M. Grediac and A. Vautrin, A new method for determination of bending rigidities of thin anisotropic plates, ASME J. Appl. Mech, vol.57, pp.964-968, 1990.

J. P. Kernevez, . Knopf-lenoir, C. Vayssade, and G. Touzot, An identification method applied to an orthotropic plate bending experiment, International Journal for Numerical Methods in Engineering, vol.12, issue.1, pp.129-139, 1978.

M. H. Arafeh, . Knopf-lenoir, C. Vayssade, and F. Rouger, Conception optimale d'essais de flexion de plaques orthotropes et identification, Comptes Rendus De l'Académie Des Sciences, vol.321, pp.351-354, 1995.

L. Magorou, L. Bos, F. Rouger, and F. , Identification of constitutive laws for wood-based panels by means of an inverse method, Composites Science and Technology, vol.62, issue.4, pp.591-596, 2002.

A. Vautrin, Mechanical identification of composite materials and structures, Proc. of the 2 nd AsianAustralasian Conference on Composite Materials, Kyongju, Korea, pp.1305-1323, 2000.

W. P. De-wilde, B. Narmon, H. Sol, and M. Roovers, Determination of the material constants of an anisotropic lamina by free vibration analysis, Proceedings of the 2 nd International Modal Analysis Conference, pp.44-49, 1984.

W. P. De-wilde, H. Sol, and M. Van-overmeire, Coupling of Lagrange interpolation, modal analysis and sensitivity analysis in the determination of anisotropic plate rigidities, Proceedings of the 4 th International Modal Analysis Conference, pp.1058-1063, 1986.

L. R. Deobald and R. Gibson, Determination of elastic constants of orthotropic plates by a modal analysis/ Rayleigh-Ritz technique, Journal of Sound and Vibration, vol.124, issue.2, pp.269-283, 1988.

M. Grediac and P. A. Paris, Direct identification of elastic constants of anisotropic plates by modal analysis: theoretical and numerical aspects, Journal of Sound and Vibration, vol.195, issue.3, pp.401-415, 1996.

M. Grediac, N. Fournier, P. A. Paris, and Y. Surrel, Direct identification of elastic constants of anisotropic plates by modal analysis: experiments and results, Journal of Sound and Vibration, vol.210, pp.645-659, 1998.

H. Sol, Identification of anisotropic plate rigidities, 1986.

V. J. Papazoglou, N. G. Tsouvalis, and A. G. Lazaridis, A non destructive evaluation of the material properties of a composite laminated plate, Applied Composite Materials, vol.3, pp.321-334, 1996.

T. C. Lai and K. H. Ip, Parameter estimation of orthotropic plates by Bayesian sensitivity analysis, Composite Structures, vol.34, pp.29-42, 1996.

H. Hua, H. Sol, and W. P. De-wilde, On a statistical optimization method used in finite element model updating, Journal of Sound and Vibration, vol.231, issue.4, pp.1071-1078, 2000.

F. Daghia, S. De-miranda, F. Ubertini, and E. Viola, Estimation of elastic constants of thick laminated plates within a Bayesian framework, Composite Structures, vol.80, pp.461-473, 2007.

P. Pedersen and P. Frederiksen, Identification of Orthotropic Material Moduli by a Combined Experimental/Numerical Approach, Measurement, vol.10, pp.113-118, 1992.

J. O. Berger, Statistical decision theory and bayesian analysis, 1985.
DOI : 10.1007/978-1-4757-4286-2

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, 2005.

R. H. Myers and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2002.

Z. Gürdal, R. T. Haftka, and P. Hajela, Design and Optimization of Laminated Composite Materials, 1998.

S. M. Dickinson, The buckling and frequency of flexural vibration of rectangular isotropic and orthotropic plates using Rayleigh's method, Journal of Sound and Vibration, vol.61, issue.1, pp.1-8, 1978.

F. A. Viana and T. Goel, Surrogates ToolBox 1.1, 2008.

C. Gogu, R. T. Haftka, R. Le-riche, J. Molimard, A. Vautrin et al., Comparison between the basic least squares and the Bayesian approach for elastic constants identification, Journal of Physics: Conference Series, vol.135, issue.012045, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00409731