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Abstract—Nowadays, data mining tools are becoming more
and more popular to extract knowledge from a huge volume
of data. In this paper, our aim is to extract Literal Correlation
Rules: Correlation Rules admitting literal patterns given a set
of items and a binary relation. If a pattern represents a valid
Correlation Rule, then any literal belonging to its Canonical
Base represents a valid Literal Correlation Rule. Moreover, in
order to highlight only relevant Literal Correlation Rules, we
add a pruning step based on a support threshold. To extract
such rules, we modify the LHS-CHI2 Algorithm and perform
some experiments.
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I. INTRODUCTION AND MOTIVATION

An important field in data mining is the discovery of links
between values (items) in a binary relation in reasonable
response times. Agrawal et al. [1] introduce levelwise al-
gorithms in order to compute association rules. Those latter
express directional links (X → Y for example), based on
the support/confidence platform. From this problem, three
sub-problems are particularly interesting.

The first one is an adaptation of the supervised classifica-
tion [2], [3]. Instead of making unsupervised classification,
the authors consider the presence of several target attributes.
They only consider associations in which the right hand side
of the rule contains at least a value of a target attribute.
Moreover, they apply rules (specific to the method) allowing
to predict to which class belongs an unknown pattern.

The second one is the introduction of literal patterns by
Wu et al. [4]. The authors compute positive and/or negative
association rules, such as ¬X → Y . To generate the rules,
they still use the support/confidence platform by redefining
the support of a literal.

In the third one, Brin et al. [5] propose the extraction of
Correlation Rules, where the platform is no longer based
on the support nor the confidence of the rules, but on the
Chi-Squared statistical measure, written χ2. The use of χ2

is well-suited for several reasons: (i) It is a more significant
measure in a statistical way than an association rule; (ii) The
measure takes into account not only the presence but also the
absence of the items; (iii) The measure is non-directional,

and can thus highlight more complex existing links than a
“simple” implication.

Unlike Association Rules, a Correlation Rule is not rep-
resented by an implication but by a set of items for which
the value of the χ2 function is larger or equal than a given
threshold, noted MinCor.

Since the crucial problem, when computing correlation
rules, is the memory usage required by levelwise algorithms,
[5] compute only correlations between two values of a binary
relation. In [6], we introduce the LHS-CHI2 algorithm.
The objective is to compute Decisional Correlation Rules
(Correlation Rules which contain, at least, a value of a
target attribute). To achieve such an objective, we change
the strategy of the browsing search space. We use a lectic
order strategy [7] instead of a levelwise one. Since we could
not find a function f linking the correlation rate, related to
a pattern X , with any of its supersets, we introduce the
concept of Contingency Vector, another representation of a
Contingency Table based on partitions. Using this concept,
we found a function linking the contingency vector of a
pattern X with the ones of any of its supersets. Using the
LHS-CHI2 algorithm, we have a gain of execution times
between 30% and 70% compared to a levelwise algorithm.

Moreover, when applying Advanced Process Control ap-
proaches in semiconductor manufacturing, it is important
to highlight correlations between parameters related to pro-
duction, in order to rectify possible drifts of the associated
processes. Within this framework, and in collaboration with
STMicroelectronics and ATMEL, our previous work [6]
focuses on the detection of the main parameters having an
impact on the yield. We extract correlations between the
values of some columns and those of a target column (a
particular column of the file, the yield).

In this paper, we focus on finding out correlations with
literal patterns. Such information are important either to
point out fault detection, and to detect what parameters do
not have an impact on the yield (while they should have).
To solve this problem, we introduce Literal Correlation Rule
and Literal Decision Correlation Rule concepts. The former
is a Correlation Rule admitting literal patterns, and the latter
is a restriction of Literal Correlation Rule containing, at
least, one value of a target column. In order to compute



those rules:
1) We propose a new formula to compute the χ2 over

literal patterns;
2) We show that the χ2 value for a pattern is equal to

the one of “some” literals;
3) We propose a new constraint in order to highlight

relevant Literal (Decision) Correlation Rules;
4) We modify the LHS-CHI2 algorithm to take into

account these new constraints.
Finally, we carry out experiments on relations provided by
the above mentioned manufacturers.

The paper is organized as follows: in Section II, the
bases of Literal Patterns and of (Decision) Correlation Rules
are recalled. Section III describes the main contribution of
the paper. Experiments are detailed in Section IV. As a
conclusion, we summarize our contribution and outline some
research perspectives.

II. RELATED WORK

In this paper, we use the following notations: let R be the
set of all 1-items and r a binary database relation over R. In
our context, R can be divided into two distinct sets, noted I
and T . I represents the values of the binary relation used for
criteria analysis, and T is a target attribute. In this section,
the concepts of Literal Patterns and Correlation Rules are
first recalled.

A. Literal Patterns

Let X,Y be two subsets ofR. A literal is a pattern XY in
which X is also called the positive part and Y the negative
part. Literal patterns can be used to extend the well known
association rules mining problem: The goal is to obtain new
semantics. In a basket market analysis context, the rule X →
W symbolizes the probability to buy W if one bought X .
Using literals, we can extract rules such as XY →W . This
rule materializes the probability to buy W if one bought
X but no 1-item (items with cardinality 1) of Y. In [4],
to compute rules with literal patterns, Wu et al. always use
the support-confidence platform by redefining the support of
a literal: The number of transactions of the binary relation
including X and containing no 1-item of Y .

Example 1: The relation example r given in Table I is
used to illustrate the introduced concepts. In this relation,
BC and BC patterns have a support equal to 4 and 0
respectively. The association rules B → C and B → C have
a confidence equal to 1/2 and 0 respectively. This means that
half of the transactions including pattern B also contains
pattern C and we can not find a transaction which does not
contain B and which includes C.

The Canonical Base of a pattern X groups all the possible
combinations of literals Y Z such that the union between the
positive and the negative parts is X , and there is no 1-item
in common between those two parts. More precisely, the
Canonical Base can be defined as follows:

Table I
RELATION EXAMPLE r.

Tid I T

1 BCF G
2 BCF G
3 DF G
4 F G
5 BC H
6 BC -
7 BD -
8 B -
9 BF -

10 BF -

Definition 1 (Canonical Base): Let X ⊆ R be a pattern,
we denote by P(X) the Canonical Base associated to X .
This set is defined as follows: P(X) = {Y Z such that X =
Y ∪Z and Y ∩Z = ∅} = {Y Z such that Y ⊆ X and Z =
X\Y }.
By extension, we can define the Canonical Base of a
literal Y Z as follows: P(Y Z) = {Y1Z1 such that Y1 ⊆
Y Z and Z1 = Y Z\Y1} = P(Y Z).

Example 2: The Canonical Base associated with
X = {A,B,C} contains the following elements:
{ABC,ABC,ACB,BCA,ABC,BAC,CAB,ABC}.

The following property expresses that, if we take two
literals belonging to the same Canonical Base, then their
associated Canonical Bases are the same.

Property 1: Let X be a pattern and Y1Z1, Y2Z2 two
literal patterns belonging to its Canonical Base. We have:
P(X) = P(Y1Z1) = P(Y2Z2).

B. Correlation Rules and Decision Correlation Rules

In [5], Brin et al. propose the extraction of correlation
rules. The platform is no longer based on the support nor
the confidence of the rules, but on the χ2 statistical measure.
The formula to compute the χ2 for a pattern X is:

χ2(X) =
∑

Y Z∈P(X)

(Supp(Y Z)− E(Y Z))2

E(Y Z)
(1)

Such a computation requires (i) the support, and (ii) the
expectation value (or average) of all literals belonging to
P(X). The expectation value of a literal Y Z measures the
theoretical frequency in case of independence of all 1-items
included in Y Z, see Formula (2).

E(Y Z) = |r| ∗
∏
y∈Y

Supp(y)

|r|
∗
∏
z∈Z

Supp(z)

|r|
(2)

Each support of each literal belonging to the Canonical
Base associated to X is stored in a table called Contingency
Table. Thus, for a given pattern X , its contingency table,
noted CT (X), contains exactly 2|X| cells.

In our context, there is a single degree of freedom between
the items. A table giving the centile values with regard to the



χ2 value for X can be used in order to obtain the correlation
rate for X [8].

Example 3: With the relation Example r given in Table
I, Table II shows the contingency table of pattern BC.

Table II
CONTINGENCY TABLE OF PATTERN BC .

B B
∑

row

C 4 0 4
C 4 2 6∑

column 8 2 10

Thus, χ2(BC) ' 0.28, which corresponds to a correlation
rate of about 45%.

Unlike association rules, a correlation rule is not repre-
sented by an implication but by the patterns for which the
value of the χ2 function is larger than or equal to a given
threshold.

Definition 2 (Correlation Rule): Let MinCor be a
threshold (≥ 0), and X ⊆ R a pattern. If the value for the
χ2 function for X is larger than or equal to MinCor, then
this pattern represents a valid Correlation Rule.

In addition to the previous constraint, many authors have
proposed some criteria to evaluate whether a Correlation
Rule is semantically valid [9]:

1) As the χ2 computation has no significance for a 1-
item, we only examine patterns of cardinality larger
than or equal to two;

2) Since the χ2 function is an increasing function, we
impose a maximum cardinality, noted MaxCard, on
the number of patterns to examine;

3) The Cochran criterion: All literal patterns of a contin-
gency table must have an expectation value different
from zero and 80% of them must have a support
larger than 5% of the whole population. This criterion
has been generalized by Brin et al. [5] as follows:
MinPerc of the literal patterns of a contingency table
must have a support larger than MinSupCT , where
MinPerc and MinSupCT are thresholds specified
by the end-user.

Example 4: Let MinCor = 0.25, then the correlation
rule materialized by the BC pattern is valid (χ2(BC) '
0.28). However, the correlation rule represented by the BH
pattern is not valid (χ2(BH) ' 0.1).

The crucial problem, when computing correlation rules,
is the memory requirement by levelwise algorithms. For a
pattern X , the computation of the χ2 function is based on
a contingency table including 2|X| cells. Thus, at level i,
Ci

n candidates (where n is the number of values of r) have
to be generated and stored, in the worst case scenario, as
well as the associated contingency tables. With cells encoded
over 2 bytes, corresponding storage space requires 2.5 GB
of memory at the 3rd level, and 1.3 TB at the 4th level.

This is why we have changed the browsing search space
strategy in [6]. Instead of using a lewelwise algorithm,
our algorithm, called LHS-CHI2, browse the search space
according to the lectic order [7]. It is based on:

1) The LS algorithm [10]. This algorithm allows the
browsing of the powerset lattice using a balanced tree;

2) Contingency vectors, another representation of the
contingency tables based on bit vectors;

3) A proposition which links the contingency vector of a
pattern X with the ones of its immediate successors,
“i.e.” contingency vectors of patterns X ∪ y,∀y ∈
R\X;

4) A pruning step based on the positive border [11], noted
BD+.

Still in order to limit the browsing search space, whatever
the browsing strategy used, we only consider Correlation
Rules which have a value belonging to the set T .

Definition 3 (Decision Correlation Rule): A Decision
Correlation Rule is a Correlation Rule which contains at
least one value of the target attribute T .

Using all the constraints mentioned above, it results a
gain of time between 30% and 80% using our strategy than
using a levewise one. The pseudo-code of the LHS-CHI2
Algorithm is given below. The pseudo-code of the procedure
CREATE CV can be found in [6]. The predicate CtPerc
expresses the satisfiability of the Cochran criterion. The first
call to LHS-CHI2 is made with X = I and Y = ∅.

If we want to extract all the Correlation Rules, and not
only the Decision Correlation Rules, we have to prune the
test “∃t ∈ T : t ∈ X” from line 1 of the LHS-CHI2
Algorithm.

Algorithm 1: LHS-CHI2 Algorithm.
input : X and Y two patterns
output: {Z ⊆ X such that χ2(Z) ≥MinCor}

1 if Y = ∅ and ∃t ∈ T : t ∈ X and |X| ≥ 2 and
χ2(X) ≥MinCor then

2 Output X, χ2(X)
3 end
4 A := max(Y ) ;
5 Y := Y \{A} ;
6 LHS-CHI2(X,Y) ;
7 Z := X ∪ {A} ;
8 if ∀z ∈ Z,∃W ∈ BD+ : {Z\z} ⊆W then
9 CV(Z) := CREATE CV(VC(X),Tid(A)) ;

10 if |Z| ≤MaxCard and
CtPerc(CV (Z),MinPerc,MinSupCT ) then

11 BD+ := max⊆(BD
+ ∪ Z) ;

12 LHS-CHI2(Z,Y) ;
13 end
14 end



Example 5: The results of the LHS-CHI2 algorithm
with the relation example r (cf. Table I) using thresholds
MinSupCT = 0.2, MinPrec = 0.3 and MinCor = 1.8
are given in Table III.

Table III
RESULT OF LHS-CHI2 ALGORITHM.

Correlation Rule χ2 value

BG 3.75
FG 4.44
BCF 4.24
BCG 9.10
BDF 10.14
CFG 5.74
DFG 4.93
BCFG 20.09

III. LITERAL CORRELATION RULES

In this section, we present our contribution. The aim is
to build Literal Correlation Rules (Correlation Rules over
Literal Patterns) only from (i) the relation r and (ii) the set
of items R. Mining such rules with the help of the relation
r and of the set of items R is not suitable because:
• Since the relation r is often sparse, the relation r

is dense. As a result, the relational operators (union,
intersection, ...) have slow performances over r ∪ r.

• It is possible to find an item A ∈ R such that the pattern
AA satisfies all the constraints over a Correlation Rule.
It is the case of the pattern B in our example relation.
As a consequence, the set of solutions is polluted by
inconsistent patterns.

We first define the concept of Literal Correlation Rule: an
extension of Correlation Rules. We show, in a second step,
that two literal patterns, which belong to the same Canonical
Base, have the same χ2 value and satisfy the same set of
constraints (see Section II-B). As a consequence, the set
of Correlation Rules can be used as a base for the Literal
Correlation Rules. Then we show that the number of Literal
Correlation Rules is exponential with regard to the number
of Correlation Rules. We modify the LHS-CHI2 Algorithm
in order to compute Literal Correlation Rules, and we add
another pruning step in order to limit the number of results.
We finally define the χ2 function for a literal pattern XW
as follows:

χ2(XW ) =
∑

Y Z∈P(XW )

(Supp(Y Z)− E(Y Z))2

E(Y Z)
(3)

Definition 4 (Literal (Decision) Correlation Rule): Let
XW be a pattern, MinCor, MinPerc, MinSupCT and
MaxCard thresholds specified by the end-user. According
to the criteria introduced in Section II-B, the literal XW is
a valid Literal Correlation Rule if and only if:

1) χ2(XW ) ≥MinCor;
2) 2 ≤ |XW | ≤MaxCard;

3) MinPerc cells of its contingency table have a support
greater or equal than MinSupCT .

Moreover, if a value of the target attribute is present either
in the positive part of the literal either in its negative part,
the rule is called a Literal Decision Correlation Rule.

Example 6: Let us consider the following thresholds
MinCor = 1.8, MinSupCT = 0.2 and MinPrec = 0.3,
and the literal BG. The contingency table associated to this
literal pattern is:

B B
G 2 2
G 2 4

Since the four cells of this contingency table are greater
than 2, we satisfy the third condition. We have χ2(BG) '
3.75 ≥MinCor and the first condition is valid. Literal BG
has a cardinality equal to 2, thus the second condition is
checked. Moreover, Literal BG contains a value of the target
attribute. As a consequence, the Literal Decision Correlation
Rule materialized by BG is valid.

Let X∪A and X∪A be two literal patterns, where X does
not contain a negative part. The following lemma shows that
the χ2 values for both literal patterns are equals.

Lemma 1: Let X be a pattern and A a 1-item. We have:
χ2(X ∪A) = χ2(X ∪A)

The following proposition shows that any literal pattern
belonging to the same Canonical Base has the same χ2

value.
Proposition 1: Let X ⊆ R be a pattern, then we have:

∀Y Z ∈ P(X), χ2(X) = χ2(Y Z) (4)

The following lemma indicates how we can build valid
Literal Correlation Rules given only valid Correlation Rules.

Lemma 2: If a pattern X is a valid Correlation Rule (its
χ2 value is greater or equal than the threshold MinCor and
X satisfies all the constraints given in Section II-B), then any
literal pattern belonging to its Canonical Base represents a
valid Literal Correlation Rule.

Consequences of Proposition 1 and of Lemma 2 are very
attractive. When mining Literal Correlation Rules, we do
not need, as input of our algorithm, the set R∪R but only
the set R. We just have to modify the processing done
on the leaves of the LHS-CHI2 execution tree, in order
to explore the Canonical Base associated with the current
pattern. Moreover, as expected in introduction, we do not
need the relation r. Finally, the following results holds:

Corollary 1: Correlation Rules are a lossless representa-
tion for Literal Correlation Rules.

The concept of lossless representation applied to associa-
tion rules [12] or to literal association rules mining [13], are
very helpful to reduce the number of rules. However, we
cannot predict an exact value for the expected gain. With
the following lemma, we show that the number of Literal



Correlation Rules depends on the number of Correlation
Rules having cardinality i (i ∈ [2,MaxCard]).

Lemma 3: Let us denote by Sol the set of solutions related
to the problem of finding all the Correlation Rules satisfying
all the constraints. Let Soli be the subset of Sol which
contains only rules of cardinality i. Let Sol’ be the set of
solutions related to the problem of finding all the Literal
Correlation Rules satisfying the same set of constraints than
Sol. Then we have: |Sol′| =

∑i=MaxCard
i=2 |Soli| ∗ 2i.

A drawback highlighted by decision makers using the
MineCor software (the software which implements the
LHS-CHI2 Algorithm) is that the extracted rules which have
a large χ2 value could appear seldom in the relation. As a
consequence, they consider that the obtained information is
not of great quality. To answer their expectations, we modify
the LHS-CHI2 Algorithm by adding a pruning step based on
the support (using a threshold MinSup) and by extracting
Literal Correlation Rules. The changes only affect the first
three lines of the LHS-CHI2 Algorithm. The new algorithm
is called LHS-LCHI2. Like in the LHS-CHI2 Algorithm, if
we want to extract the Literal Correlation Rules and not only
the Literal Decision Correlation Rules, we have to prune
the test “∃t ∈ T : t ∈ X” for line 1 of the LHS-LCHI2
Algorithm.

Algorithm 2: LHS-LCHI2 Algorithm.

1 if Y = ∅ and ∃t ∈ T : t ∈ X and |X| ≥ 2 and
χ2(X) ≥MinCor then

2 foreach Y Z ∈ P(X) do
3 if Supp(Y Z) ≥MinSup then
4 Output Y Z, χ2(X)
5 end
6 end
7 end
8 ...

Let us emphasize that the addition of the constraint
“Supp(Y Z) ≥MinSup” has the negative effect of making
false Corollary 1 and Lemma 3 unless MinSup equals 0.

Example 7: Continuing our example with parameters
MinSupCT = 0.2, MinPrec = 0.3, MinCor = 1.8 and
MinSup = 0.4, the results of the LHS-LCHI2 Algorithm
are given in Table IV.

Table IV
RESULT OF LHS-CHI2 ALGORITHM.

Correlation Rule χ2 value Support

BG 3.75 6
FG 4.44 4
BCG 9.10 4
BFD 10.14 4

IV. EXPERIMENTAL EVALUATIONS

Some representative results of the LHS-LCHI2 Algorithm
are presented below. As emphasized in Section I, the ex-
periments were done on different CSV files of real value
measures supplied by STMicroelectronics (STM) and AT-
MEL (ATM). These files have one or more target columns,
resulting from the concatenation of several measurement
files. The characteristics of the relations used can be found
in Table IV. All experiments were conducted on an HP
Workstation (1.8 GHz processor with a 4 Gb RAM). To
carry out pre-processing and transformation of these files
into a binary relation, we implemented methods described
in [14].

Table V
DATASET EXAMPLES

Name Number of Columns Number of Rows

STM File 1 281 297
ATM File 749 213

Figure 1. Number of Literal Decision Correlation Rules. Results with
4 intervals, CtPerc = 0.34, MinCorr = 1.6, MinSupCT = 0.24
(STM File - target1)
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Figure 1 shows the impact of the MinSup threshold
over Literal Decision Correlation Rules. In the same way,
when extracting frequent pattern, if the threshold MinSup
is large, no rule is produced. The lower MinSup is, the
more we can approach the bound given in lemma 3.

The goal of Figure 2(a) is to compare the number of
rules produced by LHS-CHI2 and LHS-LCHI2 Algorithms.
Since LHS-CHI2 Algorithm does not have a pruning step
using the MinSup threshold, we decided to fix it to the
value of MinSupCT . The number of rules produced by
the LHS-LCHI2 Algorithm is greater with a factor between
1 and 2.5. In Figure 2(b), we compare the two algorithms
over the same hypothesis. As we can see, execution times
are very close (less than 12% in the worst case). This can
be explained by our specific implementation of the LHS-
LCHI2 Algorithm: the computation of the χ2 function and
the pruning step using MinSup both require the browsing
of a contingency table. During the χ2 computation, we



Figure 2. Results with 6 intervals, CtPerc = 0.3, MinCorr = 2.8, MinSup =MinSupCT (ATM file - target3).
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(a) Number of Decision Correlation Rules vs. Number
of Literal Decision Correlation Rules
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(b) Execution Time

put into a vector all the literal patterns having a support
greater than MinSup. As a consequence, line 3 can be
resumed as a browsing vector (which contains, in the worst
case, 2MaxCard elements). Thus, the difference between
the execution times can be explained by the number of
input/output operations which are more important in the
LHS-LCHI2 Algorithm since we extract more rules.

V. CONCLUSION AND FUTURE WORK

When mining Correlation Rules, one drawback is that
the extracted rules which have a large χ2 value appear
seldom in the relation. As a consequence, we do not know
which literal patterns have an important impact on the rules.
To solve this problem, we have introduced the concept of
Literal Correlation Rules: Correlation Rules admitting literal
patterns. We show that the set of Correlation Rules satisfying
a set of constraints is a base for the Literal Correlation Rules
satisfying the same set of constraints. Thus we provide an
upper border for the number of Literal Correlation Rules.
In order to highlight only relevant Literal Correlation Rules,
we add a pruning step based on the support of a literal, and
therefore modified the related algorithm.

To continue our work, we intend to use multi-core strate-
gies. In a first step, one thread could process the leaves of
the execution tree while another could explore the branches
of the tree. In a second step, our aim is to to parallelize each
branch of the LHS-LCHI2 algorithm.
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