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MACHINING LINES WITH MULTI-SPINDLE WORKSTATIONS: A NEW

This paper deals with a transfer line optimal design. In transfer lines, operations of the same block are executed simultaneously. Blocks are assigned to machines and they can be activated in mixed order. The set of all available blocks is given beforehand. The line investment cost is de fined by the sum of blocks costs and stations costs. In ad dition to the standard line balancing problem, precedence and cycle time constraints, blocks compatibility and par allelism constraints must be taken into account. The prob lem is to assign all operations grouped into blocks that all constraints are respected and line investment cost is min imum. This paper is focused on solving the problem by a branch-and-bound algorithm. A new approach for ob taining a lower bound is offered. It is based on a reduction of the transfer line balancing problem to a set partition ing problem. Computational experiments provides that the proposed approach is efficient to solve practical transfer line design problems.

Introduction

Production systems are often organized as an auto mated flow line. It allows to increase the production rate and minimize the production cost. In these lines, a product sequentially passes throughout all stations with a constant cadence. The maximal available work time per station (maximal time which product can spend at each station) is limited by a given cycle time. The line cycle time is defined by the slowest station of a line.

An important problem of a flow line design is line bal ancing. Historically, line balancing problem has been con sidered in the assembly environment. In a standard assem bly line balancing problem, there is a type of product and all the operations are known. Operations must be assigned in stations such that the cycle time and the precedence constraints are respected and the idle time is minimum. Such single product problem is referred as the Simple As sembly Line Balancing Problem Type I (SALBP-I). For SALBP-I, the idle time is minimum iff (if and only if) the stations number is minimum as well [START_REF] Scholl | Balancing and sequencing of assembly lines[END_REF]. For first time, as a combinatorial problem, SALBP has been studied in [START_REF] Salveson | The assembly line balancing problem[END_REF]. Recently, many heuristics, meta heuristics and optimal approaches have been suggested. The comprehensive surveys on SALBP are presented in [START_REF] Baybars | A survey of exact algorithms for the simple assembly line balancing problem[END_REF], [START_REF] Ghosh | A comprehensive literature re view and analysis of the design, balancing and scheduling of assembly line systems[END_REF], [START_REF] Rekiek | State of art of assembly lines design optimisation[END_REF], [START_REF] Ere | A survey of the assembly line bal ancing procedures[END_REF], [START_REF] Scholl | Balancing and sequencing of assembly lines[END_REF].

There are generalizations of SALBP to multi-product systems [START_REF] Graves | Equipment selection and task assignment for multiproduct assembly system design[END_REF], [START_REF] Rekiek | State of art of assembly lines design optimisation[END_REF], [START_REF] Scholl | Balancing and sequencing of assembly lines[END_REF]. An other generalization of SALBP is a cost-oriented SALBP [l] and line balancing with equipment selection [START_REF] Bukchin | Design of flexible assembly line to minimize equipment cost[END_REF], [START_REF] Bukchin | A weighted approach for as sembly line design with station paralleling and equipment selection[END_REF], [START_REF] Graves | Equipment selection and task assignment for multiproduct assembly system design[END_REF]. In cost-oriented SALBP, the objective function is to minimize the cost per product unit. The goal of line balancing with equipment selection is defined as minimizing of a total cost com posed of equipment, tools, equipment usage and gripper exchange costs.

This paper deals with a line balancing problem in machining/process environment which is called Transfer Line Balancing Problem (TLBP). Its main feature is that the operations to be executed are grouped into blocks. The operations of each block are executed simultaneously by one spindle head. Transfer lines have a common trans fer system (a conveyor belt). The movement of product items is synchronized. There are no buffers in between stations. When item is loaded on a station, it is positioned and station spindle heads are activated in a fixed order. A typical scheme of a transfer line is presented at Figure 1. The advantage of transfer lines is they allow to essentially decrease the number of equipment pieces and line cycle time [START_REF] Groover | Automation, Production Systems and Com puter Integrated Manufacturing[END_REF], [START_REF] Hitomi | Manufacturing System Engineering[END_REF].

In Figure 1 a station is defined by the part position and all the subsequent spindle heads. Several blocks can be installed at each station. Each spindle head is equipped by several tools. Each tool executes one operation or several operation (a combined tool).

Transfer lines are designed for mass production of sin gle and comparatively simple product for a long exploita tion time and huge production volume. Transfer lines rep resent "high automation" and they have high investment cost. However, their productivity allows to decrease their exploitation cost.

The set of all available blocks is often given before hand. In this case, a transfer line is modular and is com posed of "standard" spindle heads grouped in so-called multi-heads machines. This approach provides some flex ibility when a line is redesigned (as far as possible for transfer lines) and has a great importance in many in dustries. The line investment cost can be estimated by a sum of stations cost and blocks costs. The goal at the line design stage is to minimize the investment cost.

When the set of all available spindle heads is not given beforehand (the structure of blocks is a decision variable), the objective function is typically formulated as to min imize weighted sum of stations and blocks numbers. In [START_REF] Dolgui | On problem of optimal design of tranfer lines with parallel and se quential operations[END_REF], [START_REF] Dolgui | Appoaches to balancing of transfer line with blocks of parallel opera tions[END_REF], [START_REF] Dolgui | Une approache de programmation lineaire pour la conception des lignes de transfert[END_REF], [START_REF] Dolgui | An heuristic approach for transfer lines balancing[END_REF] it is assumed that the set of all avail able spindle heads is not known beforehand. The objec tive function is to minimize a weighted sum of stations and blocks numbers. Papers [START_REF] Dolgui | A special case of transfer lines balancing by graph approach[END_REF], [START_REF] Dolgui | Branch and bound algorithm for optimal design of transfer lines with multi-spindle sta tions[END_REF] deal with TLBP where the set of all available spindle heads is known. In [START_REF] Dolgui | A special case of transfer lines balancing by graph approach[END_REF] blocks at each station are executed simultaneously, in [START_REF] Dolgui | Branch and bound algorithm for optimal design of transfer lines with multi-spindle sta tions[END_REF] blocks of each station are executed sequentially. Sev eral procedures for TLBP have been suggested: a con strained shortest path in a special digraph, mixed integer programming (MIP), branch-and-bound procedure, con straints programming and heuristics. This paper deals with an unexplored TLBP where the set of all available blocks is given and blocks at each stations can be activated in a mixed order. The ob jective function is to minimize the sum of stations and blocks costs (line investment cost) while precedence, op erations zoning, blocks exclusion and blocks parallelism constraints are respected.

This problem cannot be directly solved with known ap proaches suggested for SALBP, cost-oriented SALB and line balancing with equipment selection for the following reasons:

• The operations are partitioned into blocks.

• Operations of the same blocks are executed simulta neously by one spindle heads.

• Several available blocks can contain the same oper ation and it is not known which block is best to be chosen.

• The given set of available blocks commonly contains mutually incompatible blocks.

• Blocks assigned to the same station can be activated in the mixed order.

• The line cost is estimated as the sum of stations cost and blocks costs and many additional constraints are taken into account.

In this paper, we present an adaptation of the suggested in [START_REF] Dolgui | Branch and bound algorithm for optimal design of transfer lines with multi-spindle sta tions[END_REF] approach for the problem with mixed order of blocks activation. Several procedures for improving the accuracy of a lower bound is also proposed.

Notations and Problem Statement

The preliminary design stage for the machining trans fer lines is considered. It is supposed that the set of all operations which must to be executed is known. The goal is to define an optimal structure of the transfer line, i.e. the set of spindle heads at each stations and their activa tion order.

The set of all available blocks is given beforehand. In practice, the set of blocks is obtained by experience. It must contain all operations to be executed. Usually, each operation can belong to several blocks. At each station, it's blocks can be activated in a mixed order (sequentially or simultaneously). It is assumed that block execution times and costs are given. In general, for the same op eration it's processing time can differ for different blocks. The detailed explanation of block time calculation is given in [START_REF] Dolgui | Appoaches to balancing of transfer line with blocks of parallel opera tions[END_REF].

The transfer line balancing problem at hand is to chose and assign blocks of parallel operations in such a way that:

• Each operation is executed once.

• The given line cycle time is not exceeded.

• All operations execution satisfies to the precedence constraints.

• The machining process can cause that some groups of operations must be carried out on the same station.

It is implied that the operations of each group must belong to the same block or to different blocks as signed to the same station. This type of constraint is called operations zoning constraint. It is assumed all these groups are defined at the product design stage and they are given.

• Similarly, technological constraints usually define sets of blocks which cannot be assigned to the same station. This type of constraint is called blocks exclu sion constraint. In practice, these sets of blocks are known before the optimization of a line investment cost.

• Possible sets of blocks which can be executed simul taneously are given. This type of constraint is re ferred as blocks parallelism constraints.

• For each station, the number of assigned blocks does not exceed a given value.

• The line investment cost estimated as the sum of blocks cost and stations cost is as small as possible (cost minimization).

Notations:

N = {1, 2, ... , n } is the given set of all the operations.
T0 is the given transfer line cycle time.

n0 is the maximum number of blocks for a station. ( i, j) E E0, i, j E N iff i and j must be assigned to the same station. Also, the op erations inclusion constraints can be defined by sets den( G) is a ration between the number of edges (arcs) in the graph (digraph) G and number of edges (arcs) in the complete graph (digraph) with the same number of vertices.

I0(i) = {j I j EN, iff(i,j) E E0}, i EN.
m is the stations number in a solution.

mis the lower bound of the minimum stations number.

qk, k = 1, 2, ... , mis the number of the sets of simul taneously activated blocks assigned to stations k in a solution.

An assignment of blocks at the station with in dex k is represented by an ordered family Fk (Sf,S�, ... ,S�J, where: S� � B, k = 1,2, ... ,m, u = 1, 2, ... , qk is a set of simultaneously activated blocks, qk is a number of such sets assigned to the station k. Index u indicates the order of the sequential execution for sets S�.

The considered transfer line design problem is stated as follows: to find a family L = (F1, F2, ... , Fm) respected the following constraints.

All operations are executed:

(1

)
Each operation is executed once: k=l SEFk bES

N(b') n N(b") = 0, b' ES�, b" ES�, b' # b", k, r = 1, 2, ... , m, (2) 
(7) (8) (9) 
The decision variables are sets S� grouped into fami lies Fk, k = 1, 2, ... , m, u = 1, 2, ... , qk.

Lower bound

In [START_REF] Dolgui | Balancing of transfer lines with simul taneously activated spindle[END_REF], a TLBP with simultaneously activated blocks has been investigated. Because that at each station as signed blocks are executed simultaneously the line cycle time constraints are neglected. It was suggested a MIP ap proach to solve this problem. Computational experiments have been done by CPLEX. They showed that CPLEX can solve in appropriate time only problems where number of operations does not exceed 40. It is generally known that CPLEX solves MIP problem by a branch-and-bound algo rithm. It obtains a lower bound by the linear-programming relaxing of the initial MIP problem. In fact, a linear programming lower bound is insufficient to solve complex transfer line balancing problem.

In this paper, it is suggested to obtain a lower bound by relaxing of the initial TLBP to a special set partitioning problem. This approach allows to calculate lower bound more precisely although it is more time-consuming. Let .C = (F1, F2, ... , Fm) is family which sat isfies constraints (2)-( 7) and constraint (8) for k = 1, 2, ... , m -1. Evidently, .C represents itself a partial solution of the problem (1)-( 9). The constraint (1) is not respected for .C. Otherwise, it is not necessary to find a lower bound. Denote \lie= LJ LJ N(S). [START_REF] Dolgui | Balancing of transfer lines with simul taneously activated spindle[END_REF] 

FkE e SEFk

The set \Ji e can be considered as a state of design. Let a= LL Lc(b)+Co(m-1). (15) k=l SEFk bES

Evidently, the value a is a constant for the given .C.

A lower bound of the investment costs of assigning the set W can be estimated as:

p ,6(W) = L c(wk) +Com, (16) k=l 
where iii = m(W) is a lower bound of the stations num ber which are needed to assign the set of blocks W.

Thus, a lower bound of the total investment cost re sulted from assigning the subfamily (F1, F2, ... , Fm-1) and the set W is defined as:

LB(W) =a+ ,6(W).

(

) 17 
Let there exists a set W* (w1, w2, ... , wp', w;,+1, w;,+2, ... , w;.) satisfying constraints (11)-( 14) and minimizing function [START_REF] Groover | Automation, Production Systems and Com puter Integrated Manufacturing[END_REF]. Then, the value:

LBe =a+ ,6(W*) =a+ min,6(W) (18) w can be considered as a lower bound of the investment cost for the partial solution £.

The constraints (13), ( 14) appear in the so-called set partitioning problem. It was studied in [START_REF] Garfinkel | The set partition prob lem: set covering with equality constraints[END_REF]. Several ap proaches based on back-tracking, integer linear and dy namical programming were proposed to solve the set par titioning problem.

The problem (11)-( 14), ( 18) differs from the standard set partitioning problem by the element C0m (see for mula (16)) In general, function m(W) depends on the graphs GEE, GEP. Hence, it is nonlinear and the prob lem (11)-( 14), ( 18) is essentially complex than the stan dard set partitioning problem.

Lower bound of the stations number

Suppose, it is necessary to estimate the number of the station iii for a set W satisfying constraints (11)-( 13), and, may be, constraint [START_REF] Ghosh | A comprehensive literature re view and analysis of the design, balancing and scheduling of assembly line systems[END_REF].

Consider blocks exclusion constraint [START_REF] Dolgui | An heuristic approach for transfer lines balancing[END_REF]. Let G EE be the complement of the graph GEE. A set B � B induces in the graph G EE a subgraph. Let (Vz, Ez), z = 1, 2, ... , z0 be the components of this subgraph. Evi dently, if two blocks belong to two different components, then they cannot be assigned to the same station. Hence, the estimation of iii for the set W can be reduced to the estimation of the stations number mz for each component (Vz, Ez), z = 1, 2, ... , Zo. The numbers mz can be esti mated by taking into account constraints (4)- [START_REF] Dolgui | On problem of optimal design of tranfer lines with parallel and se quential operations[END_REF].

First, consider constraints (5), [START_REF] Dolgui | On problem of optimal design of tranfer lines with parallel and se quential operations[END_REF]. In each component 

where �(Vz, Ez) is the maximum degree of the vertices in the component (Vz, Ez).

Using the formulas (19), [START_REF] Scholl | Balancing and sequencing of assembly lines[END_REF] and taking into account constraint (7) a lower bound of the stations number mz can be obtained as:

(21)
Now, consider the blocks parallelism (4), cycle time (6) and maximum number of blocks constraint [START_REF] Dolgui | On problem of optimal design of tranfer lines with parallel and se quential operations[END_REF]. The blocks from the set Vz must be assigned to stations in the mixed order. This condition leads to the problem: to find out the partition X = (X 1 , X2, ... , Xd) of the set Vz sat isfying the following constraints.

Blocks of set Xk belongs to the same clique in the graph GEP, i.e. they are executed simultaneously: xk (;;; GEP, k = 1, 2, ... , d. In general, problem (22)-( 26) is a very complex com binatorial problem. However, for the TLBP the density den(GEP) is enough small. Usually, it less than three percents and problem (22)-( 26) can be solved by a tree search algorithm with the dominance rule:

Proposition 1 If partitions X' and X" satisfy the con straints ( 22)-( 24), LJ X � LJ X and T(X') > XEX' XEX"

T(X"), then the partition X' is dominated by X". So, the lower bound r (Vz) of blocks execution time allows to obtain a lower bound of the stations number as: 

Algorithm for obtaining the lower bound

The lower bound LB L can be obtained by solving problem (11)-( 14), [START_REF] Rekiek | State of art of assembly lines design optimisation[END_REF]. As mentioned above, this prob lem is a special set partitioning problem. In advance of [START_REF] Garfinkel | The set partition prob lem: set covering with equality constraints[END_REF], proposed in this paper algorithm is a frontier branch-and-bound procedure. However, it uses the reduc tions mentioned in [START_REF] Garfinkel | The set partition prob lem: set covering with equality constraints[END_REF] in each node of search-tree.

Each set W satisfies constraints (11)- [START_REF] Garfinkel | The set partition prob lem: set covering with equality constraints[END_REF]. A lower bound LB-(W) of function ( 17) can be defined as fol lowing:

zo I>-wz) LB-(W) =a+ L c(w) + Co z=l T. + h lril , wEW O
where h represents the minimum average "contribution" of each non-assigned operation to function [START_REF] Hitomi | Manufacturing System Engineering[END_REF]. For the partial solution £ = 0 (it is possible only for the root lower bound) h can be defined as:

, ( L . c(b) -

) h = mm -I N I + Com /INI, bEB,iEb (b) iEN ( 30 
)
where mis the minimum number of stations m-, with out taking into account the stations and blocks cost. Num ber mcan be estimated in different ways. For exam ple, it can be done before line cost optimization by a tree search algorithm. In the cases when the partial solution £ # 0 the value of h can be estimated more precisely:

(31)
where L P is such a partial solutions that £ can be obtained by adding of some blocks to L P . If problem (1)-( 9) is solved by a branch-and-bound algorithm, then it is rea sonable to suppose LBcp to be equal to a lower bound of the "parent" node. Computational experiments are shown the branch-and-bound procedure efficiently solves prob lem (11)-( 14), (18) (see Tables 1).

4 Branch-and-Bound Algorithm

Suppose that the first m -1 stations in the current par tial solution £ are completely determined. Each partial solution (family) is associated with a node of the search tree. The node extension is a composition of a current partial solution and such a block that a new partial solu tion satisfies to constraints (2)-( 7) and constraint (8) for k = 1, 2, ... , m -1. Denote F B is a set of blocks satis fying the following constraints: In other words, the set F B consists of blocks such that any operation of a block has no predecessors or its prede cessors are already assigned. Generally, for a given partial solution £, each block b E F B can generate at most three families:

1. ;:,c = (F1, F2, ... , Fm -1, (Sr;', S'!f', ... , s;:,, _1, s;:,, U {b})).

All these families must respect constraints (2)-( 7) and constraint (8) fork = 1, 2, ... , m -1. If some families do not respect these constraints, then they are infeasible and cannot be further branched.

So, the branching for the current partial solution is the generation of possible ;:,c , ;: t , ;:n families for each block bEFB.

A lack of this approach is in the fact that it is possible to have many families which differs only in the order of blocks and operations. The following method based on dominance rules can be used to overcome this lack and to essentially increase the performance of the branch-and bound algorithm.

Dominance rules

For the families ;:,c , ;: t , ;:n if there is a lower bound for one families, then there are lower bound for all three fam ilies. This conclusion is based on the procedures branch and-bound algorithm for obtaining lower bound. More over, if there exist lower bounds, then families ;:,c , ;: t , ;:n are equivalent (composed of the same blocks). The defini tion of the families ;:,c , ;: t , ;:n and the Bellman's principle of optimality leads to: These propositions allow to eliminate some branches at the current node. Similar action must be repeated for all other blocks of the current node.

A more powerful approach for reducing the search tree is to store and use \Ji L states throughout of the search.

If the states of two partial solutions are equal, then their B sets are equal as well.

Proposition 5 Let a partial solution £, satisfYing con straints (2)-( 8), has the state We. If there exists afamily L, respecting the same constraints, such that \Ji L = \Ji;:, C(L) < C(L), then ;:n families for any block b E F B are infeasible or unpromising.

Last statement can be applied by storing (\Ji c, C(L)) pairs (where £ respects constraints (2)-( 8) during the search). Let DS is an appropriate data structure (such as list, balanced tree, etc.) containing such (wD5, Cf5) pairs, where WD S is a State and C{i5 is the best value Of the objective function C ( • ) . Three actions are applied to DS: checking, adding, updating.

The checking consists of the search in D S for the pair with the state equal to 1Ji L. If D S does not contain such a pair, then the adding procedure is executed. Otherwise, the condition C(L) < C{i5 is tested. If it holds, then the corresponding updating must be done by the assign ment C{i5 = C(L). Otherwise, due to proposition 5 all Ln families for any block b E F B are eliminated from the search tree. An adding is executed when DS does not contain a pair with the state 1Ji L• In this case, the pair (w c , C(L)) is added to the data structure DS.

The effectiveness of proposed approach depends on the number of possible states.

Design of the branch-and-bound algorithm

The proposed branch-and-bound algorithm is a stan dard depth first search with a multi-choice tree. The main stages of the algorithm are the following:

Stage I. Obtaining of a root lower bound: The mini mum stations number mis estimated. Using this num ber, a root lower bound for £ = (0) is computed by the branch-and-bound algorithm and formula (30). The ob jective function of the current best solution is supposed to be equal to oo.

Stage II. Node extension: For the current node, a set F B is computed. Each block from F B generates new descendants of current node with partial solutions Le, Lt, Ln. These partial solutions are checked by the dominance rules (see propositions 2-5). Infeasible or unpromising nodes are pruned. For the rest of descen dants, lower bounds are calculated. Descendants having the lower bound great or equal than the current best solu tion value are also pruned. If for a node the corresponding partial solution covers the set of all operations and its so lution value is less than the current best value, Table 1. Computational experiments den(GP) = 0.1 then this partial solution is supposed to the best. The node having minimum lower bound is supposed to be most promising and must be branched first.

Stage III. Stop condition: If there are nodes with lower bound or solution value less than the current best value, then the search is continued from the previous stage. Otherwise, an optimal solution has been founded.

Numerical experiments

The aim of the experimental study is to examine the impact of various parameters on the performance of the proposed algorithm. and the average effectiveness of the lower bound. The quality of the lower bound is measured by a relative distance between the root lower bound and the optimum (gap The performance of the branch-and-bound algorithm is measured by total running time (preprocessing time and branching time).

The gap is computed with the formula 100% • ( C* -LBr)/C*, where C* is the optimal solution and LBr is the corresponding root lower bound. The total running time rapidly increases when the num ber of operations and blocks increases. The density den( GP) has a great influence as well. Namely, the to tal running time decreases when the density den( GP) in creases. In fact, the more the density den( GP) is the less the size of search tree is.

Table 1 indicates that the average gap increases when the den( GEE) increases as well. Because the large value of the gap rises the number of examined nodes, then the performance of the branch-and-bound algorithm is re duced down when den( GEE) increases. The average gap for all the tests is equal to 13.6%. The moderate size of real transfer line balancing problem is 70 operations. So, the developed algorithm allows to optimally solve the most of real TLBP in three hour in average.

The relative improvement is computed with the for mula (C1 -C*)/C1, where C1 is a first solution value obtained during the branching. Table 1 indicates the aver age improvement is equal 9.5%.

Conclusion

In this paper a new line balancing problem is consid ered. This problem appears during design of machining transfer lines with spindle heads activated in a mixed or der. In contrast to the SALBP, considered transfer line bal ancing problem has many additional properties and con straints and it is more complex.

An optimization model of the problem is developed. An approach to compute a lower bound is proposed. The approach is based on the reduction of the transfer line balancing problem to a special set partitioning problem. The proposed branch-and-bound algorithm also uses dom inance rules for reducing the search tree. Computational experiments indicate that the suggested approach is ef ficient to solve optimally problems with moderate size. Namely a problem with 70 operations can be solved in three hour. Computational experiments demonstrate the sensitivity of running time on some studied parameters.

In average, the proposed algorithm improves the line investment cost on 9.5%. This economic benefit justifies for searching an optimal solution although time consum ing. But for large-scale problems the calculation time for proposed algorithm can be prohibitive. Further study can be concerned with a design of heuristic techniques based on this algorithm.
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 1 Figure 1. A scheme of a transfer line

  q0 is the number of all available blocks. B = {b1, b2, ... , bq0} is the given set of all available blocks. N(b) � N is the set of operations contained in a block b. N(S) = LJ N(b) is a set of operations covered by bES set S � B. t(b) is the processing time of block b E B. c(b) is the cost of block b E B. C0 is the cost of one station. P(b) is the set of operations which directly precede (in the ordinary sense) to each operation from N(b). In other words, P(b) is a set of operations which di rectly precede to a block b. P(S) = LJ P(b) is the set of operations which directly bES precede (in the ordinary sense) to S � B. p + (b) is the set of operations which precede to N(b) di rectly or not. Clear, P(b) � p + (b). p + ( S) = LJ p + (b) is the set of operations which pre bES cede to S � B directly or not. Evidently, P(S) � p + (s) . s + (b) is the set of operations which succeed to b E B. s + ( S) is the set of operations which succeed to S � B. GP = (N, D) is an acyclic digraph representing the precedence constraints for operations, ( i, j) E D iff operation i directly precedes (in the ordinary sense) operation j. c BE = (B, E BE ) is a graph representing the blocks ex-' II BE I II clusion constraints. (b , b ) E E , b , b E B iff b' and b" cannot be assigned to the same station. G0 = (N, E0) is a graph representing the operations in clusion constraints.

  c B P = (B, E B P ) is a graph representing the blocks parconstraints. (b , b ) E E , b , b E B iff b' and b" can be simultaneously executed at the same station. C is a binary relation. Let G = (V, E) is a graph and B � V. Notation B [;;; G means that all elements from B belong to the same clique in the graph G.

  U = 1, 2, ... , qk, V = 1, 2, ... , qr.The operations precedence constraints are respected: for all k = 1, 2, ... m and for all S� E Fk kl � u P(S�) � ( LJ LJN(S � ) ) LJ ( LJN(S ! ) ) .

r=lv=l v=l ( 3 ) 5 ) 6 )

 356 All blocks from set S� are executed simultaneously k = 1, 2, ... , m, u = 1, 2, ... , qk. Then, the set E B P must contain all edges (b', b"), b' # b", b', b" E S�. In other words, s� is a clique in the cBP. So, blocks paral lelism conditions can be formulated as: S�[;;;GBP,k=l,2, ... ,m,u=l,2, ... ,qk. (4) Blocks exclusion constraints: qk (b',b") tj:_ EBE, for all b',b" E u S�, u=l k = 1, 2, ... , m, u = 1, 2, ... , qk. (Each station time does not exceed the given objective line cycle time: L maxt(b) ::; T 0 , k = 1, 2, ... , m. bES SEFk (For each station, the number of assigned blocks does not exceed the given value: L I S l ::;n0 , k=l,2, ... ,m. SEFk Operations zoning constraints: LJ LJ LJ I°(i) � LJ N(S), SEFk bES iEN(b) SEFk k = 1,2, ... ,m. The line investment cost is as small as possible: m minC(.C) = L L L c(b) + C 0 m.

  = LJ s;;, \lie= (N\ we) LJN(B ),p' = L 1 s :1 .u=l u=lAssume, W = (w1, w2, ... , wp) is a set of blocks sat isfying the constraints:Wk E 3, k = 1, 2, ... ,p', Wk EB, k = p' + l,p' + 2, ... ,p, N(wk) �We, k = 1,2, ... ,p, N(wk) nN(w u ) = 0, k # u, k, u = 1, 2, ... ,p, N(W) =\lie,If the first m -1 stations of .C are completely deter mined, then the family W can be considered as a "com plement" to the partial solution ( F1, F2, ... , F m-1). As follows from the definition, elements wk, k = 1, 2, ... , p' are defined accordingly to the last station in the partial so lution .C. F2, ... , F m-l) � .C is equal to: m-1

(

  Vz, Ez), the blocks of a set V � Vz cannot be assigned to the same station iff they belong to the same independent set of vertices in the component (Vz, Ez). Hence, the size of the maximum independent set defines the lower bound of the number mz. A lower bound Tof the size of max imum independent set a0 for the component (Vz, Ez) can be computed by the following formula: mz 2'.ao(Vz,Ez) 2°'.T-= IL(l+deg(v))-1 1, (19) vEVz where deg( v) is the degree of the vertex v in the compo nent (Vz, Ez), On the other hand, the blocks of a set V � Vz can be assigned to the same station iff they belong to the same clique at the component (Vz, Ez). An upper bound T + of the size of maximum clique w(Vz, Ez) can be determined as: T + ::; w(Vz, Ez) = �(Vz, Ez) + 1,

  The execution time of each set of parallel blocks does not exceed the line cycle time: max t(b) ::; T0, k = 1, 2, ... , d, (23) bEXk The number of blocks for each set does not exceed the given value: IXk I ::; no, k = 1, 2, ... , d.

  All blocks from the set Vz are assigned:(25)The objective function can be defined as minimization of the time required to carry out the blocks of the compo nent (Vz, Ez), i.e. d C(Vz) =min T(X) =min L maxt(b). (26)X k =l bEXk

  Finally, expressions (21), (27) lead that a lower bound of the stations number for the component (Vz, Ez) can be stated as follows: � ( -I IVz l l IC (Vz) l) mz =max T , I min( n o,T + ) , I � . (28) Hence, a lower bound of the stations number for the set W is equal to: z o (29) z =l Last expression completely determines the calculation of objective function ( 17) for a given set W.

FE=

  {b I N(b) n w c = 0, P(b) <;;;; w cu N(b)}.

Proposition 2 Proposition 3

 23 If family ;: c satisfies constraints (2)-(7) and constraint (8) fork = 1, 2, ... , m -1, then family ;: t is infeasible or unpromising. If family ;: c satisfies constraints (2)-(8), then families ;: t , ;:n are infeasible or unpromising. Proposition 4 If family ;: t satisfies constraints (2)-(8), then families ;:n is infeasible or unpromising.

  den(GP) = 0.15 den(GBE) = 0.05 den(GBE) = 0.1 den(GBE) = 0.05 den(GBE) = 0.1

  ). Test examples were generated randomly for three val ues of INI, IBI and for two values of den(CP) E {0.1, 0. 15} and den(CBE) E {0.1, 0.15}. Because the graphs CP, CBE, C0 and CBP densities must be Co ordinated, den( C0) and den( CBP) are fixed at the val ues 0.01. and 0.03, respectively. For other parameters the following values are used: 500 ::; C0 ::; 1000, n0 = 5, 120 ::; T0 ::; 150, 200 ::; c(b) ::; 280, 20 ::; t(b) ::; 55. All parameters are independently and uniformly distributed. There 12 series of tests are generated, each series is composed of 25 examples with different different values of above parameters. Tests were carried out on Intel IV with 2.8Ghz and the obtained results are presented in Ta ble 1.