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Abstract: This paper examines a supply planning problem for multilevel serial 

production systems under lead time uncertainties. The techniques used in industry 

are often based on the assumption that the lead times are known. However, in a 

supply chain the lead times are often random variables. Therefore, it is necessary 

to evaluate the influence of the planned lead times on the total cost. An exact 

performance evaluation technique is developed to calculate the total cost as a 

function of the planned lead times when the actual lead times are random discrete 

variables. The sum of the average component holding and tardiness costs at each 

level, plus the average finished product backlogging cost is considered. Several 

properties of this function are proven. A numerical example is reported. 

Keywords: Multilevel Serial Systems, Random Lead Times, Performance 

Evaluation, Newsboy Model, Generalizations. 

1. Introduction

Uncertainty in lead times (or delivery times from an external supplier) is a 

major problem in production systems. These times vary due to many factors, 

including machine breakdowns, transport delays, poor quality, etc. A late 
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component may delay all subsequent level processes and too early availability 

engenders overstocking. The effects of lead time uncertainty are particularly 

problematic in multilevel production systems (see Bullwhip effect, Chen et al., 

2000). To minimize the influence of these random lead times, firms can 

implement safety lead times. The safety lead time is defined as the difference 

between the planned and expected lead times. Nevertheless, excess the safety lead 

times creates stocks and stocks are expensive. Therefore, the problem is to 

optimize stock at each level by assigning adequate values of planned lead times.  

In this paper, the planned lead time analysis is considered for a multilevel 

serial supply chain with unlimited number of levels and random component lead 

times for each level. The demand of the finished product is assumed to be fixed 

and known. The lead time of each component (delivery time for the next level) is 

supposed to be a discrete random variable. No restrictive hypothesis is made on 

such random variables; only that one supposes that the distribution probabilities 

are known. 

The holding as well as tardiness costs are considered. Tardiness costs can be 

due to the cost of revising a schedule. For the first level (level 1), i.e., which 

corresponds to the finished product, tardiness means backlog, so for the finished 

product backlogging cost is introduced. Thus, the problem is to minimize the sum 

of expected holding, tardiness and backlogging costs. The decision variables are 

the planned lead times for components at each level. An exact performance 

evaluation model is proposed. 

A similar multilevel production system (supply chain) was already studied by 

Yano (1987ab). However, in that case, the lead times of components were 

continuous random variables. Yano limited the study to two and three stage 

(level) serial systems due to the difficulties to express the objective function in a 

closed form when the number of stages exceeds two.  

The model suggested in this paper differs from (Yano, 1987ab) as follows: we 

consider a discrete model with no restriction on the number of levels and our 

model offers the expression of objective function in a closed form. 

The rest of the paper is organized as follows. Section 2 presents related 

publications. Section 3 deals with problem description. Section 4 presents the Key 

Performance Indicators (KPI). In Section 5, some interesting properties of the 

problem are presented. A numerical example is reported in Section 6. Finally, 

some concluding remarks are given in Section 7. 

2. Related publications

In literature on supply planning, as far as can be determined, the number of 

publications on the considered problem with random lead times is modest at best 

in spite of its significance, in contrast with many models for a random demand. 

Mula et al. (2006) have done a review for this domain; an extensive state of the 
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art on the supply planning under uncertainties is also given in (Dolgui and 

Prodhon, 2007).  

Earlier work includes simulation studies by Whybark and Williams (1976). 

They suggest that, in a multi-level production-inventory system when the 

production and replenishment times are stochastic, safety lead times mechanism 

may perform better than that of safety stocks. Nevertheless, simulation studies of 

Grasso and Taylor (1984) reached the opposite conclusion and preferred safety 

stocks.  

In (Chen et al., 2000; Chatfield et al., 2004; Kim et al., 2006), simulations are 

also used for a multilevel serial production systems with stochastic lead times. 

Their main effort dealt with information sharing among levels. 

Some analytical models were also suggested. Weeks (1981) developed a one-

stage model with tardiness and holding costs in which the processing time is 

stochastic and demand is deterministic. The author proves that this is equivalent to 

the standard “Newsboy” problem.  

Yano (1987a) used an analytic approach to determine optimal planned lead 

times in serial production systems in which the actual procurement and processing 

times may be stochastic, demand is deterministic, and the lot-for-lot policy is 

used. The distribution of lead times is supposed stationary. The considered cost is 

the sum of inventory holding and job tardiness costs. The author presents a 

general solution procedure for two stage serial systems.  

A similar problem is studied by Yano (1987b) but another cost is incurred: the 

rescheduling costs at the intermediate stages. Then, the objective is to minimize 

the sum of holding costs, rescheduling costs arising from tardiness at intermediate 

stages of productions, and tardiness of delivery to the customer. The author 

studied two and three stage serial systems due to the difficulties of the problem 

and complexity of the model. One of the main difficulties for this model is to 

express the objective function in a closed form when the number of stages 

exceeds two.  

To surmount this difficulty, Elhafsi (2002) develops a recursive scheme that 

evaluates the objective function efficiently for any number of levels without 

recurring to express it in a closed form. However, the computing time increases 

relatively quickly with the number of levels. To overcome this problem, the 

author presents a heuristic. For a special case of this continuous model, where the 

lead times are distributed exponentially, the author derived the objective function 

in a closed form. 

Kim et al. (2004) suggested a model for constant demand and lead time with 

Erlang distribution for a single item inventory, and obtained an approximate 

solution. They launched an interesting conjecture that the behaviour of the 

analogous single-item inventory control model for the case where both demand 

and lead time are random can be calculated from the behaviours of the following 
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three models: (i) deterministic demand and lead time, (ii) random demand and 

deterministic lead time, and (iii) random lead time and deterministic demand. 

He et al. (2005) studied the impact of lead time when demand is constant in 

one level assembly system. In this study the lead time is random and limited, and 

the economic order quantity (EOQ) policy is used. The authors have shown that 

the cost varies linearly in function of the deviation of time. 

The problem of planned lead time calculation for one-level assembly systems 

was already studied in our previous work. In (Dolgui and Louly, 2002) a Markov 

model was proposed and in (Louly and Dolgui, 2002), a new generalization of the 

Discrete Newsboy model was suggested. For a more general case, a branch and 

bound algorithm was developed in (Louly et al., 2008).  

3. Problem description

We consider a serial production system with m levels (see Figure 1). We

suppose that the demand D of the finished product is fixed and its due date is 

known. To satisfy this demand, we need to launch the production processes 

composed of m serial stages (m levels) for a lot of D items. The level numbers are 

enumerated as follows: level m corresponds to the first production stage, level m-1 

to the second stage, and so on. The raw materials are released at level m, semi-

finished products are processed at levels m-1, m-2,…, 2 and finally, finished 

product is produced at level 1. After these m levels, the lot of D finished products 

is delivered to the customer.  

Order release date 

j 

customers 

Finished 

product 

Level 1 Level  j Level m 

m 1 m-1 

Figure 1:  m-level serial production system 

We assume also that the lead time at each level (delivery time for next level) 

is a discrete random variable. No restrictive hypothesis is made on such random 

variables; we only suppose that the distribution probabilities are known. The 

policy is the lot-for-lot for all levels. Level m delivers the semi-finished products 

to level m-1 within a random lead time Lm, level j delivers the semi-finished 

products to level j-1 within a random lead time Lj, j=2,...,m. When the items arrive 
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at the end of level 1, the customer demand D of finished products is satisfied. 

There are stocks at each intermediate level (from level m to level 1). 

If total lead time exceeds the planned lead time of the component at level j, j = 

1,2,..., m, tardiness is incurred and therefore the corresponding tardiness costs for 

level m to level 2. For level 1 this is called backlogging cost and corresponds to 

the finished product backlog. Otherwise, we obtain stocks and therefore 

corresponding holding cost for each level (see Figure 2). Hence, the objective is to 

minimize the total cost composed of the holding, tardiness and backlogging costs. 

b) 

a) 

The order release date 

(at level m)  Due date 

(known) 

Level m Level j Level 1 

stock tardiness Lead time 

Figure 2: An illustration of the cost incurred 

The following notations are introduced: 

• jc  components at level j, where j = 1,2,..., m;

• jd  number of component j needed at level j-1;

• 1b  unit backlogging cost for finished product per period;

• jb  unit tardiness cost for component j, j=2,…m, per period;

• jh  unit holding cost for component j, j=1,…m per period;

• D  demand of finished products per period (fixed and known);

• jL  actual lead time of the component j (discrete random variable);

• ),...,,( 21 mjjj xxxL ++′  actual cumulative lead time of level j (proper lead

time plus delays due to level j+1); 

• ju  upper value of jL ;
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• DdQ jj =  lot size for components j;

• jx  planned lead time for component j (integer decision variable);

• )Pr()( kLkF jj ≤= ;

• )Pr(),...,,( 1 kLxxk jmjj ≤′=Φ + ;

• E(.) mathematical expectation operator.

Let the lead time for components of level j be a random discrete variable with 

known distribution: ,,...,2,1),Pr( jj ukkL ==  where ju  is the maximum planned 

lead time value, for j =1,…,m. The lead time takes into account all processing 

times at the level j plus transportation time between level j and j-1. The actual 

cumulative lead time of the level j is given in (1): 

⎪⎩

⎪
⎨

⎧

=′

=−′+=′ +
++++++

mm

jmjjjjmjjj

LL

mjxxxxLLxxxL 1-1,2,...,for,)),...,,((),...,,( 132121

 (1) 

We present a model of this problem by analytically expressing the criterion to 

be optimized. This criterion considers the holding, component tardiness, and 

backlogging costs. For each type of component j, jx  denotes the planned lead 

time. 

Note that in Hnaien et al. (2007), we considered the same problem as in the 

current article but for the case of a Just in Time (JIT) policy where there are no 

holding costs at intermediate levels. For that problem, the objective was to find 

order release dates at level m (sum of planned lead times for all levels). 

4. Key Performance Indicators

PROPOSITION 1 The total cost is expressed as follows: 

[ ]∑
=

++′−=
m

j

mjjjjjj xxxLxhQLXC

1

21 )),...,,((),(

[ ]∑
=

+
++ −′++

m

j

jmjjjjjj xxxxLhbQ

1

21 )),...,,()(( (2)

where,  

  ),...,( 1 mxxX =  

  ),...,( 1 mLLL ′′=

Proof. The cost is equal to the sum of the component holding, tardiness as 

well as finished product backlogging costs. If at a certain level, a job is completed 

before its planned due date, i.e. 0)),...,,(( 21 >′− ++ mjjjj xxxLx , then a holding 

cost is incurring. Thus, the component holding cost is equal to: 
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∑
=

+
++′−

m

j

mjjjjjj xxxLxQh

1

21 )),...,,((

There is a tardiness (respectively backlog) of components j (respectively 

finished product) if the total lead time exceeds the planned lead time of the 

component at level j, j = 1,2,..., m, i.e. 0)),...,,(( 21 >−′ ++ jmjjj xxxxL .  

Thus, the sum of component tardiness cost and the finished product 

backlogging cost is equal to: 

∑
=

+
++ −′

m

j

jmjjjjj xxxxLQb

1

21 )),...,,((

Then, the total cost is equal to: 

∑
=

+
++ −′=

m

j

jmjjjjj xxxxLQbLXC

1

21 )),...,,((),(

∑
=

+
++′−+

m

j

mjjjjjj xxxLxQh

1

21 )),...,,((

Note that (-f)
+
= max(-f , 0) = f 

– 
= f 

+
– f. 

So, if we consider f = )),...,,(( 21 mjjjj xxxLx ++′− , ),( LXC  can be rewritten 

as follows: 

∑
=

+
++ −′+=

m

j

jmjjjjjj xxxxLQhbLXC

1

21 )),...,,(()(),(

∑
=

++′−+
m

j

mjjjjjj xxxLxQh

1

21 )),...,,((

▄ 

The cost ),( LXC  is a random variable. Therefore, we will calculate the 

mathematical expectation of ),( LXC  noted )(XEC . 

PROPOSITION 2 The expected cost can be expressed as follows: 

( )[ ]∑
=

++′−=
m

j

mjjjjjj xxxLExhQXEC

1

21 ),...,,(()(
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∑ ∑
=

+
≥

⎥
⎦

⎤
⎢
⎣

⎡
+Φ−++

m

j
mjj

k
jjjj xxkxhbQ

1
1

0

))...,,(1()( (3) 

where,  

⎪
⎪
⎩

⎪⎪
⎨

⎧

=Φ

−=−+Φ==Φ +++
=

+ ∑

)()(

 1,...,1for  ),,...,,()Pr(),...,,( 211
1

1

kFk

mjxxskxsLxxk

mm

mjjj

k

s
jmjj

(4) 

Proof. From relation (2), we derive the total expected cost: 

( )( ) ( )[ ]∑
=

++ ++′−==
m

j
jjmjjjjjj ZEhbxxxLExhQLXCEXEC

1
21 )(),...,,()),(()(

Where: 

+
++ −′= )),...,,(( 21 jmjjj xxxxLZ

Z  is a positive discrete random variable with a finite number of possible 

values, its mathematical expectation is: 

∑ ∑∑
≥

−

=≥
====

0

1

00

)Pr()Pr()(
i

i

ki

iZiZiZE ∑∑∑
≥≥ >

>===
00

)Pr()Pr(
kk ki

kZiZ  

Thus, we obtain: 

( )∑
≥

+
++ >−′=

0
21 )),...,,((Pr)(

k
jmjjj kxxxxLZE

Given that 

( )=>−′ +
++ kxxxxL jmjjj )),...,,((Pr 21

)( )),...,,((Pr1 21 kxxxxL jmjjj ≤−′−= +
++

( )( )0Pr)),...,,((Pr1 )( 21 ≥×≤−′−= ++ kkxxxxL jmjjj

Therefore: 

( )( )( )∑
≥

++ ≥×≤−′−=
0

21 0Pr)),...,,(Pr(1)(
k

jmjjj kkxxxxLZE
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In the previous expression the sum is computed for k ≥0, thus: 

( )∑
≥

++ +≤′−=
0

21 )),...,,(Pr(1)(
k

jmjjj kxxxxLZE

( )∑
≥

++Φ−=
0

1 ),...,,(1
k

mjjj xxkx

where,  

)),...,,(Pr()...,,( 211 kxxxLxxk mjjjmjj ≤′=Φ +++

))),...,((Pr( 121 kxxxLL jmjjj ≤−′+= +
+++

( )skxxxLsL jmjjj

k

s

−≤−′×== +
+++

=
∑ )),...,((Pr)Pr( 121

1

( ) ( )0Pr),...,(Pr)Pr( 121
1

≥−×−≤−′×== +++
=
∑ skskxxxLsL jmjjj

k

s

 

But, 0≥− sk , thus: 

),...,,()Pr())...,,( 211

1

1 mjjjj

k

s

mjj xxskxsLxxk +++
=

+ −+Φ==Φ ∑

Finally: 

( )[ ]∑
=

++′−=
m

j

mjjjjjj xxxLExhQXEC

1

21 ),...,,(()(

∑ ∑
=

+
≥

⎥
⎦

⎤
⎢
⎣

⎡
+Φ−++

m

j
mjj

k
jjjj xxkxhbQ

1
1

0

))...,,(1()(

▄ 

Note that for the particular case of only one level, the total cost (2) can be 

rewritten as follows: 

]))(()([),( 1111111111
+−++−= xLhbLxhQLxC (5)

The corresponding expected cost (3) is as follows:  
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( ) ⎥
⎦

⎤
⎢
⎣

⎡
+−++−= ∑

≥
)(1()(()( 1

0
1111111 kxFhbLExhQXEC

k

(6)

Hence, the optimal solution for one level system is given by the well known 

Newsboy model:  

)()1( 1
11

1
11 xF

hb

b
xF ≤⎟

⎠

⎞
⎜
⎝

⎛
+

≤− (7)

5. Problem properties

Using the previous evaluation model, we present in this section some 

interesting properties for this problem. 

5.1. Partial increments of cost functions 

We will use the following partial increment functions (Louly et al., 2008): 

),...,,...,(),...,1,...,()( 11 mjmjj xxxECxxxECXG −+=+
(8) 

),...,,...,(),...,1,...,()( 11 mjmjj xxxECxxxECXG −−=−
(9)

These partial increments represent the evolution of the objective function due 

to increment or decrement of a decision variable. An optimal solution X must 

satisfy the requirements (10) and (11), otherwise there is a neighboring solution 

better than X. 

0)( ≥+
XG j , for mj ,,1K= (10)

0)( ≥−
XG j  for mj ,,1K= (11)

PROPOSITION 3 The function )(XG j
+  can be rewritten as follows: 

≤+ )(XG j [ ] ∑
−

=
+ +Φ++−

1

1

1 ))...,,()(
j

s

ssmjjjjjjj hQxxxhbbQ (12) 

≥+ )(XG j [ ] ∑
−

=
+ +−Φ++−

1

1

1 )())...,,()(
j

s

sssmjjjjjjj hbQxxxhbbQ  (13) 
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 Proof.  

)(XG j
+  = ( )[ ]∑

=
+ +′−

m

s

mjsssss xxxLExhQ

1

1 ),...,1,...,((

∑ ∑
= ≥ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
++Φ−++

m

s

mjs

k

ssss xxkxhbQ

1 0

)),...,1,...,(1()(

( )[ ]∑
=

+′−−
m

s

mjsssss xxxLExhQ

1

1 ),...,,...,((

∑ ∑
= ≥ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
+Φ−+−

m

s

mjs

k

ssss xxkxhbQ

1 0

)),...,,...,(1()(

This difference between these two costs can be calculated term by term 

according to the value of the number s. The terms can be separated to facilitate the 

calculation. Let's note )(XG j

+ = A + B + C. 

The first term is for the values of s larger than j. The difference equals zero for 

this group: 

A= ( )∑ ∑
+= ≥

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+Φ−++′−

m

js

ms

k

sssmsssss xkxhbxxLExhQ

1 0

1 )),...,(1()(),...,((

       ( )∑ ∑
+= ≥

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+Φ−++′−−

m

js

ms

k

sssmsssss xkxhbxxLExhQ

1 0

1 )),...,,(1()(),...,((

= 0 

The second term is for js = . The difference is as follows: 

B = ( )( )]),...,,(1[ 21 mjjjjjj xxxLExhQ ++′−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++Φ−++ +

≥
∑ ))...,,1(1()( 1

0

mjj

k

jjjj xxkxhbQ

( )( )]),...,,([ 21 mjjjjjj xxxLExhQ ++′−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+Φ−+− +

≥
∑ ))...,,(1()( 1

0

mjj

k

jjjj xxkxhbQ
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   = ]))...,,(1)(([ 1 mjjjjjjj xxxhbhQ +Φ−+−  

   = ]))...,,()([ 1 mjjjjjjj xxxhbbQ +Φ++−  

The third term is calculated for js < , it is as follows: 

C = ( )[ ]∑
−

=
+ +′−

1

1

1 ),...,1,...,((
j

s

mjsssss xxxLExhQ

∑ ∑
−

= ≥
⎥
⎦

⎤
⎢
⎣

⎡
++Φ−++

1

1 0

)),...,1,...,(1()(
j

s
mjs

k
ssss xxkxhbQ

( )[ ]∑
−

=
+′−−

1

1

1 ),...,,...,((
j

s

mjsssss xxxLExhQ

∑ ∑
−

= ≥ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+Φ−+−

1

1 0

)),...,,...,(1()(
j

s

mjs

k

ssss xxkxhbQ

 = ( ) ( )[ ]∑
−

=
++ +′−′

1

1

11 ),...,1,...,(),...,,...,(
j

s

mjssmjssss xxxLExxxLEhQ

+ ∑ ∑
−

= ≥ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++Φ−+

1

1 0

)),...,1,...,(1()(
j

s

mjs

k

ssss xxkxhbQ

∑ ∑
−

= ≥
⎥
⎦

⎤
⎢
⎣

⎡
+Φ−+−

1

1 0

)),...,,...,(1()(
j

s
mjs

k
ssss xxkxhbQ

Or, ( ) ( ) 1),...,1,...,(),...,,...,(0 11 ≤+′−′≤ ++ mjssmjss xxxLExxxLE

and 1)),...,1,...,(1()),...,,...,(1(0
00

≤++Φ−−+Φ−≤ ∑∑
≥≥

mjs

k

smjs

k

s xxkxxxkx  

Then, this last term C satisfies the following inequalities: 

∑∑
−

=

−

=
≤≤+−

1

1

1

1

)(
j

s
ss

j

s
sss hQChbQ

Finally, we conclude: 

≤+ )(XG j [ ] ∑
−

=
+ +Φ++−

1

1

1 ))...,,()(
j

s

ssmjjjjjjj hQxxxhbbQ

≥+ )(XG j [ ] ∑
−

=
+ +−Φ++−

1

1

1 )())...,,()(
j

s

sssmjjjjjjj hbQxxxhbbQ

▄ 
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5.2. Properties of decisions variables 

PROPOSITION 4 The following properties are valid: 

jmjjj xxx α≥Φ + )...,,( 1   for j=1,…., m (14) 

jmjjj xxx β≤−Φ + )...,,1( 1   for j=1,…., m (15) 

mmm xF α≥)( (16)

mmm xF β≤− )1( (17)

jjj xF α≥)(   for j=1,…., m, (18)

where 
)(

1

1

jjj

j

s

ssjj

j
hbQ

hQbQ

+

−

=
∑
−

=α  and 
)(

)(
1

1

jjj

j

s

sssjj

j
hbQ

hbQbQ

+

++

=
∑
−

=β , for  j=1,..., m  

 Proof. According to (12):  

≤+ )(XG j [ ] ∑
−

=
+ +Φ++−

1

1

1 ))...,,()(
j

s

ssmjjjjjjj hQxxxhbbQ

Thus:  

)...,,(
)(

1

1

1
mjjj

jjj

j

s

ssjj

xxx
hbQ

hQbQ

+

−

= Φ≤
+

−∑
, for j=1,….m  

Thus, the propriety (14) is proved.  

As ),...,1,...,()( 1 mjjj xxxGXG −−= +− , we can drive the following inequality

from (11): 

≤0 [ ] ∑
−

=
+ ++−Φ+−

1

1

1 )())...,,1()(
j

s

sssmjjjjjjj hbQxxxhbbQ

Thus, 
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)...,,1(

1

1
1
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j

s
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Thus, the propriety (15) is proved.  

Using (4), the property (16) is immediately derived from (14) and the property 

(17) is immediately derived from (15). 

Using (4):  

)()...,,( 1 jjmjjj xFxxx ≤Φ + , for j=1,…, m. 

Finally,  

)(
)(

1

1
jj

jjj

j

s
ssjj

xF
hbQ

hQbQ

≤
+

−∑
−

= , for j=1,…, m  

We obtain the property (18). 

▄ 

Note: for m=1, the previous properties (15)-(18) are equivalent to well known 

Newsboy model. 

6. Numerical example

We give an illustrative example with 2 levels (m = 2). The lead time of each 

type of component is a discrete random variable which takes values from 1 to 5 

)5( 21 == uu , i.e., .51 ≤≤ jL  The unit holding costs are given in Table 1 and 

only one type of each component j is needed to produce the finished product, i.e., 

Qj = 1. The distribution probabilities of all lead times are given in Table 2.  

Table 1: Unit holding costs 

j 1 2 

jh 10 10 

Table 2: Probability distributions of the lead times 

w 1 2 3 4 5 

Pr (L1=w) 0.50 0.30 0.10 0.05 0.05 

Pr (L 2=w) 0.20 0.20 0.30 0.10 0.20 
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In the following table (Table 3, 4, and 5), the expected costs for different 

values of tardiness costs (b1=10 and b2=5; b1=20 and b2=10; b1=40 and b2=20) are 

reported. 

We can see that the optimal solution of the first instance with b1=10 and b2=5 

is (3, 2). The expected cost is 21.05.  

Table 3: Expected costs for different values of x1 and x2 where b1=10 and b2=5 

              x1 

x2 
1 2 3 4 5

1 36.00 27.00 22.20 22.00 25.20 

2 29.65 21.65 21.05 24.05 30.65 

3 32.90 26.40 28.60 34.80 33.10 

4 44.50 38.50 43.30 40.90 33.70 

5 59.00 54.00 50.00 42.00 33.00 

Table 4: Expected costs where b1=20 and b2=10 

              x1

 x2
1 2 3 4 5

1 73.00 54.00 41.80 36.50 36.30 

2 59.30 43.30 37.40 36.90 41.80 

3 61.80 48.80 47.10 51.40 43.85 

4 78.00 66.00 68.20 59.60 43.80 

5 99.00 89.00 78.00 61.00 42.50 

Table 5: Expected costs where b1=40 and b2=20 

              x1

 x2 
1 2 3 4 5

1 144.00 108.00 81.00 65.50 58.50 

2 118.60 86.60 70.10 62.60 64.10 

3 119.60 93.60 84.10 84.60 65.35 

4 145.00 121.00 118.00 97.00 64.00 

5 179.00 159.00 134.00 99.00 61.50 

These results show that it is necessary to set big values for the planned lead 

times when the unit backlogging costs are quite large. As we can see, when the 

backlogging (tardiness) costs increase, the optimal solutions for planned lead 

times increase also until the upper values of lead times, (5, 5) in this example. 

7. Conclusions

The problem of planned lead time evaluation has not been sufficiently studied, 

especially for multilevel production systems with random actual lead times. That 

was the motivation of this paper. 
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Here, multilevel supply planning was studied under lead time uncertainties for 

the case where the actual lead times are independent random discrete variables. 

The cost function was the sum of finished product backlogging, component 

holding and tardiness costs for all levels. A mathematical model for performance 

evaluation was suggested.  

The proposed model takes into account the dependence among level 

inventories and is a generalization of the well-known discrete Newsboy model.  

Further research will be dedicated to the development of efficient optimization 

algorithms using this evaluation model. It is also interesting to study the 

extensions of this approach for multilevel assembly systems. The main difficulty 

will be to represent in a treatable form the dependence among component 

inventories necessary to assemble the same semi-finished product. In this 

perspective, the models of this paper may be useful for an approximate approach 

which consists in cutting the bill of material (BOM) tree of the finished product 

into multi-level linear (branches). 
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