Simultaneous Kriging-Based Sampling For Optimization And Uncertainty Propagation

Abstract : Robust analysis and optimization is typically based on repeated calls to a deterministic simulator that aim at propagating uncertainties and finding optimal design variables. Without loss of generality a double set of simulation parameters can be assumed: x are deterministic optimization variables, u are random parameters of known probability density function and f (x, u) is the objective function attached to the simulator. Most robust optimization methods involve two imbricated tasks, the u's uncertainty propagation (e.g., Monte Carlo simulations, reliability index calculation) which is recurcively performed inside optimization iterations on the x's. In practice, f is often calculated through a computationally expensive software. This makes the computational cost one of the principal obstacle to optimization in the presence of uncertainties.
Type de document :
Communication dans un congrès
12ème congrès de la société Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF 2011), Mar 2011, Saint Etienne, France. pp.submission 447, 2011
Liste complète des métadonnées

https://hal-emse.ccsd.cnrs.fr/emse-00679682
Contributeur : Florent Breuil <>
Soumis le : vendredi 16 mars 2012 - 10:31:08
Dernière modification le : mardi 17 octobre 2017 - 12:08:01

Identifiants

  • HAL Id : emse-00679682, version 1

Citation

Janis Janusevskis, Rodolphe Le Riche. Simultaneous Kriging-Based Sampling For Optimization And Uncertainty Propagation. 12ème congrès de la société Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF 2011), Mar 2011, Saint Etienne, France. pp.submission 447, 2011. 〈emse-00679682〉

Partager

Métriques

Consultations de la notice

51