently in chemical potential diagrams. The simulation of a geochemical system, constituted of
a glauconitic sandstone aquifer infiltrated through by a sea water enriched in carbonates, allows to
analyze the impact of taking into account two ferro-magnesian solid solutions, a calcite and a chlorite,
on Fe-Mg exchanges during carbonates dissolution. The model accounts well for the tendency of solid
solutions to dissolve congruently before precipitation starts and drives the fluid composition towards
equilibrium.
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http://ogst.ifp.fr/index.php?option=toc&url=/articles/ogst/abs/2005/02/contents/contents.html
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INTRODUCTION

The kinetic behaviour of multiphasic solid-fluid assemblages
is usually described by competing mineral dissolutions and
precipitations, and is governed by departure from equili-
brium.

When a solid solution is considered instead of minerals
of fixed composition, theoretical and practical complications
arise:
1. departure from equilibrium is written differently depend-

ing on whether the composition of the solid solution is
invariant or not, i.e. whether the stoichiometric saturation
of the existing solid solution (Thorstenson and Plummer,
1977) or the total saturation of the whole range of poten-
tial compounds pertaining to the solid solution (Denis and
Michard, 1983; Michard, 1986) is considered;

2. in general, equilibrium cannot be reached only by dis-
solving or precipitating the existing solid solution, and
coprecipitation must be added to stoichiometric dissol-
ution; when the aqueous solution is oversaturated with
respect to a particular range of minerals pertaining to the
solid solution, precipitation proceeds with a composition
which is a priori different from that of the existing solid
solution, and a rule must be introduced to calculate this
composition as well as the reaction rate.
Transformations of solid solutions, whether ideal or non-

ideal, in solid solution–aqueous solution systems, have been
studied, whether theoretically or experimentally, by many
authors (Thorstenson and Plummer, 1977; Lippmann, 1977,
1980; Michard, 1989; Glynn, 1990; Glynn and Reardon,
1990; Blanc, 1996; Blanc et al., 1997; Pina et al., 2000;
among others). This study aims to discuss especially kinetic
aspects of the pre-cited problems (points 1 and 2) for ideal
solid solutions, in a theoretical way.

This paper is organized as follows. In section 1, a few
notions about equilibria of solid solutions are shortly sum-
marized and illustrated on chemical potential diagrams. In
section 2, the model used to describe the reactions between
solid solutions and an aqueous solution is presented. In
section 3, a reactive transport computer code, named DIA-
PHORE SOLSOL (Nourtier-Mazauric, 2003), is described.
It takes into account the behaviour of ideal solid solutions as
well as fixed compounds. In the last section, a simulation is
conducted with this code in the context of CO2 sequestration.
Diaphore SolSol is used to study the injection of sea water
enriched in carbon, in a glauconitic sandstone aquifer con-
taining a carbonate solid solution and a silicate one among
other minerals.

NOTATIONS

Roman symbols are constants, italic symbols are variables.

ai activity of the ith aqueous species [dimensionless]

cl total concentration of the lth element [number of
moles per mass of solvent]

i subscript denoting an aqueous (basis or secondary)
species

I ionic strength calculated using molalities
(moles/kg H2O)

j subscript denoting an aqueous secondary species
k subscript denoting an aqueous basis species
kdm kinetic dissolution constant of the mth mineral

[number of moles per unit of surface and unit of
time]

kpm kinetic precipitation constant of the mth mineral
[number of moles per unit of surface and unit of
time]

Kj solubility product of the jth secondary species
[dimensionless]

l subscript denoting a chemical element
m subscript denoting a mineral (pure one or solid solu-

tion)
mi molality of the ith aqueous species [number of

moles per mass of solvent]
Mm mth mineral (pure one or solid solution)
Na number of aqueous species: Na = Nc + Nx

Nc number of aqueous basis species
Nem(s) number of end-members in the sth solid solution
Nm number of mineral species
Nx number of aqueous secondary species
p subscript denoting a pure mineral
R gas constant: R = 8.314 J.mol−1.K−1

s subscript denoting a solid solution
sm reactive surface area of the mth mineral [surface per

volume of solution]
Sm geometric surface area of the mth mineral [surface

per volume of solution]
Sk kth aqueous basis species
Sj jth aqueous secondary species
T temperature
ϑm kinetic reaction rate of the mth mineral by solu-

tion volume unit [number of moles per volume of
solution per unit of time]

Vm molar volume of the mth mineral
Xιs mole fraction of the ιth end-member component in

the sth solid solution [dimensionless]
Xιs mole fraction of the ιth end-member component in

the sth solid solution of fixed composition [dimen-
sionless]

X̃ιs mole fraction of the ιth end-member of the least
soluble solid solution of type s [dimensionless]

αli number of moles of the lth element in one mole of
the ith aqueous species

βlm number of moles of the lth element in one mole of
the mth mineral

ιs subscript denoting an end-member component of
the sth solid solution
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∆rGιs Gibbs free energy of reaction of the ιth end-member
of the sth solid solution [energy per number of
moles]

Γm critical oversaturation threshold of the mth mineral
[dimensionless]

φm volume fraction of the mth mineral in the medium
(water + rock) [dimensionless]

Φ porosity [dimensionless]
νjk stoichiometric coefficient of the kth aqueous basis

species in the dissociation reaction of the jth
aqueous secondary species

υmk stoichiometric coefficient of the kth aqueous basis
species in the dissociation reaction of the mth mine-
ral

Ωιs saturation degree of the pure phase corresponding
to the ιsth end-member component [dimensionless]

ΩSs(Xιs)
stoichiometric saturation degree of the sth solid
solution of fixed composition

(
Xιs

)
ιs=1,...,Nem(s)

[dimensionless]
ΩTs total saturation degree of the sth solid solution

[dimensionless]

1 THEORETICAL BACKGROUND AND CHEMICAL
POTENTIAL DIAGRAMS

A solid solution is described by a decomposition into end-
members. Its composition then varies with its end-member
mole fractions. For example, a carbonate solid solution
Ca(Fe,Mg)(CO3)2 is represented by 2 end-members, pure
ankerite CaFe(CO3)2 and pure dolomite CaMg(CO3)2.

At a given time, the solid solution may be present in a
geochemical system with a determined composition. This
mineral phase of specific chemical composition, which will
be referred to as the particular solid solution, is distinct from
the set defined by the solid solution end-members, which will
be designated as the generic solid solution. The particular
solid solution is produced as an “instant composition” of the
generic solid solution. For instance, Ca(Fe0.6Mg0.4)(CO3)2

is a particular solid solution of the Ca(Fe,Mg)(CO3)2 generic
solid solution.

1.1 Thermodynamic equilibrium

When the solid solution is ideal, the activity of each end-
member is equal to its mole fraction.

The equilibrium condition between an ideal solid solution
and an aqueous solution is thus expressed as the following
partial mass action laws:

Ωιs = Xιs , ∀ ιs ∈ [1, Nem(s)] (1)

(Garrels and Christ, 1965), where Xιs is the end-member
mole fraction and Ωιs the saturation degree of the pure phase
corresponding to each end-member. This saturation degree
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Figure 1

Various aqueous solutions at thermodynamic equilibrium with
a binary ideal solid solution (P1,P2) whose composition is given
by its end-member mole fractions (X1,X2).

is the ratio of the ionic activity product and the equilibrium
constant of the dissociation reaction of the end-member in
the aqueous solution.

The partial mass action laws (1) can be illustrated in chem-
ical potential diagrams (Guy, 2003; Nourtier-Mazauric,
2003). More precisely, the geochemical system is repre-
sented by a point whose coordinates are the Nem(s) overall
Gibbs free energies of dissociation of the solid solution end-
members in the aqueous solution. For a binary solid solution,
these overall Gibbs free energies are defined as

{
∆rG1 = R T ln Ω1 ,

∆rG2 = R T ln Ω2 .
(2)

In the case of an aqueous solution at thermodynamic equi-
librium with an ideal binary solid solution Ms, the overall
Gibbs free energies of dissociation of Ms end-members in
the aqueous solution are thus given by

{
∆rG1 = R T ln X1 ,

∆rG2 = R T ln X2 = R T ln(1− X1) .
(3)

Therefore, fluids at thermodynamic equilibrium with par-
ticular binary ideal solid solutions of known composition
(X1 = 0.1, 0.2, 0.3, . . . , 0.9) are represented on chemical
potential diagrams by points (R T ln X1, R T ln(1 − X1)) (1)

(figure 1).

(1) In this paper, all chemical potential diagrams are drawn for a temperat-
ure of 333K, identical to the one of the application (see section 4).
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By language abuse, these points will be referred to either
as aqueous solutions or as particular solid solutions of various
compositions (at thermodynamic equilibrium). For instance,
the binary ideal solid solution of composition (X1 = 0.3,
X2 = 0.7) is represented by point M on figures 1 to 6.

In this paper, chemical potential diagrams have been pre-
ferred to other types of diagrams such as those introduced by
Lippmann (1980, 1982) to depict solid and aqueous compos-
itions at equilibrium. The latter could have been developed
without modifying our modelling approach. Among some
interests for this study, chemical potential diagrams allow to
define the scope of particular solid solutions with respect to
which the fluid is oversaturated (see section 2.2, especially
figures 5 and 6), to visualize chemical reaction affinities (2)

and to depict evolution of fluids which are out of equilibrium
(see section 4).

1.2 Stoichiometric saturation

If the solid solution reacts in an aqueous phase without
changing composition (e.g. owing to kinetic restrictions), its
equilibrium with the fluid is referred to as stoichiometric
saturation (Thorstenson and Plummer, 1977; Glynn and
Reardon, 1990).

The mass action law of the reaction between the aqueous
solution and this solid solution, whose end-member mole
fractions (Xιs)ιs=1,...,Nem(s) are fixed, is

ΩSs(Xιs)
= 1 , (4)

where the stoichiometric saturation degree ΩSs(Xιs)
of the

aqueous solution with respect to the solid solution of fixed
composition (Xιs) is defined as (Tardy and Fritz, 1981)

ΩSs(Xιs)
=

Nem(s)∏

ιs=1

(
Ωιs

Xιs

)Xιs

. (5)

In a chemical potential diagram, any aqueous solu-
tion at stoichiometric saturation with a binary ideal solid
solution of fixed composition (X1, X2), represented by a
point M of coordinates (RT ln X1, RT ln X2), follows a
straight line (SS(M)) passing by the point M (figure 2).
Various fixed compositions of the ideal solid solution
(X1 = 0.1, 0.2, 0.3, . . . , 0.9) thus lead to various stoichio-
metric straight lines.

1.3 Total saturation

Denis and Michard (1983) introduced the notion of total
saturation in order to state a sole thermodynamic equili-
brium condition between an aqueous phase and an ideal

(2) On chemical potential diagrams, disequilibrium extent can be evaluated
by considering the distance between the point which represents the
aqueous solution and the total saturation curve.
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Figure 2

Stoichiometric saturations between aqueous solutions and sev-
eral binary ideal solid solutions of different fixed compositions.
Fluids at stoichiometric saturation with the particular ideal
binary solid solution M follow the straight line (SS(M)).

solid solution of variable composition:

ΩTs = 1 , (6)

where the total saturation degree of the aqueous solution
with respect to an ideal solid solution is defined as (3)

ΩTs =
Nem(s)∑

ιs=1

Ωιs . (7)

Any aqueous solution which is “totally saturated” with
respect to a generic solid solution is at thermodynamic
equilibrium with the solid solution whose end-member mole
fractions are the respective end-member saturation degrees.

Fluids at total saturation with respect to a binary ideal
solid solution are represented on a curve (ST) in chemical
potential diagrams (figure 3).

Since any aqueous solution which is not at total saturation
with the generic solid solution is out of equilibrium, any
fluid at stoichiometric saturation with a particular solid solu-
tion, and out of total saturation, presents a metastable state.
Straight lines (SSs) thus describe metastable states, except
at the intersection with curve (ST) where true equilibrium is
reached (Guy, 2003).

(3) Notice that expression (7) would be different for real solid solutions
(see Michard, 1989).
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Figure 3

Total saturation and stoichiometric saturations between
aqueous solutions and various binary ideal solid solutions of
different fixed compositions.
Fluids at total saturation with the ideal binary solid solution
(P1,P2) follow curve (ST).

2 SOLID SOLUTION MODELLING

2.1 Equilibria

Two types of equilibrium conditions have been identified:
stoichiometric saturation and total saturation. However, the
corresponding states are linked: the total saturation degree of
a given fluid with respect to an ideal solid solution is equal to
its stoichiometric saturation degree with respect to the least
soluble solid solution (4) (Nourtier-Mazauric, 2003), i.e.

ΩTs = max
(Xιs)ιs

ΩSs(Xιs )
,

= ΩSs(X̃ιs )
, (8)

where the composition
(
X̃ιs

)
of the least soluble solid solution

in the fluid is given by (5)

X̃ιs =
Ωιs

ΩTs

, ∀ ιs ∈ [1,Nem(s)] . (9)

(4) The least soluble solid solution in an aqueous solution is less likely
to dissolve (or more likely to precipitate) than any other compound
belonging to the generic solid solution. Since the saturation degree of
a fluid with respect to a mineral varies inversely to the solubility of this
compound in the fluid, the saturation degree of the aqueous solution
with respect to the least soluble solid solution is the highest.

(5) Notice that relations (8) and (9) are valid only for ideal solid solutions.
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Figure 4

Departure from equilibrium (point M), from total saturation
(curve ST) and from stoichiometric saturation (straight line
SS(M)) between aqueous solutions and a particular binary ideal
solid solution of known composition M.
“None” means that aqueous solutions are stoichiometrically
undersaturated with respect to M and totally oversaturated with
respect to the generic solid solution.

Therefore, any aqueous solution which is at stoichiometric
saturation with a particular solid solution is totally oversat-
urated with respect to the generic solid solution, unless the
former is also at total saturation with respect to the latter, i.e.
unless this solid solution is the least soluble one.

2.2 Departure from equilibrium

Considering equation (8), six situations relative to the satura-
tion of the aqueous solution are to be distinguished (figure 4):

1. the aqueous solution is at equilibrium with the existing
ideal solid solution (Ωιs = Xιs, ∀ ιs), i.e. simultaneously
at total (6) and stoichiometric saturations (ΩTs = 1 and
ΩSs(Xιs)

= 1); this particular solid solution is therefore

the least soluble one (Xιs= X̃ιs , ∀ ιs) (point M);
2. the fluid is totally undersaturated with respect to the ideal

solid solution (ΩTs < 1 and thus ΩSs(Xιs )
< 1 , ∀ Xιs )

(void domain at the bottom on the left);
3. it is simultaneously totally saturated and stoichiometri-

cally undersaturated with respect to the existing solid
solution (ΩTs = 1 and ΩSs(Xιs)

< 1) (curve ST excepted

point M);

(6) i.e. at stoichiometric saturation with the least soluble solid solution
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4. it is stoichiometrically oversaturated with respect to the
existing solid solution (ΩSs(Xιs)

> 1 and thus ΩTs > 1)

(domain with vertical dotted lines, at the top on the right);
5. it is simultaneously stoichiometrically saturated with

respect to the existing solid solution and totally over-
saturated (7) (ΩSs(Xιs)

= 1 and ΩTs > 1) (straight line

SS(M) excepted point M);
6. it is simultaneously stoichiometrically undersaturated

with respect to the existing solid solution and totally
oversaturated (ΩSs(Xιs)

< 1 and ΩTs > 1) (domains with

horizontal dotted lines).

In case 1, the solid solution does neither precipitate nor
dissolve, since equilibrium is reached.

In case 2, the solid solution is likely to dissolve. If a
particular solid solution is already present in the geochemical
system, it dissolves. As in many other works (Denis and
Michard, 1983; Bourcier, 1985; Michard, 1986; Michau,
1997) this dissolution is modelled in a stoichiometric way,
without variation of the solid solution composition

(
Xιs

)
.

In case 3, the model implies stoichiometric dissolution of
the existing solid solution, with a fixed composition

(
Xιs

)
.

Since the composition of a solid solution at equilibrium
depends on that of the aqueous solution (see partial mass
action laws (1)) and since the possible dissolution of the
existing solid solution is modelled in a stoichiometric way,
the solid solution can not attain thermodynamic equilibrium
by precipitating with the same composition as that of the
already existing phase; coprecipitation of another particular
solid solution must be added to the stoichiometric dissolution
of the existing solid solution to reach equilibrium.

In case 4, the existing solid solution is likely to precipitate.
The aqueous solution is then oversaturated with respect to
a certain range of particular solid solutions including the
existing one. For example, figure 5 shows in thick lines all
particular solid solutions with respect to which a particular
fluid A is stoichiometrically oversaturated (8). However, this
model chooses to precipitate only one particular solid solu-
tion, among all those which are likely to precipitate. Since
the combination of stoichiometric saturation and total satu-
ration leads to equilibrium (Nourtier-Mazauric, 2003) and
since property (8) implies that total saturation is equivalent
to stoichiometric saturation of the least soluble solid solu-
tion, the unique particular solid solution which precipitates
according to the model is the least soluble one.

(7) consequently it is stoichiometrically oversaturated with respect to the
least soluble solid solution (among others)

(8) If point A was on the stoichiometric straight line (SS(L)) (resp. (SS(N)))
and in the domain where ∆rG1 ≥ 0 (resp. ∆rG2 ≥ 0), the aqueous
solution represented by point A would be stoichiometrically oversat-
urated with respect to particular solid solutions whose compositions
are comprised between the one of L and the one of pure end-member
P1 (resp. between N and pure end-member P2), i.e. XL

1 < X1 ≤ 1,
0 ≤ X2 < XL

2 (resp. 0 ≤ X1 < XN
1 , XN

2 < X2 ≤ 1).
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Stoichiometric oversaturation of an aqueous solution A with
respect to the particular compound M belonging to the generic
solid solution defined by its end-members (P1, P2), stoichiome-
tric saturation of A with respect to two fixed compounds, L and
N, belonging to the generic solid solution, and stoichiometric
oversaturation of A with respect to several particular binary
ideal solid solutions of fixed composition comprised between
those of L and N (including M).

It is important to keep in mind that all particular solid
solutions with respect to which the aqueous solution is
stoichiometrically oversaturated are likely to precipitate, not
only the least soluble one. The choice of precipitating the
least soluble solid solution (instead of all compounds with
respect to which the fluid is stoichiometrically oversaturated)
is sensible for ideal solid solutions because it rests on specific
properties of ideal solid solutions (equations (8)–(9)) and on
definition (7) of total saturation for ideal solid solutions.

In case 5, the model implies the precipitation of the least
soluble solid solution, with a known composition

(
X̃ιs

)
given

by equation (9).
In case 6, the existing solid solution is likely to dissolve

and a certain range of particular solid solutions (excluding
the existing one) is likely to precipitate. This is illustrated on
figure 6: the aqueous solution (point B) is stoichiometrically
undersaturated with respect to the existing solid solution
(point M) and saturated with respect to two particular solid
solutions (points P and Q, such as M is outside the range
[P,Q]) and is therefore oversaturated with respect to all com-
pounds whose compositions vary between the one of P and
the one of Q (thick lines). According to the previously
described model, the existing solid solution dissolves stoi-
chiometrically, with a fixed composition

(
Xιs

)
, and the least

soluble one coprecipitates, with a known composition
(
X̃ιs

)
.
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Total oversaturation of an aqueous solution B with respect
to the generic solid solution, stoichiometric undersaturation
of B with respect to M, stoichiometric saturation of B with
respect to two fixed compounds, P and Q, belonging to the
generic solid solution, and stoichiometric oversaturation of B
with respect to several particular binary ideal solid solutions
of fixed composition comprised between those of P and Q
(excluding M).

As long as a particular ideal solid solution exists in
the geochemical system, whatever stoichiometric saturation
state the fluid has with respect to it, and as the aqueous
solution is at total oversaturation with respect to the solid
solution (cases 2, 4, 5, 6), two particular solid solutions have
to be taken into account at every moment: the existing one
and the least soluble one.

2.3 Kinetics

In the case of solid solutions, dissolution and precipitation
can occur simultaneously for the same phase. Both kinetic
reactions are described by two reaction rates, one for the
dissolution of the existing solid solution, and the other for
the coprecipitation of the least soluble one. The reaction
rate of the overall reaction of the solid solution is their sum
(Nourtier-Mazauric, 2003).

Kinetic reaction rates depend on the departure from equi-
librium, and therefore on the particular solid solution which
is likely to react, i.e. on the type of reaction: stoichiometric
dissolution or “total” precipitation.

If the existing ideal solid solution dissolves in a stoichio-
metric way, with a composition

(
Xιs

)
, departure from equi-

librium is expressed by its stoichiometric saturation degree

ΩSs(Xιs)
. If the least soluble ideal solid solution precipit-

ates, with a composition
(
X̃ιs

)
, departure from equilibrium

is expressed by its total saturation degree ΩTs .
The overall reaction of the solid solution results from

the possible dissolution of the existing one and from the
(co-)precipitation of the least soluble one. During a reaction
step, these two particular solid solutions are considered as
independent, and they react with the fluid phase at their
own rates. This defines uniquely how the fluid composition
changes, how much of the existing solid solution is dissolved,
and how much of the least soluble one is precipitated. But
the solid volume (and composition) must be updated prior to
the next step in order to keep only one particular solid solu-
tion, otherwise the number of solids to be considered would
increase at each time step (9). In our model, this is realized
simply by mixing together the remaining solid solution with
the small amount of the least soluble one which is formed
during one time step. This homogenization means that the
small amount of solid which precipitates is assumed to dis-
solve immediately into the remaining solid, which keeps a
homogeneous composition instead of becoming zoned (10).
From a physical viewpoint, this would be realistic if diffu-
sion was rapid enough to insure a complete homogenization
of zoned solids, but obviously this is an oversimplification
which is justified only by calculation requirements.

The composition of the solid solution homogenized from
the existing and the least soluble ones then depends on the
compositions of both particular solid solutions and on both
reaction rates.

3 DIAPHORE SOLSOL

The ideal solid solution model has been integrated into a
computer code named Diaphore (Le Gallo et al. 1998; Cas-
sou, 2000), designed to simulate the reactive transport of
aqueous species in a totally water saturated medium.

The description of this code is limited here to the simpli-
fied case of an isothermal system without oxydo-reduction
reactions, gases, diffusion/dispersion processes, or variation
of Darcy velocity, in a one-dimension box.

The geochemical system, composed of aqueous and mine-
ral species, is defined by a set of basis species (Westall et al.,
1976; Yeh and Tripathi, 1989; Bethke, 1996).

(9) if the aqueous solution was oversaturated with respect to the least
soluble solid solution during this time step

(10) Actually, if the amount of the least soluble solid solution produced
during the time step is more than the one of the existing solid solu-
tion dissolved meanwhile (these amounts can be computed from the
model), the overall solid grows and may get zoned. Taking into
account a zonation would require that only precipitation of the least
soluble solid solution occurs and that the fluid does not react with the
existing solid solution.
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An initial step consists in determining the speciation of
the geochemical system, according to the local equilibrium
hypothesis for the aqueous solution alone.

Then the program carries out a time loop in the course of
which the dynamic system is solved by the Newton-Raphson
algorithm. This dynamic system, discretized in an implicit
way, is strongly non-linear; it is formed by adding to solvent
and electroneutrality equations several equations: the mass
action laws of speciation reactions, the solute hydrodynamic
transport equations and the mineral quantity variation equa-
tions linked to kinetic phenomena.

3.1 Local equilibrium

In a geochemical system split up into Nc aqueous
basis species (Sk)k=1,...,Nc , Nx aqueous secondary species(
Sj

)
j=Nc+1,...,Na

and Nm mineral species (Mm)m=1,...,Nm , spe-
ciation reactions may be written for each secondary species

Sj 

Nc∑

k=1

νjkSk , (10)

with νjk the stoichiometric coefficients of basis species Sk in
the Sj dissociation reaction.

The mass action laws of speciation reactions, linearized
using logarithms, link up aqueous species activities ai and
equilibrium constants Kj of reactions (10):

Nc∑

k=1

νjk log ak − log aj = log Kj , ∀ Nc < j ≤ Na . (11)

Aqueous species activity

Aqueous species activities ai depend on molalities mi and on
activity coefficients γi:

ai = γi mi . (12)

Aqueous species activity coefficients, functions of the
aqueous solution ionic strength, are determined by the exten-
ded Debye-Hückel (also called B-dot) law (Lietzke and
Stoughton, 1961; Helgeson, 1969), which is applicable only
for relatively dilute solutions (ionic strength less than 1)
(Fritz, 1981).

Water activity

For very dilute solutions, water activity is very close to 1.
When the solution gets more concentrated, water activity
lessens.

Considering that water activity in a complex solution is
the same as in a NaCl solution of identical ionic strength,
water activity of moderately concentrated aqueous solutions,
whose ionic strength I is less than 1, is calculated by the
following formula (Helgeson, 1969)

ln aH2O = −0.03603 I φ , (13)

where the osmotic coefficient φ depends itself on the ionic
strength and also depends on temperature (Fritz, 1975).

3.2 Solute hydrodynamic transport

The mass conservation equation in a simplified system,
where Darcy velocity is constant and where there is neither
diffusion nor dispersion processes, may be expressed for
each element as

∂

∂t

(
Φ wH2O cl

)+ u · ∇ (
wH2O cl

) = − Φ

ρaq

Nm∑

m=1

βlmϑm (14)

(Lichtner, 1996), where Φ is porosity, wH2O water mass
fraction in the solution, cl element total concentration, u
Darcy velocity, ρaq aqueous solution density and ϑm mineral
kinetic reaction rates.

The total concentration of the lth element in solution is a
function of all aqueous species molalities:

cl =
Na∑

i=1

αli mi . (15)

3.3 Kinetics

3.3.1 Mineral mass transfer equations

Let Vaq be the volume of aqueous solution, nm the number of
moles of mineral Mm and ϑm its reaction rate related to the
volume of solution:

ϑm = 1

Vaq

∂nm

∂t
. (16)

The volume fraction φm of the mineral then obeys the fol-
lowing equation

∂φm

∂t
= Φ Vm ϑm , (17)

where Φ is the porosity and Vm the molar volume of the
mineral. If the latter is an ideal solid solution Ms, its molar
volume depends on its composition and on end-member
molar volumes:

Vs =
Nem(s)∑

ιs=1

Xιs Vιs . (18)

3.3.2 Kinetic rate expressions for pure minerals

The kinetic model integrated into Diaphore is based on
the assumption that precipitation/dissolution kinetics is gov-
erned exclusively by surface reactions, i.e. molecular diffu-
sion is not considered.

Precipitation

When the aqueous solution is oversaturated with respect to
the pure mineral Mp, the mineral is likely to precipitate.
However, this happens only if nucleation occurs. This
condition is modelled by a critical oversaturation threshold
Γp (Γp > 1) such as the mineral, initially absent, starts
precipitating as soon as Ωp exceeds Γp and continues as long
as Ωp > 1.
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The kinetic precipitation rate of the pure mineral Mp is
then given by the following relation (Steefel and van Cap-
pellen, 1990; Madé, 1994)

ϑp = kpp sp
(
Ωp

αp − 1
)βp

, (19)

with kpp the kinetic precipitation constant of the pth mineral,
sp its reactive surface area (cf. paragraph 3.3.4), and αp and
βp two empirical coefficients, specific to the mineral. Kin-
etic coefficients, which depend on temperature, are constant
within the present isothermal model.

Dissolution

When the aqueous solution is undersaturated with respect
to the pure mineral, i.e. when Ωp < 1, the fixed compound
dissolves with the following kinetic rate (Madé, 1994)

ϑp = −kdp fp(pH) sp
(
1−Ωp

)
, (20)

where fp = aH+
nH+

p in acidic medium, 1 in neutral medium

and aOH−
nOH−

p in basic medium. nH+
p (resp. nOH−

p ) is the
stoichiometric coefficient of H+ (resp. OH−) species needed
to form one mole of activated complex.

3.3.3 Kinetic rate expressions for solid solutions

Kinetic rate laws for ideal solid solutions are based on those
used for pure minerals (cf. previous section).

Precipitation

When the aqueous solution is totally oversaturated with
respect to the ideal solid solution Ms, i.e. when ΩTs > 1,
the least soluble one precipitates, provided that a nucleation
threshold is reached in case the solid solution still does
not exist, or, alternatively, that a particular solid solution
is already present in the system.

Owing to the kinetic precipitation law (19) for pure miner-
als and considering the remarks of paragraph 2.3, the kinetic
precipitation rate of the ideal solid solution Ms obeys the
following relation

ϑps = kps ss
(
ΩTs

αs − 1
)βs

. (21)

where kps is the kinetic precipitation coefficient of the least
soluble solid solution s, the reactive surface area ss (para-
graph 3.3.4) and the empirical coefficients αs and βs are
specific to the solid solution, and independent of its compos-
ition. Kinetic coefficients depend on the composition

(
X̃ιs

)

of the least soluble solid solution (Nourtier-Mazauric, 2003).

Dissolution

When the aqueous solution is stoichiometrically undersat-
urated with respect to the existing solid solution, i.e. when
ΩSs(Xιs)

< 1, the latter dissolves. From the kinetic dissol-

ution law (20) for pure minerals, the following expression
may be written for the kinetic dissolution rate of the existing
ideal solid solution:

ϑds = −kds fs(pH) ss

(
1−ΩSs(Xιs)

)
, (22)

where the function fs depends on pH as fp in section 3.3.2.
The kinetic dissolution constant kds is independent of the
composition of the existing solid solution; it is specific to the
type of solid solution (e.g. carbonate).

Overall reaction

Since dissolution and coprecipitation are likely to occur sim-
ultaneously, the overall reaction rate of the solid solution is
given by

ϑs = ϑps + ϑds . (23)

3.3.4 Petrophysical model

It is assumed, in a very simplified manner, that rocks can be
represented as a packing of ideal, disjoined spherical grains.
The mineral growth is thus modelled by increasing either (1)
the number or (2) the radius of spheres and fixing the other
parameter.

Usually, the first option is chosen for clays, made of small
particles, while the latter is preferred for primary skeleton
minerals, like quartz and K-feldspar.

Let rm the grain radius and dm the number of grains by
solution volume unit. Geometric surface area by solution
volume unit Sm can be deduced from geometrical relations
for spheres: 




Sm = 3

rm

φm

Φ

dm = 3

4 π r3
m

φm

Φ

(24)

if the sphere radius is constant,




Sm = 4 π dm

(
3

4 π dm

φm

Φ

)2/3

rm =
(

3

4 π dm

φm

Φ

)1/3
(25)

if the number of spheres is constant.
The reactive surface area sm, i.e. the surface which is actu-

ally involved in reactions, is approximated by multiplying
the geometric surface area by a reactive coefficient cm, that
depends on both the mineral and the particular rock fabric
(Brosse et al., this issue):

sm = cm Sm . (26)
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TABLE 1

Initial mineral system.

mineral chemical formula φm sm cm kdm kpm αm βm Γm texture Vm log Km
(a)

(%) (m2/l) (mol/m2/year) (mol/m2/year) model (cm3/mol)

fixed compounds

Quartz SiO2 69 45 1. 1.6E− 5 1.6E− 5 1. 1. 1. cst ds 22.688 −3.503

Kaolinite Si2Al2O5(OH)4 1 80 1. 4.5E− 5 4.5E− 5 1. 1. 1. cst rs 99.52 4.550

K-Feldspar KAlSi3O8 3 3.5 1. 5.5E− 4 5.5E− 4 1. 1. 1. cst ds 108.87 −0.514

Albite NaAlSi3O8 1 1.5 1. 5.5E− 4 5.5E− 4 1. 1. 1. cst rs 100.07 1.990

Calcite CaCO3 4 5.5 1. 2.9E− 1 2.9E− 1 1. 1. 1. cst ds 36.934 3.210

Biotite Si2.8Al1.4Mg0.8Fe2O10(OH)2K 2.2 15.3 1. 4.7E− 6 4.7E− 6 1. 1. 1. cst rs 154.1 14.69

(initial) solid solutions

Mg-Fe-chlorite Si3Al2(Fe2.5Mg2.5)O10(OH)8 0.08 0.0587 1. 4.7E− 6 ∼ 4.7E− 6 (b) 1. 1. 1. cst rs 211.1 (c) 14.99 (c)

Mg-ankerite Ca(Fe0.95Mg0.05)(CO3)2 0.88 0.587 1. 1.1E− 1 ∼ 1.1E− 1 (b) 1. 1. 1. cst ds 69.366 (c) 1.544 (c)

(a) Classical equilibrium constant for pure minerals, apparent overall solubility product of the existing solid solution (Tardy and Fritz, 1981) for initial

solid solutions.
(b) Parameter which depends on the composition of the least soluble solid solution (here at initial time).
(c) Parameter which depends on the composition of the existing solid solution (here at initial time).

The reactive coefficient, generally less than 1, may take into
account contacts between contiguous grains, which decrease
the overall surface area, or mineral surface partial occultation
due to precipitation of minerals over preexisting grains.

4 APPLICATION

In the context of CO2 sequestration into saline aquifers of
the subsurface, the computer code has been used to study the
evolution of a glauconitic sandstone aquifer (11) (table 1),
in which a sea water enriched in carbonates (table 2) is
injected (12) continuously, at 60 ◦C and 100 bar.

In this system, exchanges between iron and magnesium
are studied in a peculiar way by considering two minerals as
ideal solid solutions: (1) a magnesian ankerite, whose end-
members are pure ankerite CaFe(CO3)2 and pure dolomite
CaMg(CO3)2, and (2) a ferro-magnesian chlorite, whose
end-members are Si3Al2Fe5O10(OH)8, referred to as “Fe-
chlorite”, and Si3Al2Mg5O10(OH)8, referred to as “Mg-
chlorite” (13).

Thermodynamic and kinetic data originate from Xu et al.
(2004), except equilibrium constants for biotite, chlorite
(Tardy and Garrels, 1974) and ankerite (Woods and Garrels,
1992).

The renewal of acidic fluid raises the dissolution of car-
bonates in 130 years (figure 7). First, calcite is partially

(11) based on a specific aquifer of Alberta (Canada)
(12) at a Darcy velocity equal to 1 m/year, in a one-dimension-box of

1m–length
(13) Nota: Although only binary solid solutions are taken into account

in this example, Diaphore SolSol is able to simulate the evolution of
solid solutions whose number of end-members is more than 2.

TABLE 2

Initial aqueous system: pH and concentrations of elements
(mol/kg(H2O)) in the injected aqueous solution.

pH C Na Cl Ca

3.64 1.10799 0.554755 0.70697 0.12175E − 1

K Mg Fe Si Al

0.12196E− 1 0.620390E − 1 0.954E− 5 0.119E− 3 0.25050E − 4

replaced by the mixed carbonate Mg-ankerite. The latter gets
richer in magnesium brought by sea water (figure 8). These
reactions result in an overall dissolution of carbonates, which
drives the aqueous solution richer in carbon and calcium
(compare table 2 and figure 9) right from the start of the
simulation (14).

When calcite has disappeared (15), low pH attacks Mg-
ankerite, which dissolves getting richer in iron and releas-
ing magnesium. Simultaneously, chlorite precipitates get-
ting richer in iron. As the amount of carbonates is much
less important from 20 years, the dissolution of carbonates
lessens, resulting in a lower concentration of the aqueous
solution in carbon and calcium ions.

After 150 years, the geochemical system does not evolve
much any longer, and the composition of the current aqueous
solution gets very close to that of the injected sea water
(compare figure 9 and table 2).

(14) These results must be qualified since the B-dot activity model used in
Diaphore SolSol (see section 3.1) is not as relevant for sea water as
Pitzer model (Kervévan et al., this issue).

(15) after 27 years
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Figure 7

Mineral composition of the system (sum of volume fractions
of minerals) until 150 years.
The void domain above the Mg-ankerite profile corresponds to
porosity.
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Composition of both solid solutions (mole fraction of each
ferrous end-member) until 150 years.

The evolution of aqueous solution and solid solutions is
illustrated on chemical potential diagrams (figures 11 to 14).

Fluids are represented by points of coordinates (∆rG1,
∆rG2), defined by equations (2) (16), while current solid

(16) Each saturation degree Ωιs of the solid solution end-member is com-
puted by Diaphore SolSol from its ionic activity product (reckoned
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Composition of the aqueous solution until 150 years.
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Figure 10

Stoichiometric and total saturation degrees (ΩSs and ΩTs resp.)
of the aqueous solution with respect to both solid solutions, until
150 years.

solutions are displayed on the total saturation curve (ST), as
if they were at thermodynamic equilibrium with the aqueous
solution (cf. relations (3)).

Examine the case of magnesian ankerite for instance.
After 4 months, the representative point of the aqueous solu-
tion (A4m) is over the total saturation curve of Mg-ankerite
(STM) in figure 12, because the fluid is totally oversatur-
ated with respect to this solid solution (ΩTMg-ankerite > 1 in
figure 10). At the same time, A4m is under the stoichiometric

notably from solute concentrations) and the equilibrium constant of
the dissociation reaction of the end-member in the aqueous solution.
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Evolution of the aqueous solution (A) and the existing solid
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Figure 12

Zoom: Evolution of the aqueous solution (A) and the existing
solid solution of Mg-ankerite (M) between 4 months (4m) and
96 years (96y).
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Figure 13

Evolution of the aqueous solution (A) and the existing solid
solution of Mg-Fe-chlorite (N) between 4 months and 150
years. See figure 14 to visualize solid solution compositions.
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Zoom: Evolution of the existing solid solution of Mg-Fe-
chlorite (N) between 4 months and 150 years. The aqueous
solution (A) is situated far on the left, under the stoichiometric
saturation straight lines (see figure 13).
Nota: The composition of the existing solid solution (N) is
invariant until around 30 years, so N20y ≈ N4m.
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saturation straight line (SSM(M4m)) of the aqueous solution
with respect to the existing solid solution (figure 12), because
the fluid is stoichiometrically undersaturated with respect to
the latter (ΩSMg-ankerite < 1 in figure 10). Owing to the total
oversaturation of the aqueous solution with respect to Mg-
ankerite, after 4 months the least soluble carbonate solid
solution precipitates, with a composition (X̃ankerite, X̃dolomite)
given by equation (9)





X̃ankerite = Ωankerite

ΩTMg-ankerite

= Ωankerite

Ωankerite +Ωdolomite
,

X̃dolomite = 1− X̃ankerite ,

(27)

i.e. (X̃ankerite, X̃dolomite) ≈ (0.73, 0.27) , while the exist-
ing solid solution dissolves with a fixed composition
(Xankerite, Xdolomite) ≈ (0.92, 0.08), richer in pure ankerite
than the least soluble one. The homogenization of the
two particular solid solutions enriches the preexisting solid
solution in magnesium. Representative points of the current
Mg-ankerite thus move towards the right of the chemical
potential diagram (see relative positions of points M4m and
M10y in figure 12). Since the kinetic constants kpm and
kdm of Mg-ankerite are very high (as those of carbonates,
cf. table 1), precipitation and dissolution are fast despite
the weak departure from total saturation and stoichiometric
saturation respectively. Therefore, the composition of the
carbonate solid solution changes rapidly (see figure 8).

Simultaneously, the aqueous solution is very strongly
undersaturated with respect to the solid solution of Mg-Fe-
chlorite (figures 13 and 10). The initial existing chlorite
thus dissolves stoichiometrically, without changing its initial
composition (XFe-chlorite, XMg-chlorite) = (0.5, 0.5).

Since the kinetic constant of Mg-Fe-chlorite is very low
relatively to that of magnesian ankerite (table 1), the enrich-
ment in magnesium of the overall solid solution of Mg-
ankerite leads to a decrease of magnesium in the aqueous
solution (figure 9), although the dissolution of the solid
solution of chlorite releases magnesium in the fluid.

For 20 years, the fluid keeps simultaneously oversatur-
ated with respect to the least soluble magnesian ankerite
and undersaturated with respect to the existing one. The
homogenization of the precipitating and dissolving particular
solid solutions still implies an enrichment of Mg-ankerite in
magnesium, since the current one is very Fe-rich and the
least soluble one is richer in magnesium. As the aqueous
solution gets closer to total saturation with respect to the
carbonate solid solution, the precipitation of the latter lessens
and consumes less magnesium. The Mg concentration thus
increases in the aqueous solution, since the injected sea water
is richer in magnesium than the water in place and since the
stoichiometric dissolution of Mg-Fe-chlorite still releases
magnesium.

Around 20 years, the representative points of the
fluid and of the existing Mg-ankerite are almost identical

(A20y ≈ M20y in figures 11 and 12). They thus belong
simultaneously to the total saturation curve (STM) and
to the stoichiometric saturation straight line (SSM(M20y)):
ΩTMg-ankerite ≈ 1 and ΩSMg-ankerite ≈ 1 in figure 10. Therefore,
equilibrium between the magnesian ankerite and the aqueous
solution is approximately reached. The current carbonate
solid solution is thus the least soluble one in this fluid.

This equilibrium state between fluid and Mg-ankerite is
temporary. As calcite disappears, transfers of carbonates
and calcium ions from the solid to the aqueous solution are
not sufficient any more for their aqueous concentrations to
stay at the high values they reached at the very beginning
of the reaction (figure 9), since calcite is not completely
replaced by Mg-ankerite and since C and Ca concentrations
are much lower in the injected sea water than in the preex-
isting fluid. The decrease of carbon and calcium in the
aqueous solution leads to a decrease of pH. As the fluid
changes, the representative points of the aqueous solution
(A) and of the current carbonate solid solution (M) move
away from each other (figure 11). Since points A move
slightly to the top and strongly to the left after 20 years,
the saturation degree of the fluid with respect to the pure
ankerite end-member increases slightly and that with respect
to the pure dolomite one decreases strongly (17). Therefore,
according to formula (27), the least soluble solid solution gets
poorer in magnesium. Since the aqueous solution is again
totally oversaturated and stoichiometrically undersaturated
with respect to the carbonate solid solution (figure 10), the
least soluble one precipitates and the existing one dissolves
stoichiometrically. The homogenization of the two partic-
ular solid solutions thus drives Mg-ankerite richer in iron
(corroborated by figure 8). Since the existing carbonate
solid solution was enriched in magnesium during 20 years
and depleted in magnesium after 20 years, the point (M20y)
constitutes a cusp of the trajectory followed by the the solid
solution on the total saturation curve (STM) (figure 11).

Between 25 and 123 years, the fluid is totally oversat-
urated with respect to the solid solution of Mg-Fe-chlorite
(figure 10). This is illustrated in figure 13 by the positions
of the representative points of the aqueous solution (A), over
the saturation curve (18) (STN). Therefore the least soluble
chlorite solid solution precipitates, with the composition





X̃Fe-chlorite = ΩFe-chlorite

ΩFe-chlorite +ΩMg-chlorite
,

X̃Mg-chlorite = 1− X̃Fe-chlorite .

(28)

Since the overall Gibbs free energy of dissociation of the
Mg-chlorite end-member is extremely low comparatively to
that of the Fe-chlorite end-member, the saturation degree

(17) because the overall Gibbs free energy of dissociation of each end-
member in the aqueous solution is linked to its saturation degree

(18) Far from origin, the saturation curve (ST) is very close to both axes of
the chemical potential diagram, since its asymptotes are these axes.
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of Fe-chlorite is much higher than that of Mg-chlorite, and
the least soluble Mg-Fe-chlorite is almost identical to Fe-
chlorite. Simultaneously, the fluid is still stoichiometrically
undersaturated with respect to the current solid solution
(figures 13 (19) and 10), whose composition is still half Fe-
chlorite half Mg-chlorite until 25 years. The homogenization
of the two particular solid solutions thus enriches the chlorite
solid solution in iron (figure 8). This is illustrated in figure 13
by the shift of points (N) representative of the current chlorite
solid solution to the left. Since Mg-ankerite releases less
magnesium in the fluid as its mole fraction in iron increases,
and since the chlorite kinetics is slow, the concentration of
magnesium in the aqueous solution gets closer to that of the
injected sea water (figure 9), whose concentration is lower,
despite the release of magnesium by the dissolving existing
chlorite.

From 96 years forward, the fluid is totally undersaturated
with respect to Mg-ankerite (figure 10): in figure 11, repres-
entative points of the aqueous solution (A) are below the total
saturation curve (STM). The composition of the carbonate
solid solution therefore stays invariant as it dissolves stoi-
chiometrically (without simultaneous coprecipitation). In
the same way, the chlorite solid solution dissolves (without
coprecipitating) with a fixed composition from 124 years
forward, as its total saturation degree passes below 1.

From 131 years forward, carbonates are completely dis-
solved. Thus the concentrations of respectively carbonates
and calcium in the aqueous solution, which have reached
those in the injected sea water, do not vary any longer.
The release of magnesium and iron by the dissolution of
biotite and Mg-Fe-chlorite is very low because of their low
kinetic constants. Since the current aqueous solution and the
injected sea water have very close compositions, aqueous
concentrations do not any longer evolve significantly.

CONCLUSION

This application illustrated the ideal solid solution model
proposed in this paper, as the overall behaviour of two solid
solutions, a carbonate and a chlorite one, was explained.

Moreover, chemical potential diagrams proved to be very
useful tools to illustrate the evolution of the system in the
case of binary solid solutions.

Since minerals of fixed composition do not cover the
overall field of variation of natural solid compositions, the
integration of solid solutions — besides fixed compounds —
into geochemical modelling allows to discuss more precisely
the evolution of natural systems. The Diaphore SolSol com-
puter code is designed to study theoretic behaviour of ideal
solid solutions and to model complex systems which are
known to contain mineral phases which may have important

(19) see for instance the position of point A96y , under the stoichiometric
saturation straight line (SSN(N96y)) of the existing solid solution

variations of compositions when reacting with circulating
fluids or diffusing elements.

In the future, the computer code may allow to evaluate dif-
ferent precipitation kinetic rate laws, especially with regard
to the choice of the precipitating particular solid solution.
Actually, other rules than that of precipitating the least sol-
uble solid solution may be valid (see Guy, 2003). In other
respects, nucleation may constrain the composition of the
precipitating solid solution so that this mineral is the one
which nucleates the best.
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