
Open Source Search and Research

Michel Beigbeder

École Nationale Supérieure
des Mines de Saint-Étienne

158 cours Fauriel
F 42023 SAINT ETIENNE

CEDEX 2
mbeig@emse.fr

Wray Buntine
Helsinki Institute for

Information Technology
(HIIT)

PL 68, 00014, University of
Helsinki
Finland

Wray.Buntine@hiit.fi

Wai Gen Yee
Department of Computer

Science
Illinois Institute of

Technology
10 W. 31st St.

Chicago, IL 60616 USA
yee@iit.edu

ABSTRACT

In this paper, we present a review of criteria for the evalu-ation of open source information retrieval tools and provide an 
overview of some of those that are more popular. The question of interaction between research and availability of open 
source search tools is addressed.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Systems and
Software

General Terms

Open source

Keywords

Information retrieval, Open source software, Search tools

1. INTRODUCTION
The development and deployment of open source soft-

ware packages have had sustained popularity recently with
their increased quality and strong communities. Moreover,
in virtually every information system domain, some open
source software package exists, some so popular that they
have achieved a significant level of deployment in both pri-
vate and public organizations (e.g., the Apache Web Server1,
MySQL2, Lucene3). This is certainly the case in the infor-
mation retrieval domain; there is a large diversity in the
goals and the features of the different available tools.

We recognize there are four basic categories of informa-
tion retrieval software. The first category is software to be

1http://httpd.apache.org/
2http://www.mysql.com/
3http://lucene.apache.org/

used in the library context, where some metadata about the
documents are available rather than their full text. The sec-
ond category has been developed for academic purposes, for
the study of information retrieval. In the third category are-
tools for individual Web site or small to medium scale Web
search. In the last category are libraries of software that are
easy to tailor or to expand in larger search applications.

As with every classification scheme, this four-way split is
not perfect and the classes are not completely disjoint. The
scheme considers the use or deployment of the information
retrieval tools. Other schemes could be considered. For
instance, in the academic context, the matching model could
be the first classification key. In fact, there could be as many
criteria as there are comparable features in the software. In
this paper, we survey some characteristics of information
retrieval tools that could be used to classify and compare
information retrieval software.

We will also address the question about the interaction be-
tween the development of open source information retrieval
software and research in the information retrieval field. In
particular, we will lay some emphasis on the open source
aspect. We will illustrate this interaction with the example
of open source Web search engines and the question of the
deployment of such a tool.

2. HISTORY
The first and still very significant application of computers

for information retrieval was in replacing and then enhanc-
ing the card catalogs in libraries. Here the contents of (text)
documents are not available online, but are represented by
some metadata. Typically, these metadata include “objec-
tive” information, such as author names, title, publisher,
publication date, etc. Most often, they are complemented
by some “subjective” metadata which describe the content
of the documents. For this part of the cataloguing activity,
librarians use either controlled languages such as those pro-
vided by thesauri, or uncontrolled language, in which case
the librarians freely associate some chosen keywords to the
documents. Within this librarian context, the predominant
information retrieval model is the boolean one.

With the development of computing power, particularly
with regards to storage, many documents became available
online with their full content. Moreover, the emergence of
computer networks and their rapid deployment made it pos-
sible to share, exchange and disseminate the documents ei-
ther at an organizational level or world-wide. New informa-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1364742.1364748&domain=pdf&date_stamp=2006-12-12


tion retrieval models were developed to take into account
the availability of the full text of the documents: the vector
space model [3] and the probabilistic models [4], to name
the large categories.

The next major step for information retrieval was the rise
of the World Wide Web. Once again, as soon as this infor-
mation space existed, some retrieval tools were developed.
These adopted the same broad approaches (Web directories,
full text retrieval), but new techniques were needed to deal
with the new scales of both collection size and result set
size, e.g., a priori or query-independent document rankings
are helpful when tens of millions of documents potentially
match a query, and to deal with the new complexities of
document structure and document linkage.

Retrieval in multimedia domains is now a dominant com-
mercial concern in search. For the text world, however,
the latest challenge is posed by large online repositories of
content from books, created for various reasons at Google
and Amazon. Considering the Gutenberg Project (http:

//www.gutenberg.org), online text repositories are by no
means new, but their commercialization is.

3. CRITERIA

3.1 General level
The first points to keep in mind when choosing any soft-

ware are the broad computing and software issues such as:

Installation requirements: such as operating system, pre-
requisite libraries (WWW utilities, HTML processing,
databases, etc.), and so forth. Some popular packages
use Java to skirt these issues. Hardware can be a key
issue if parallel computing is desired for improved per-
formance.

License: some licenses of tools allow non-commercial use
only, and open source licenses do differ.

Documentation: entry for new users requires several lev-
els of documentation from tutorials to reference man-
uals. Nutch, for instance, maintains a Wikipedia page
to support this. Documentation needs to support the
software installer (person installing software) as well as
the system configurer (person designing the capabili-
ties of the specific search engine) and the subsequent
user community (the user interface and the querying
modes).

Community: according to Nutch founder Doug Cutting,
the user and developer communities are the lifeblood
of a project, and the two groups co-mingle. A strong
community engenders a good development project.

Extensibility: search is a complex area so one size does
not fit all. A readily extensibly system allows adapta-
tion to specific requests while a good community sup-
ports this process.

3.2 Efficiency level
Two points of view must be considered with regards to in-

formation retrieval software. The first is about effectiveness
and the second about efficiency.

Effectiveness is mainly addressed by the information re-
trieval research community. Many information retrieval re-
search papers that present a new model or some variations

to a known model finish with an experiment in which the
proposition is tested in a well known context. Moreover
there exist now many information retrieval competitions in
which different systems are evaluated. TREC4, which has
been organized annually since 1992 by the National Insti-
tute of Standards and Technology, was the first, followed by
NTCIR5, CLEF6 and INEX7.

Efficiency is concerned with the usage of computer re-
sources both at indexing and query time. Of course the
algorithms and their complexity are the key factors for this
point. Traditional algorithms must be tailored to the in-
formation retrieval application because its requirement of
extensive interaction between main memory and disk re-
quires more complex cost metrics. Computational bench-
marks measure essential characteristics such as indexing time,
index size, query time. The first two are related to the size
of the document collection, both in terms of overall size and
of the number of documents. The last depends on the query
model, but it could be related to the number of keywords in
the query.

The last point about efficiency is the scalability of the
software. There are always some limits, and they are not
always explicit. Some Linux installations will have a 2Gb
file limit, or the indexer fails to work on network-mounted
directories. The scalability of the software is to be evalu-
ated in terms of the number of users and the throughput of
queries, and in relation to efficiency to the number of docu-
ments and the overall size of the collection. Moroever, some
systems support incremental indexing of documents, some-
times without shutting down the runtime. Efficiency and
scalability are often compromised by incremental indexing
support.

3.3 Corpus level
This level is concerned with localization of the documents,

gathering and grouping them on a local store for the search
engine.

When the first test collections were created for the pur-
pose of evaluating information retrieval systems, some de
facto conventions were defined. The common usage is to
have many documents (all of them if possible) in one file sep-
arated with some tags. The software smart 5 used tags with
dots in the “first column” as this was quite common in many
applications related to text processing at this time. While
everything was configurable within the software smart, the
usage convention was to indicate the documents with the tag
.I followed by the document number, the authors’ names,
introduced by .A and so on. The TREC competitions used
tags with an XML-like syntax, while the Web tracks in
TREC completed it in some way with the HTTP syntax.

Developed to ease the evaluation task, this kind of organi-
zation is not applicable to many applications as it is rarely
the case that many documents are stored in a single file.
Some software rely on a file with pointers (e.g., pathnames)
to the files to be indexed. With such a scheme, some scripts
have to be created for the gathering step.

Files can also be gathered given some criteria and a data
source. The most simple form is to give the pathname of
one directory, and the gatherer recursively descends the hi-

4http://trec.nist.gov
5http://research.nii.ac.jp/ntcir/
6http://www.clef-campaign.org/
7http://inex.is.informatik.uni-duisburg.de/



erarchy of files and directories under the given path. Some
sophistication could added to this scheme to filter the file
names to be indexed (or not indexed) by some kind of reg-
ular expressions.

The most sophisticated policies for gathering take into
account distributed documents. In this case, the files to
be indexed are designated with URLs. If not all the files
are to be individually designated, a kind of crawling has to
be done. This is only possible of course if the format of
the documents allows one document to point to another one
(for now, only HTML and pdf files have standard syntax for
such designations).

These three categories of document gathering are in fact
related to the intended use of the software. The one-file-
many-documents scheme is particularly useful for effective
experimentation in the evaluation competitions, and hence
is aimed at research. The second one in which the docu-
ments are gathered on a single computer is aimed at desk-
top search. The last one where documents are fetched from
Web servers is dedicated to site and/or Web search. Benefits
could arise from the integration of these different gathering
methods. For example, desktop applications could benefit
from techniques of the first category. One important exam-
ple is the mail boxes which contains many e-mails in a single
file. Other examples are the archive files which also are even-
tually compressed (.tar, .tgz, .zip, etc.) in which one could
be interested in indexing/retrieving not the archive file but
one of the embedded files.

Another point is the format of the files that are indexable.
Many software packages can only deal with plain text. But
some allow filters that convert other formats (Postscript,
PDF, MS Word files, HTML, etc.) to plain text. The most
flexible ones are designed for the insertion of plug-ins to deal
with a particular format. In this case some development
has to be done if “exotic” file formats are to be dealt with.
It should be noted that PDF, MS Word, etc., are complex
formats that require sophisticated extraction if any structure
such as tables and section titles is to be preserved

3.4 Lexical level
Many information retrieval models are based on the ex-

traction of features from the documents. In many European
languages, these features are what is commonly called words.
The lexical level is the definition and implementation of the
splitting of the input text in such features.

The lexical aspect is very important if the deployment is to
be done in non-English languages. It is generally viewed that
internationalization of code is a task that needs to be ad-
dressed from the ground up rather than as an after-thought.
Some software packages are not even able to deal with 8-bit
character sets. On the contrary, some of them are able to
deal with the Unicode character set.

Besides the character set, the definition of the tokens that
are to be indexed is one key point in the adaptation of a
software package to a language. Many software packages
rely on some ideas about words and it is rarely the case
that they are configurable regarding this point. Even in
English-like languages, other problems that do not have a
universal answer are the processing of some non-letter char-
acters: digits in relation to numbers and/or identifiers, dots
and commas in relation to numbers, dots and hyphens in
relation to words (e.g., “MS DOS” versus “MS-DOS”, hy-
phens at end of lines), sometimes we should be interested in

the removal of some whitespaces (e.g., “Mac OS X” versus
“MacOS X”). Of course the next step at the lexical level
would involve effective Natural Language Processing tools
to extract the lexical units and in particular the named en-
tities. Other interesting possibilities explored in the research
community but that have not yet been developed in open
source are related to the use controlled vocabularies or of
thesauri. So tokenization, especially in very heterogeneous
environments, still is a research area in information retrieval.
The best for flexible software is to allow for some plug ins
related to that point.

The n-gram model is rarely taken into account though it
has some important applications either for some languages,
or for OCR collections where there are many misspellings,
or even as an alternative to the word level of tokenization
in languages like Chinese.

The well known “stop list” and lemmatization phases are
often present in the tools. But these features are depen-
dent on the languages so their applicability to the intended
corpus should be verified and alternatives may have to be
developed.

3.5 Structural level
The structural level is perhaps the most complicated and

least flexible one because of its complex inter-relationships
with many other levels. In particular, if the query model has
to deal with structure (note the CAS (Content And Struc-
ture) topics in the INEX competitions) the documents must
fulfill some requirements with regards to their structure and
the whole matching process has to take it into account. In
this section we will review the structure families that are
dealt with in the information retrieval community.

The first level of structure is the text level itself. Though
most often it is not taken into account by the information
retrieval models as many of them only rely on the number
of tokens in the document and do not take into account
their global or relative positions. The exception, related to
the query model, is either models where ranking is based
on the proximity of the query terms, or the phrase search
and its extension with proximity predicates in some boolean
extended models.

The second and oldest one is the structure of card cata-
logs previously mentioned. This structure is related to the
metadata models used in the library catalogs.

The third one is that of hierarchically structured docu-
ments. The hierarchical structure is usually the structure
referred to when speaking about “structured documents”.
It is now quite widespread with the emergence of XML,
but its root are in its wide use in many traditional forms
of writing: chapters, sections, paragraphs, etc., are quite
common. These forms are implemented in some formatting
tools (LATEX for instance) but are implicit in other ones. Its
relations to information retrieval are very diverse: passage
retrieval was one of the first uses, though passage retrieval
can also be applied with only text structure and no hierar-
chical structure.

The last one is that of hypertext. This structure has re-
ceived much attention since the explosion of the Web. Be-
sides its use at the gathering level as mentioned before, it
has many applications in information retrieval.

3.6 Query level
The query model is tightly related to the underlying in-



formation retrieval model implemented in the software.
One of the first query models developed in the information

retrieval domain was the boolean one because of its relation
to the card catalog systems. It has always had wide usage in
this application. It is also the preferred one when large recall
is desirable, as for instance in legal applications. It seems
that many end-users have difficulties in using the boolean
query model as the common meaning of the words “and”
and “or” is different from their technical boolean meaning.

Moreover the users are now accustomed to Web search en-
gines, which quite exclusively offer a simplistic query model
where only few keywords can be entered. As extensions to
the basic set of words, some of them take into account the
order in which the keywords are given. In a such a case, the
query model is a list of words.

A frequent variation of the query model is the possibility
for the user to enter phrases, usually by enclosing them in
double quotes. The relation to ranking is not obvious, but as
a first step it acts as a filter on the document to be retrieved
as only those that contains these phrases are to be ranked.
In the same idea, proximity operators were introduced to
extend the boolean query models. The intended use for
them was to relax the phrase constraints.

At first glance, after the set of terms, the next level in
the query model is only a variation in quantity, where the
limit in the number of words is higher, so that short exerpts
of text can be given as queries. In such a case, it is highly
possible that a given keyword is used many times, and thus
the count of the word occurrences is now a clue for ranking.

Lemmatization is a traditional lexical level tool used at
indexing time. An alternative to lemmatization is to allow
the user to use wildcards, though the effect on ranking is
perhaps not exactly the same with the two methods.

Less widespread query models known as flexible query al-
low the user to weight either its query terms or some boolean
like operators.

Finally, any combination of the previous functionality can
be designed in an information retrieval model. Though
most software is designed for one or several models, their
combination could require the development of new algo-
rithms/techniques that effectively integrate their strengths.

3.7 Ranking level
A ranked list of results is the main output of many infor-

mation retrieval algorithms. This is the basis for virtually
every effectiveness measure as well as search engine inter-
face. So the quality of the ranking and the models on which
it is based are fundamental. Much information retrieval re-
search is related to that aspect and it results in many mod-
els, variations, and tuning. All major ranking methods are
implemented in at least one open source software package:
vector space, two-poisson, divergence from randomness, etc.

The features used are diverse but the predominant ones
are the frequency of terms in documents and the document
frequency of the terms. Other features are the length of
the documents or other statistics about the distribution of
documents. All of this information is captured at index-
ing time. But some other information is necessary for their
implementation. For instance, keeping the position of the
word occurences allows the implementation of proximity or
phrase search. Moreover, ranking can fully be based on these
positions.

3.8 Interface level
Many of the information retrieval models and their imple-

mentation in the tools return a list of results, and ouputing
the results consists of displaying this list of some part of
it. For applications of the tools in the evaluation tasks of
campaigns such as TREC, only the formatting of this list
is important. But for actual applications for final users,
the output has to be tailored. While this can be also done
with some output formatting, it could be more or less easy.
Another point is that these applications could need other
functionnalities. One of the most well known in Web search
is the presentation of results by pages with, say, 10 results
per page and some snippet of the document per result. This
functionnality could have some repercussions on the internal
algorithms, especially if efficiency is to be considered.

4. SOFTWARE PACKAGES GOALS
As said before software could be classified with respect to

many criteria. Here we present some key points on some
software packages, and we choose to group them by their
main usage. We found that three main usages were able
to capture practically every software package: Web search,
digital library search and research usage. A small set of
software tools are either too general to fit in only one cat-
egory or, on the contrary, do not fit in any of them, so a
miscellaneous group was made.

In this section, we describe some of the open source tools
available for information retrieval. In considering these tools
for usage, considerations must be made for their function-
ality, their support, and their licensing agreements. Func-
tionality is one of the first characteristics users consider -
they must match the user’s needs. Related to functional-
ity, however, is the performance of the system as well as its
scalability.

Support for systems is likewise important. A system with
a large development community is likely to be able to help in
tailoring it to the user’s needs. It also ensures that existing
features are constantly improved and new ones are added.

Finally, licensing restrictions must be considered. In gen-
eral, licenses protect the publishers from any responsibility
in the performance of the product. They also govern how
systems could be used. For example, some licenses require
all systems that incorporate the open source to be also open.
The most common licenses are Gnu, Mozilla, Berkeley, and
Apache.

4.1 Web site oriented

• dataparksearch engine http://www.dataparksearch.

org/ DataparkSearch is an GPL-licensed open source
system for indexing and searching a Web site, group of
Web sites, intranet, or local system. DataparkSearch
is built on top of a relational database, which must be
installed separately.

• ht://Dig http://www.htdig.org/ Similar in function-
ality to DataparkSearch, htDig does not seem to be
supported.

• isearch http://www.etymon.com/tr.html Isearch is a
text retrieval system that supports full text search-
ing, result ranking, Boolean queries, and the Z39.50
client-server protocol. Originally developed in 1994



and adopted for some high profile applications, the
original version is no longer supported. However, deriva-
tive systems are still available.

• mnoGoSearch http://www.mnogosearch.org/ mno-
GoSearch is a popular indexer and retriever that is
built on top of a relational database. Users can in-
terface with the search system via standard CGI or
PHP.

• namazu http://www.namazu.org/index.html.en Na-
mazu is a full-text search engine written in Perl. It
supports Web indexing, but is primarily intended for
desktop search. Namazu has extensive Japanese lan-
guage support.

• OpenFTS http://openfts.sourceforge.net/ Open-
FTS is a full-text search engine built on top of Post-
greSQL and written in Perl.

• swish-e http://swish-e.org/ Swish-e is a popular
indexing and search system for small repositories (fewer
than a million documents). It is appropriate for both
local directories and Web sites, and can index several
types of files with its extensive filtering mechanism.

• swish++ http://swishplusplus.sourceforge.net/

Swish++ is a C++ rewrite of Swish-e and can be com-
piled in Windows using the Cygwin Linux emulator.

• glimpse/webglimpse http://webglimpse.net/ Glim-
pse/Webglimpse is a popular search engine/crawler pack-
age. It supports result ranking, fuzzy matching, and
content filtering.

4.2 Digital libraries oriented

• cheshire http://cheshire.lib.berkeley.edu/ The
Cheshire project’s goal was to develop a next-generation
digital library that bridges the gap between biblio-
graphic and full-text searches. Specifically, it addresses
the exclusive problems of search failure and informa-
tion overload using “advanced IR techniques.” Meta-
data are stored natively in XML.

• zebra http://www.indexdata.dk/zebra/ Zebra is a
search system built for structured data (e.g., email or
XML). It can handle large data sets (in the gigabytes).
Zebra supports the Z39.50 client-server protocol.

• mg (version 1.3g) http://www.nzdl.org/html/mg.html
The MG system was developed in conjunction with the
Managing Gigabytes text book [5]. Originally designed
to be space efficient, the New Zealand Digital Library
distribution contains many improvements, such as im-
proved stemming and index merging, as well as sup-
port for Windows platforms.

4.3 Academic research oriented

• lemur/indri http://www.lemurproject.org/ Lemur
is a set of language analysis and text retrieval tools
designed jointly by the University of Massachusetts
and Carnegie Mellon University. Indri is an associ-
ated search engine. A major focus of the Lemur/Indri
project is specialized support of structured queries and
documents.

• mg (version 1.3g) http://www.nzdl.org/html/mg.html
See above for a discussion of MG.

• smart ftp://ftp.cs.cornell.edu/pub/smart/ Smart
is a legacy information retrieval system that was de-
veloped in the early days of information retrieval re-
search by Gerard Salton at Cornell University. It is
well-known for contributions such as the vector space
model.

• terrier http://ir.dcs.gla.ac.uk/terrier/ Terrier
is a project from the University of Glasgow. Terrier is
a search engine written in Java that is built for scalabil-
ity and incorporates several novel ranking algorithms.

• zettair http://www.seg.rmit.edu.au/zettair/ Zettair
is a search engine developed at RMIT University for
indexing and searching HTML and text. It is written
in C and has been tested on several platforms.

4.4 Miscellaneous tools
General libraries/tools

• lucene/nutch http://jakarta.apache.org/lucene/

docs/index.html Lucene is a popular search engine
API developed by Doug Cutting and supported by the
Apache Software Foundation. While Lucene imple-
ments several function important to information re-
trieval, it is not an indexer or search engine. The as-
sociated Nutch system is built on top of Lucene and
implements search engine functionality. Nutch/Lucene
is popular in industrial applications due to its perfor-
mance.

• xapian/omega http://www.xapian.org/ Xapian is
a search engine API developed by the former employ-
ees of the now defunct BrightStation, PLC. Xapian
supports the probabilistic information retrieval model.
Omega is a search engine built on top of the Xiapian
library.

Desktop oriented

• wumpus http://www.wumpus-search.org/ Wumpus
is a search system for file systems, developed at the
University of Waterloo. It is designed for an environ-
ment where there are relatively many updates to the
underlying documents versus queries.

5. RELATION TO RESEARCH
We will now address the question of relations between

the development of information retrieval software — and in
particular with an open source license — with research in
the field of information retrieval.

The academic research in the information retrieval domain
has a long history as described in Section 2. And there is
a strong emphasis on experiments with (as much as possi-
ble) actual data because of the fuzzy aspects of the field
itself in particular with the crucial problem of relevance. So
many experiments are conducted by the teams involved in
the field. To design these experiments, some material has
to be used. Concerning computer science, this material is of
course composed of programs and data.

The data used for information retrieval experiments are
the test collections. They are composed of three parts. The



first one, the largest in size, is a collection of documents.
They are in some sense corpora as they are built by a single
organization with constraints that result in some homogene-
ity in the collected documents. For instance some of them
are labelled with the name of the publisher or the journal ti-
tle from which they were built. Regarding homogeneity the
exception could be the Web based collections, but even in
this case there is some homogeneity as all documents share
at least their origin with some common characteristics tied
to the hyperlinks. The second part of a test collection is
a little set of information needs (i.e., a set of queries) –
about fifty of them. This first two parts are not very dif-
ficult to build: the first one is tightly related to common
computer usage which resulted in the creation of many doc-
uments; the second one is small. The third part consists
in the relevance judgments and is the most expensive to
produce. Ideally, a person would consider each information
need, and rate each document’s relevance to it. Such an
ideal is impractical to achieve as the document collections
could be large (in the millions), and therefore, only approx-
imate relevance judgments are generally available. Because
of the large amount of effort necessary in building a test
collection, and also because sharing of data is important for
comparisons, test collections are built within the framework
of evaluation competitions. As such the data produced are
free 8, but their legal usage, defined in their license agree-
ments, generally restrict their use to internal evaluation of
information retrieval systems.

The second point is the use of these data to feed programs.
Of course each team should be able to develop its own pro-
gram to implement its ideas. In fact the development of
straightforward programs to deal with a small collection of
documents is quite easy. In practice the size of the collec-
tions is so big that these straightforward programs are not
usable in terms of efficiency or not runnable at all. Moreover
developing systems from scratch is time-consuming. This is
particularly true in information retrieval where, at the base,
we are feeding documents to a tokenizer, building a dic-
tionnary of tokens, and an index to the documents which
contain the tokens. So if the team’s work is not particu-
larly on algorithmic aspects about these basic tools, reusing
existing software is most often the best choice in terms of
efficient time allocation. Furthermore, by working with well-
known systems, others can test out any enhancements that
are made.

The first information retrieval software available in source
form was smart. The project started in 1961 by one of the
research teams who worked much to the development and
the application of the vector model. Several implementa-
tions of this in a tool were developed to follow the evolution
of computers and operating systems. This software was dis-
seminated before the formation of the modern open source
software community which resulted in the definition of soft-
ware licenses — GPL, the Gnu Public License being one of
the most well known. As this software was made available
in its source form, many teams of the information retrieval
community used it in many experiments at such a level that
conferences and books were devoted to its use in academic
research. Smart gained so much importance in the develop-
ment of the information retrieval field that it is necessary to
know it to understand some research papers. Thirty years

8though most of them are distributed for a fee.

after the starting of the project, a panel was dedicated in
1991 to this system in the SIGIR conference [2]. It is an
example, if not the first one, of the interaction between the
availability of software in a free way and academic research.

But the smart software is no longer distributed as an open
source software and the last release is from 1992. Other
teams involved in information retrieval developed open source
software. The MG system was developed by an Australian
team in conjunction with a text book. Three versions be-
tween 1994 and 1996 were made availbale by the team. Some
extensions were made by one of its users, the New Zealand
Digital Library. With both of these examples, it can be
seen that maintenance in the long term of software soley by
the academic community cannot be achieved. Maintenance
was also reported as a problem for an academic team by
the developpers of more recent academic open source search
software in the OSIR workshop [6].

Beside the academic teams, the open source software com-
munity is the other community involved in information re-
trieval open source development. It should be noticed that
the goals are not the same for open source software and
for academic software. Academic teams mainly develop the
software for testing their ideas and open source system de-
velopers want good and flexible code. Moreover the commu-
nity of developpers has to be sustained by a community of
users. In many cases there is an overlap between these two
communities, as this was the case for the later development
of MG as mentionned before. How a user community gains
traction is related to the software quality but also to many
other aspects that are as difficult to understand as those
that make a song becoming a hit. The existence of the com-
munity of users is as important as the software quality for
a wide acceptance and deployment. This is this community
that is able to ensure some mid to long term maintenance
of the software package.

6. WEB SCALE OPEN SOURCE SEARCH
As a last point of interaction between search and research,

we will present some ideas about a Web scale open source
search engine.

Citizens want to have access to the Internet content, and
it is only possible with search engines. But now searching
the Internet is quite a monoculture, as very few search en-
gines are able to deliver a service at the scale of the Internet.
This is not optimal as the users need different ranking algo-
rithms and methods for different needs. Moreover the rank-
ing used in the commercial search engines are secret recipes.
So the general public would benefit from alternatives, espe-
cially some communitites. For instance specialized search
services would be of particular interest for:

Alternative Languages: keyword search is not fitted to
some languages due to their rich morphology (e.g., Es-
tonian, Slovenian, Turkish) or their lack of clear word
segmentation (e.g., Chinese).

Digital Libraries: services dedicated to libraries offer richer
user interfaces and better document and access control
than the standard search engines.

Publishing Initiatives: open publishing, open archive,
open media and open access initiatives on the Internet
foster varied distribution of content.



Academic Special Interest Groups: academics have their
own document genres and sometimes rich ontologies.

Blogs: several blog search engines already exist, but there
are opportunities for social network studies, trend and
topic detection detection, etc.

It is in and for these communities that robust development
of search engines exists outside the mainstream. Analysis
of these communities reveals the potential for incorporating
additional capability into a search engine such as subject
categories, genre, named entities, and question answering
tools. In digital library applications, for instance, this kind
of feedback and capability is valued [1].

On behalf of the computer scientists it is argued that in-
telligent searching of the Internet is a problem of interna-
tional scope and clear need that has its origins and its solu-
tions firmly in computer and information science. To let re-
searchers access this grand challenge we need an open source
search engine operating at a larger scale. Such a platform
would not only serve as an excellent research and educa-
tional tool, it could also support a wide variety of applica-
tions and act as an important commodity to cost-conscious
organisations that provide services.

But if we have seen that many development of search en-
gines are active in the open source software community, as
for now none of them is deployed at the Internet scale. This
is probably more a problem of deployment of a solution than
a software problem by itself. We believe that such a deploy-
ment cannot be made by duplicating commercial search en-
gines technology. The reason is that these technologies are
developed for environment where everything is under the
control of a single organization. We think that this is not
possible or desirable for an open source alternative where the
control should be distributed among many organization, for
instance at a country level.

With many organizations involved in the deployment, the
full service will necessarily be a distributed one, and more-
over a distribution with a loose coupling, such as with some
distributions of Linux. We think that the schemes either for
selection of services, merging of results, routing of queries
developed in the distributed information retrieval subdo-
main would be a good basis for new open source develop-
ments and that this will be a good basic technology for the
deployment of many open source search services on the In-
ternet.

7. CONCLUSION
We presented some criteria for the evaluation of search

engines and a panorama of open source search engines. We
showed that there are many interactions between the devel-
opment of software and research in the domain of informa-
tion retrieval. This is due to important experimental nature
of this domain. We presented the development and deploy-
ment of Internet wide search engines as a big challenge for
the Computer Science community.

8. REFERENCES

[1] O. Drori. How to display search results in digital
libraries - user study. In P. T. Isáıas, F. Sedes, J. C.
Augusto, and U. Ultes-Nitsche, editors, NDDL/VVEIS,
pages 13–28. ICEIS Press, 2003.

[2] G. Salton. The smart document retrieval project. In
SIGIR ’91, Proceedings of the fourteenth annual
international ACM/SIGIR conference on Research and
development in information retrieval, pages 356–358,
1991.

[3] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

[4] C. van Rijsbergen. Information Retrieval. Butterworth
(London), 1979.

[5] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes. Compressing and Indexing Documents and
Images. Morgan Kaufmann, 1999.

[6] W. G. Yee, M. Beigbeder, and W. Buntine. Sigir06
workshop report: Open source information retrieval
systems (osir06). SIGIR forum, 40(2):61–65, 2006.


