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Abstract 

This paper deals with a transfer line optimal design. In 
transfer lines, operations of the same block are executed 
simultaneously. Blocks are assigned to machines and they 
can be activated in mixed order. The set of all available 
blocks is given beforehand. The line investment cost is de
fined by the sum of blocks costs and stations costs. In ad
dition to the standard line balancing problem, precedence 
and cycle time constraints, blocks compatibility and par
allelism constraints must be taken into account. The prob
lem is to assign all operations grouped into blocks that all 
constraints are respected and line investment cost is min
imum. This paper is focused on solving the problem by 
a branch-and-bound algorithm. A new approach for ob
taining a lower bound is offered. It is based on a reduction 
of the transfer line balancing problem to a set partition
ing problem. Computational experiments provides that the 
proposed approach is efficient to solve practical transfer 
line design problems. 

1. Introduction

Production systems are often organized as an auto

mated flow line. It allows to increase the production rate 

and minimize the production cost. In these lines, a product 

sequentially passes throughout all stations with a constant 

cadence. The maximal available work time per station 
(maximal time which product can spend at each station) 

is limited by a given cycle time. The line cycle time is 

defined by the slowest station of a line. 

An important problem of a flow line design is line bal

ancing. Historically, line balancing problem has been con

sidered in the assembly environment. In a standard assem
bly line balancing problem, there is a type of product and 

all the operations are known. Operations must be assigned 

in stations such that the cycle time and the precedence 
constraints are respected and the idle time is minimum. 

Such single product problem is referred as the Simple As
sembly Line Balancing Problem Type I (SALBP-I). For 

SALBP-I, the idle time is minimum iff (if and only if) the 

stations number is minimum as well [20]. 
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For first time, as a combinatorial problem, SALBP has 

been studied in [19]. Recently, many heuristics, meta

heuristics and optimal approaches have been suggested. 
The comprehensive surveys on SALBP are presented in 

[2], [ 14], [18], [12], [20]. 

There are generalizations of SALBP to multi-product 

systems [15], [18], [20]. An other generalization of 

SALBP is a cost-oriented SALBP [l] and line balancing 

with equipment selection [4], [3], [15]. In cost-oriented 

SALBP, the objective function is to minimize the cost per 
product unit. The goal of line balancing with equipment 

selection is defined as minimizing of a total cost com

posed of equipment, tools, equipment usage and gripper 

exchange costs. 

This paper deals with a line balancing problem in 

machining/process environment which is called Transfer 

Line Balancing Problem (TLBP). Its main feature is that 
the operations to be executed are grouped into blocks. The 

operations of each block are executed simultaneously by 

one spindle head. Transfer lines have a common trans

fer system (a conveyor belt). The movement of product 

items is synchronized. There are no buffers in between 

stations. When item is loaded on a station, it is positioned 
and station spindle heads are activated in a fixed order. A 

typical scheme of a transfer line is presented at Figure 1. 

The advantage of transfer lines is they allow to essentially 

decrease the number of equipment pieces and line cycle 

time [16], [17]. 

In Figure 1 a station is defined by the part position and 

all the subsequent spindle heads. Several blocks can be 
installed at each station. Each spindle head is equipped by 

several tools. Each tool executes one operation or several 

operation (a combined tool). 

Transfer lines are designed for mass production of sin

gle and comparatively simple product for a long exploita

tion time and huge production volume. Transfer lines rep

resent "high automation" and they have high investment 
cost. However, their productivity allows to decrease their 

exploitation cost. 

The set of all available blocks is often given before

hand. In this case, a transfer line is modular and is com

posed of "standard" spindle heads grouped in so-called 
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Station 1 Station 2 Station m 

Figure 1. A scheme of a transfer line 

multi-heads machines. This approach provides some flex

ibility when a line is redesigned (as far as possible for 

transfer lines) and has a great importance in many in

dustries. The line investment cost can be estimated by 
a sum of stations cost and blocks costs. The goal at 

the line design stage is to minimize the investment cost. 

When the set of all available spindle heads is not given 

beforehand (the structure of blocks is a decision variable), 

the objective function is typically formulated as to min
imize weighted sum of stations and blocks numbers. In 

[7], [8], [6], [5] it is assumed that the set of all avail

able spindle heads is not known beforehand. The objec

tive function is to minimize a weighted sum of stations 

and blocks numbers. Papers [9], [11] deal with TLBP 
where the set of all available spindle heads is known. In 

[9] blocks at each station are executed simultaneously, in 

[11] blocks of each station are executed sequentially. Sev

eral procedures for TLBP have been suggested: a con

strained shortest path in a special digraph, mixed integer 

programming (MIP), branch-and-bound procedure, con
straints programming and heuristics. 

This paper deals with an unexplored TLBP where the 

set of all available blocks is given and blocks at each 

stations can be activated in a mixed order. The ob

jective function is to minimize the sum of stations and 
blocks costs (line investment cost) while precedence, op

erations zoning, blocks exclusion and blocks parallelism 

constraints are respected. 

This problem cannot be directly solved with known ap

proaches suggested for SALBP, cost-oriented SALB and 

line balancing with equipment selection for the following 
reasons: 

• The operations are partitioned into blocks.

• Operations of the same blocks are executed simulta

neously by one spindle heads.

• Several available blocks can contain the same oper

ation and it is not known which block is best to be

chosen.

• The given set of available blocks commonly contains

mutually incompatible blocks.

• Blocks assigned to the same station can be activated

in the mixed order.

• The line cost is estimated as the sum of stations cost

and blocks costs and many additional constraints are

taken into account.

In this paper, we present an adaptation of the suggested 

in [ 11] approach for the problem with mixed order of 

blocks activation. Several procedures for improving the 

accuracy of a lower bound is also proposed. 

2 Notations and Problem Statement 

The preliminary design stage for the machining trans
fer lines is considered. It is supposed that the set of all 

operations which must to be executed is known. The goal 

is to define an optimal structure of the transfer line, i.e. 

the set of spindle heads at each stations and their activa

tion order. 

The set of all available blocks is given beforehand. In 
practice, the set of blocks is obtained by experience. It 

must contain all operations to be executed. Usually, each 

operation can belong to several blocks. At each station, 

it's blocks can be activated in a mixed order (sequentially 

or simultaneously). It is assumed that block execution 
times and costs are given. In general, for the same op

eration it's processing time can differ for different blocks. 

The detailed explanation of block time calculation is given 

in [8]. 

The transfer line balancing problem at hand is to chose 

and assign blocks of parallel operations in such a way that: 

• Each operation is executed once.

• The given line cycle time is not exceeded.

• All operations execution satisfies to the precedence
constraints.

• The machining process can cause that some groups
of operations must be carried out on the same station.

It is implied that the operations of each group must

belong to the same block or to different blocks as

signed to the same station. This type of constraint is

called operations zoning constraint. It is assumed all

these groups are defined at the product design stage
and they are given.

• Similarly, technological constraints usually define
sets of blocks which cannot be assigned to the same

station. This type of constraint is called blocks exclu
sion constraint. In practice, these sets of blocks are
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known before the optimization of a line investment 

cost. 

• Possible sets of blocks which can be executed simul

taneously are given. This type of constraint is re

ferred as blocks parallelism constraints.

• For each station, the number of assigned blocks does

not exceed a given value.

• The line investment cost estimated as the sum of

blocks cost and stations cost is as small as possible

(cost minimization).

Notations: 

N = {1, 2, ... , n} is the given set of all the operations.

T0 is the given transfer line cycle time. 

n0 is the maximum number of blocks for a station. 

q0 is the number of all available blocks. 

B = {b1, b2, ... , bq0} is the given set of all available

blocks. 

N(b) � N is the set of operations contained in a block b. 
N(S) = LJ N(b) is a set of operations covered by

bES 
set S � B.

t(b) is the processing time of block b E B.

c(b) is the cost of block b E B.

C0 is the cost of one station. 

P(b) is the set of operations which directly precede (in

the ordinary sense) to each operation from N(b). In

other words, P(b) is a set of operations which di
rectly precede to a block b. 

P(S) = LJ P(b) is the set of operations which directly
bES 

precede (in the ordinary sense) to S � B.

p+ (b) is the set of operations which precede to N(b) di

rectly or not. Clear, P(b) � p+ (b). 
p+ ( S) = LJ p+ (b) is the set of operations which pre

bES 
cede to S � B directly or not. Evidently, P(S) �
p+(s). 

s+ (b) is the set of operations which succeed to b E B.

s+ ( S) is the set of operations which succeed to S � B.

GP = (N, D) is an acyclic digraph representing the
precedence constraints for operations, ( i, j) E D iff
operation i directly precedes (in the ordinary sense) 

operation j. 

cBE = (B, EBE) is a graph representing the blocks ex-
' II BE I II 

clusion constraints. (b , b ) E E , b , b E B iff
b' and b" cannot be assigned to the same station.

G0 = (N, E0) is a graph representing the operations in

clusion constraints. ( i, j) E E0, i, j E N iff i and j
must be assigned to the same station. Also, the op
erations inclusion constraints can be defined by sets 

I0(i) = {j I j EN, iff(i,j) E E0}, i EN. 
cBP = (B, EBP) is a graph representing the blocks par-

' II BP 
I II 

allelism constraints. (b , b ) E E , b , b E B iff
b' and b" can be simultaneously executed at the same

station. 

C is a binary relation. Let G = (V, E) is a graph and
B � V. Notation B [;;; G means that all elements

from B belong to the same clique in the graph G.

den( G) is a ration between the number of edges (arcs) in 

the graph (digraph) G and number of edges (arcs) in 

the complete graph (digraph) with the same number 

of vertices. 

m is the stations number in a solution. 

m - is the lower bound of the minimum stations number. 

qk, k = 1, 2, . . .  , mis the number of the sets of simul

taneously activated blocks assigned to stations k in a 
solution. 

An assignment of blocks at the station with in

dex k is represented by an ordered family Fk 
(Sf,S�, ... ,S�J, where: S� � B, k = 1,2, ... ,m, 

u = 1, 2, ... , qk is a set of simultaneously activated

blocks, qk is a number of such sets assigned to the station 

k. Index u indicates the order of the sequential execution

for sets S�. 
The considered transfer line design problem is stated as 

follows: to find a family L = (F1, F2, . . .  , Fm) respected 
the following constraints. 

All operations are executed: 

(1) 

Each operation is executed once: 

N(b') nN(b") = 0, b' ES�, b" ES�, 
b' # b", k, r = 1, 2, . . .  , m, (2) 

U = 1, 2, ... , qk, V = 1, 2, ... , qr. 

The operations precedence constraints are respected: 

for all k = 1, 2, . . .  m and for all S� E Fk k-l � u 

P(S�) � (LJ LJN(S�)) LJ (LJN(S!)). 
r=lv=l v=l 

(3) 

All blocks from set S� are executed simultaneously

k = 1, 2, . . .  , m, u = 1, 2, ... , qk. Then, the set EBP
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must contain all edges (b', b"), b' # b", b', b" E S�. In

other words, s� is a clique in the cBP. So, blocks paral

lelism conditions can be formulated as: 

S�[;;;GBP,k=l,2, ... ,m,u=l,2, ... ,qk. (4)

Blocks exclusion constraints: 

qk 
(b',b") tj:_ EBE, for all b',b" E u S�, 

u=l
k = 1, 2, ... , m, u = 1, 2, ... , qk.

(5) 

Each station time does not exceed the given objective 

line cycle time: 

L maxt(b) ::; T0, k = 1, 2, ... , m. 
bES SEFk 

(6) 

For each station, the number of assigned blocks does 

not exceed the given value: 

L ISl::;n0, k=l,2, ... ,m. 
SEFk 

Operations zoning constraints: 

LJ LJ LJ I°(i) � LJ N(S), 
SEFk bES iEN(b) SEFk 

k = 1,2, ... ,m. 
The line investment cost is as small as possible: 

m 

minC(.C) = L L L c(b) + C0m. 
k=l SEFk bES 

(7) 

(8) 

(9) 

The decision variables are sets S� grouped into fami

lies Fk, k = 1, 2, ... , m, u = 1, 2, ... , qk.

3 Lower bound 

In [10], a TLBP with simultaneously activated blocks 

has been investigated. Because that at each station as

signed blocks are executed simultaneously the line cycle 

time constraints are neglected. It was suggested a MIP ap

proach to solve this problem. Computational experiments 
have been done by CPLEX. They showed that CPLEX can 

solve in appropriate time only problems where number of 

operations does not exceed 40. It is generally known that 

CPLEX solves MIP problem by a branch-and-bound algo

rithm. It obtains a lower bound by the linear-programming 

relaxing of the initial MIP problem. In fact, a linear
programming lower bound is insufficient to solve complex 

transfer line balancing problem. 

In this paper, it is suggested to obtain a lower bound by 

relaxing of the initial TLBP to a special set partitioning 

problem. This approach allows to calculate lower bound 
more precisely although it is more time-consuming. 

Let .C = (F1, F2, . . .  , Fm) is family which sat

isfies constraints (2)-(7) and constraint (8) for k = 

1, 2, ... , m -1. Evidently, .C represents itself a partial
solution of the problem (1)-(9). The constraint (1) is not 

respected for .C. Otherwise, it is not necessary to find a

lower bound. Denote 

\lie= LJ LJ N(S). (10) 
FkEeSEFk 

The set \Ji e can be considered as a state of design. Let

qm qm 

:=: = LJ s;;, \lie= (N\ we) LJN(B),p' = L 1s:1.
u=l u=l 

Assume, W = (w1, w2, . . .  , wp) is a set of blocks sat

isfying the constraints: 

Wk E 3, k = 1, 2, ... ,p', 
Wk EB, k = p' + l,p' + 2, ... ,p, 

N(wk) �We, k = 1,2, ... ,p, 

N(wk) nN(wu) = 0,
k # u, k, u = 1, 2, ... ,p, 

N(W) =\lie, 

(11) 

(12) 

(13) 

(14) 

If the first m -1 stations of .C are completely deter

mined, then the family W can be considered as a "com

plement" to the partial solution ( F1, F2, . . .  , F m-1). As

follows from the definition, elements wk, k = 1, 2, ... , p' 
are defined accordingly to the last station in the partial so
lution .C. 

The investment costs of a subfamily 
(F1, F2, . . .  , Fm-l) � .C is equal to:

m-1 

a= LL Lc(b)+Co(m-1). (15)
k=l SEFk bES 

Evidently, the value a is a constant for the given .C. 
A lower bound of the investment costs of assigning the 

set W can be estimated as:

p 

,6(W) = L c(wk) +Com, (16) 
k=l 

where iii = m(W) is a lower bound of the stations num
ber which are needed to assign the set of blocks W. 

Thus, a lower bound of the total investment cost re

sulted from assigning the subfamily (F1, F2, . . .  , Fm-1) 

and the set W is defined as:

LB(W) =a+ ,6(W). (17) 

Let there exists a set W* 
(w1, w2, . . .  , wp', w;,+1, w;,+2, . . .  , w;.) satisfying
constraints (11)-(14) and minimizing function (16). 
Then, the value: 

LBe =a+ ,6(W*) =a+ min,6(W) (18)w 
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can be considered as a lower bound of the investment cost 

for the partial solution £. 

The constraints (13), (14) appear in the so-called set 

partitioning problem. It was studied in [13]. Several ap

proaches based on back-tracking, integer linear and dy

namical programming were proposed to solve the set par

titioning problem. 

The problem (11)-(14), (18) differs from the standard 

set partitioning problem by the element C0m (see for

mula (16)) In general, function m(W) depends on the
graphs GEE, GEP. Hence, it is nonlinear and the prob

lem (11)-(14), (18) is essentially complex than the stan

dard set partitioning problem. 

3.1 Lower bound of the stations number 
Suppose, it is necessary to estimate the number of the 

station iii for a set W satisfying constraints (11)-(13),
and, may be, constraint (14). 

Consider blocks exclusion constraint (5). Let GEE 

be the complement of the graph GEE. A set B � B 
induces in the graph GEE a subgraph. Let (Vz, Ez), z = 1, 2, ... , z0 be the components of this subgraph. Evi
dently, if two blocks belong to two different components, 

then they cannot be assigned to the same station. Hence, 

the estimation of iii for the set W can be reduced to the

estimation of the stations number mz for each component

(Vz, Ez), z = 1, 2, ... , Zo. The numbers mz can be esti
mated by taking into account constraints (4)-(7). 

First, consider constraints (5), (7). In each component 

(Vz, Ez), the blocks of a set V � Vz cannot be assigned to
the same station iff they belong to the same independent 

set of vertices in the component (Vz, Ez). Hence, the size
of the maximum independent set defines the lower bound 

of the number mz. A lower bound T- of the size of max

imum independent set a0 for the component (Vz, Ez) can

be computed by the following formula: 

mz 2'.ao(Vz,Ez) 2°'.T-= IL(l+deg(v))-11, (19)
vEVz 

where deg( v) is the degree of the vertex v in the compo

nent (Vz, Ez), 
On the other hand, the blocks of a set V � Vz can be

assigned to the same station iff they belong to the same 
clique at the component (Vz, Ez). An upper bound T+ of

the size of maximum clique w(Vz, Ez) can be determined

as: 

T+ ::; w(Vz, Ez) = �(Vz, Ez) + 1, (20) 

where �(Vz, Ez) is the maximum degree of the vertices

in the component (Vz, Ez). 
Using the formulas (19), (20) and taking into account 

constraint (7) a lower bound of the stations number mz 
can be obtained as: 

(21) 

Now, consider the blocks parallelism (4), cycle time 

(6) and maximum number of blocks constraint (7). The 

blocks from the set Vz must be assigned to stations in the

mixed order. This condition leads to the problem: to find 

out the partition X = (X1, X2, ... , Xd) of the set Vz sat

isfying the following constraints. 

Blocks of set Xk belongs to the same clique in the 
graph GEP, i.e. they are executed simultaneously: 

xk (;;; GEP, k = 1, 2, ... , d. (22) 

The execution time of each set of parallel blocks does 

not exceed the line cycle time: 

max t(b) ::; T0, k = 1, 2, ... , d, (23) bEXk 
The number of blocks for each set does not exceed the 

given value: 

IXk I ::; no, k = 1, 2, ... , d. (24) 

All blocks from the set Vz are assigned:

(25) 

The objective function can be defined as minimization 

of the time required to carry out the blocks of the compo

nent (Vz, Ez), i.e.

d 
C(Vz) =min T(X) =min L maxt(b). (26) X k=l bEXk 

In general, problem (22)-(26) is a very complex com

binatorial problem. However, for the TLBP the density 
den(GEP) is enough small. Usually, it less than three 

percents and problem (22)-(26) can be solved by a tree

search algorithm with the dominance rule: 

Proposition 1 If partitions X' and X" satisfy the con
straints (22)-(24), LJ X � LJ X and T(X') > 

XEX' XEX" T(X"), then the partition X' is dominated by X". 
So, the lower bound r (Vz) of blocks execution time

allows to obtain a lower bound of the stations number as: 

(27) 

Finally, expressions (21), (27) lead that a lower bound 

of the stations number for the component (Vz, Ez) can be

stated as follows: 

� ( - I IVzl l IC(Vz) l )  mz =max T , I min(no,T+) , I � . (28)

Hence, a lower bound of the stations number for the set 

W is equal to: zo 
(29) 

z=l 
Last expression completely determines the calculation 

of objective function ( 17) for a given set W. 
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3.2 Algorithm for obtaining the lower bound 
The lower bound LB L can be obtained by solving 

problem (11)-(14), (18). As mentioned above, this prob

lem is a special set partitioning problem. In advance 

of [13], proposed in this paper algorithm is a frontier 

branch-and-bound procedure. However, it uses the reduc
tions mentioned in [13] in each node of search-tree. 

Each set W satisfies constraints (11)-(13). A lower 

bound LB-(W) of function (17) can be defined as fol

lowing: 
zo 

I>-wz) 
LB-(W) =a+ L c(w) +Co z=l T. + hlril , 

wEW O 

where h represents the minimum average "contribution"

of each non-assigned operation to function (17). For the 

partial solution £ = 0 (it is possible only for the root

lower bound) h can be defined as:

, (L . c(b) 
-
) 

h= mm -IN I +Com /INI,bEB,iEb (b) iEN 
(30) 

where m- is the minimum number of stations m-, with

out taking into account the stations and blocks cost. Num

ber m - can be estimated in different ways. For exam

ple, it can be done before line cost optimization by a tree

search algorithm. In the cases when the partial solution 
£ # 0 the value of h can be estimated more precisely:

(31) 

where LP is such a partial solutions that £ can be obtained

by adding of some blocks to LP. If problem (1)-(9) is
solved by a branch-and-bound algorithm, then it is rea

sonable to suppose LBcp to be equal to a lower bound of 

the "parent" node. Computational experiments are shown 

the branch-and-bound procedure efficiently solves prob

lem (11)-(14), (18) (see Tables 1). 

4 Branch-and-Bound Algorithm 

Suppose that the first m - 1 stations in the current par

tial solution £ are completely determined. Each partial 

solution (family) is associated with a node of the search 

tree. The node extension is a composition of a current 

partial solution and such a block that a new partial solu

tion satisfies to constraints (2)-(7) and constraint (8) for 

k = 1, 2, ... , m - 1. Denote F B is a set of blocks satis

fying the following constraints: 

FE= {b I N(b) n w c = 0, P(b) <;;;; w cu N(b)}. 

In other words, the set F B consists of blocks such that 
any operation of a block has no predecessors or its prede

cessors are already assigned. 

Generally, for a given partial solution £, each block 

b E F B can generate at most three families: 

1. ;:,c = (F1, F2, ... , Fm-1, (Sr;', S'!f', ... , s;:,,_1, s;:,, U 
{b})).

All these families must respect constraints (2)-(7) and 

constraint (8) fork = 1, 2, ... , m -1. If some families do

not respect these constraints, then they are infeasible and 
cannot be further branched. 

So, the branching for the current partial solution is the 

generation of possible ;:,c, ;:t, ;:n families for each block

bEFB. 
A lack of this approach is in the fact that it is possible 

to have many families which differs only in the order of 

blocks and operations. The following method based on 
dominance rules can be used to overcome this lack and 

to essentially increase the performance of the branch-and

bound algorithm. 

4.1 Dominance rules 
For the families ;:,c, ;:t, ;:n if there is a lower bound for

one families, then there are lower bound for all three fam

ilies. This conclusion is based on the procedures branch

and-bound algorithm for obtaining lower bound. More
over, if there exist lower bounds, then families ;:,c, ;:t, ;:n 
are equivalent (composed of the same blocks). The defini

tion of the families ;:,c, ;:t, ;:n and the Bellman's principle

of optimality leads to: 

Proposition 2 If family ;:c satisfies constraints (2)-(7) 
and constraint (8) fork = 1, 2, ... , m - 1, then family 
;:t is infeasible or unpromising. 

Proposition 3 If family ;:c satisfies constraints (2)-(8), 
then families ;:t, ;:n are infeasible or unpromising. 

Proposition 4 If family ;:t satisfies constraints (2)-(8), 
then families ;:n is infeasible or unpromising. 

These propositions allow to eliminate some branches 
at the current node. Similar action must be repeated for 

all other blocks of the current node. 

A more powerful approach for reducing the search tree 

is to store and use \Ji L states throughout of the search. 

If the states of two partial solutions are equal, then their 

B sets are equal as well. 

Proposition 5 Let a partial solution £, satisfYing con
straints (2)-(8), has the state We. If there exists a family 
L, respecting the same constraints, such that \Ji L = \Ji;:, 
C(L) < C(L), then ;:n families for any block b E F B 
are infeasible or unpromising. 

Last statement can be applied by storing (\Ji c, C(L)) 
pairs (where £ respects constraints (2)-(8) during the 

search). Let DS is an appropriate data structure (such

as list, balanced tree, etc.) containing such (wD5, Cf5) 
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pairs, where WDS is a State and C{i5 is the best value Of

the objective function C ( ·) . Three actions are applied to

DS: checking, adding, updating. 
The checking consists of the search in D S for the pair

with the state equal to 1Ji L. If D S does not contain such

a pair, then the adding procedure is executed. Otherwise, 

the condition C(L) < C{i5 is tested. If it holds, then 

the corresponding updating must be done by the assign

ment C{i5 = C(L). Otherwise, due to proposition 5 all
Ln families for any block b E F B are eliminated from 

the search tree. An adding is executed when DS does

not contain a pair with the state 1Ji L· In this case, the pair 

(w c, C(L)) is added to the data structure DS. 
The effectiveness of proposed approach depends on the 

number of possible states. 

4.2 Design of the branch-and-bound algorithm 
The proposed branch-and-bound algorithm is a stan

dard depth first search with a multi-choice tree. The main 
stages of the algorithm are the following: 

Stage I. Obtaining of a root lower bound: The mini

mum stations number m - is estimated. Using this num

ber, a root lower bound for £ = (0) is computed by the
branch-and-bound algorithm and formula (30). The ob

jective function of the current best solution is supposed to 

be equal to oo. 

Stage II. Node extension: For the current node, a 
set F B is computed. Each block from F B generates 

new descendants of current node with partial solutions 

Le, Lt, Ln. These partial solutions are checked by the 

dominance rules (see propositions 2-5). Infeasible or 

unpromising nodes are pruned. For the rest of descen

dants, lower bounds are calculated. Descendants having 
the lower bound great or equal than the current best solu

tion value are also pruned. If for a node the corresponding 

partial solution covers the set of all operations and its so

lution value is less than the current best value, 

Table 1. Computational experiments 

den(GP) = 0.1 

then this partial solution is supposed to the best. The node 

having minimum lower bound is supposed to be most 

promising and must be branched first. 
Stage III. Stop condition: If there are nodes with 

lower bound or solution value less than the current best 
value, then the search is continued from the previous 

stage. Otherwise, an optimal solution has been founded. 

5 Numerical experiments 

The aim of the experimental study is to examine the 

impact of various parameters on the performance of the 
proposed algorithm. and the average effectiveness of the 

lower bound. The quality of the lower bound is measured 

by a relative distance between the root lower bound and 

the optimum (gap). 

Test examples were generated randomly for three val
ues of INI, IBI and for two values of den(CP) E 
{0.1, 0. 15} and den(CBE) E {0.1, 0.15}. Because the

graphs CP, CBE, C0 and CBP densities must be Co

ordinated, den( C0) and den( CBP) are fixed at the val

ues 0.01. and 0.03, respectively.
For other parameters the following values are used: 

500 ::; C0 ::; 1000, n0 = 5, 120 ::; T0 ::; 150, 
200 ::; c(b) ::; 280, 20 ::; t(b) ::; 55. All parameters

are independently and uniformly distributed. 

There 12 series of tests are generated, each series is 

composed of 25 examples with different different values 
of above parameters. Tests were carried out on Intel IV 

with 2.8Ghz and the obtained results are presented in Ta

ble 1. 

The performance of the branch-and-bound algorithm 

is measured by total running time (preprocessing time and 
branching time). 

The gap is computed with the formula 100% · ( C* -
LBr)/C*, where C* is the optimal solution and LBr is
the corresponding root lower bound. 

den(GP) = 0.15 
den(GBE) = 0.05 den(GBE) = 0.1 den(GBE) = 0.05 den(GBE) = 0.1 

INI 50 60 70 50 60 70 50 60 70 50 60 70 
MinlBI 92 109 124 88 105 125 83 104 126 79 105 125 
MaxlBI 96 117 139 96 118 135 97 118 135 96 118 134 
Average IBI 94 113 133 92 111 131 93 112 131 91 111 130 
Min preprocessing time 15 43 64 18 57 93 21 43 93 31 56 72 
Max preprocessing time 49 521 366 56 166 979 94 261 349 76 296 569 
Average preprocessing time 31 195 157 37 94 247 47 119 202 50 136 238 
Min total running time 35.3 74.3 220 46.4 141.6 504.6 39 65 181 49.6 145.5 213 
Max total running time 785.4 8685 16722 8231 19052 25375 590 1589 2630 1224 4087 4051 
Average total running time 147.1 1553 2731 680 4994 6416 119 432 1048 185 788 1432 
Average lower bound time 0.005 0.019 0.021 0.008 O.D18 0.048 0.011 0.028 0.056 0.01 0.037 0.06 
Max gap(%) 30.8 27.0 19.5 20.3 24.8 22.6 26.3 22.6 26.8 29.6 27.9 21.0 
Min gap(%) 0.0 2.5 4.2 0.0 7.2 5.4 2.2 4.6 8.0 6.8 7.9 9.8 
Average gap(%) 10.8 11.2 10.8 11.2 14.6 14.7 13.1 13.8 14.2 16.8 16.1 15.4 
Min improvement(%) 0.5 4.3 3.7 0.0 0.0 2.3 0.0 0.2 2.2 0.0 0.0 5.1 
Max improvement(%) 17.3 17.9 15.2 27.1 18.7 20.4 21.9 16.6 23.9 20.5 25.8 14.8 
Average improvement(%) 8.9 9.9 9.8 8.8 14.6 11.4 8.1 6.9 8.8 8.7 10.1 9.8 
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The total running time rapidly increases when the num

ber of operations and blocks increases. The density 

den( GP) has a great influence as well. Namely, the to

tal running time decreases when the density den( GP) in

creases. In fact, the more the density den( GP) is the less 
the size of search tree is. 

Table 1 indicates that the average gap increases when 

the den( GEE) increases as well. Because the large value 

of the gap rises the number of examined nodes, then 

the performance of the branch-and-bound algorithm is re

duced down when den( GEE) increases. The average gap 
for all the tests is equal to 13.6%. The moderate size

of real transfer line balancing problem is 70 operations.

So, the developed algorithm allows to optimally solve the 

most of real TLBP in three hour in average. 

The relative improvement is computed with the for

mula (C1 - C*)/C1, where C1 is a first solution value 
obtained during the branching. Table 1 indicates the aver

age improvement is equal 9.5%. 

6 Conclusion 

In this paper a new line balancing problem is consid

ered. This problem appears during design of machining 

transfer lines with spindle heads activated in a mixed or

der. In contrast to the SALBP, considered transfer line bal

ancing problem has many additional properties and con
straints and it is more complex. 

An optimization model of the problem is developed. 

An approach to compute a lower bound is proposed. The 

approach is based on the reduction of the transfer line 

balancing problem to a special set partitioning problem. 

The proposed branch-and-bound algorithm also uses dom
inance rules for reducing the search tree. Computational 

experiments indicate that the suggested approach is ef

ficient to solve optimally problems with moderate size. 

Namely a problem with 70 operations can be solved in

three hour. Computational experiments demonstrate the 

sensitivity of running time on some studied parameters. 
In average, the proposed algorithm improves the line 

investment cost on 9.5%. This economic benefit justifies

for searching an optimal solution although time consum

ing. But for large-scale problems the calculation time for 

proposed algorithm can be prohibitive. Further study can 
be concerned with a design of heuristic techniques based 

on this algorithm. 
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