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Physical versus statistical models (1/3)

Physical models

are based on a priori physical information. Typically 
conservation laws, kinematic descriptions, constitutive laws, 
boundary conditions, i.e.,  partial differential equations which 
are then numerically integrated with solutions in the volume 
and/or at the boundary.

They aim at being predictive with
little experimental data.

Ex. Newtown's 2nd law, ∇ .  F =  ü

Strain-displacement eq.,  =
1

2
∇ u∇ u

T


Constitutive eq.,  = C : von Mises stresses in a 
carotid artery

(from Alexandre Franquet) 



  

Physical versus statistical models (2/3)

Statistical models

are built by tuning a statistical model from a set of inputs and 
outputs (red crosses hereafter).
● Do not (need to) calculate entire fields.
● Can usually handle data noise.
● Need data !

[ F x ∣ f x1
 , , f xt

] ~ N  mOK x , sOK
2

x 

Ex. : ordinary kriging 
F  x =  x

where  x   is a Gaussian process.



  

Physical versus statistical models (3/3)

The separation between physical and statistical models is not so clear.

Physical models are tuned from noisy data (inverse approach, 
identification), just like statistical models.

min∈S distance  Experiment , Model  

Statistical models need to incorporate some physics in order to spare 
data and represent high dimensional inputs-outputs relations.

→ putting more physics into statistics and vice versa is a 
promising research direction. Example through MRI image 
denoising.



  

Presentation of the data

→ The images are noisy
→ The 50 time steps correspond to one cardiac cycle

We have 50 images of an artery obtained by MRI.

......

A B C



  

Talk outline

Goal : smooth a sequence (time) of images (space)
Approach : statistical (kriging and POD)

In order to reduce the complexity of the space and time 
statistical description of our data (artery), two steps 

1. Spatial smoothing
2. Time smoothing

and

3. Conclusions



  

Spatial smoothing (1/6)

A basic approch is to smooth the data with a Gaussian Smoother
 → local average at each pixel

The nature of the data is not respected :

The smoother has to be adapted
Contour lines of the 
Gaussian smoother 
@ px (25,25)



  

Spatial smoothing (2/6)

The basic idea is to adapt the neighbourhood of each pixel to the 
problem at hand
→ we consider neighborhoods based on the empirical covariance matrix

Correlation between the pixel 
(43,25) – black dot – and the other 
pixels

This covariance matrix catches the physical partition of the space. 

The intensity at each pixel is seen as a random variable and each 
time step gives us a realization of this RV.

C =
1
N ∑i=1

N
X i− X X i− X T



  

Spatial smoothing (3/6)

The first three eigenvectors seem meaningful.
From the 4th on, we consider that they represent noise.

To denoise, we study the diagonalization C=P D P t



  

Spatial smoothing (4/6)

We thus split the covariance matrix in two groups 

 

C = (P1 … Pp) (
λ1

⋱
λ p

) (P1 … P p)
T

= P(Ds+Dn)P
T

= C s+Cn

And we look at the neighborhood given by C s

The use of covariance for smoothing is 
called kriging.

Here, as the covariance structure is 
learnt empirically, kriging is equivalent 
to Proper Orthogonal Decomposition 
(POD). 



  

Spatial smoothing (5/6)

The smoothed image at t is given by the kriging average:

 

I s(x ,t ) = c s(x)
T

(C s+Cn)
−1 I (t)

where cs (x) is the covariance between the pixel x  and the other pixels
hence a line of C s  and the so-called neighborhood.

I s(t) = C s (C s+Cn )
−1 I (t ) = (P Ds P

T ) (P D−1 PT ) I (t ) = P Ds D
−1 PT I (t )

= P(
1

1
1

0
⋱

)PT I (t )

From kriging to POD : 



  

Spatial smoothing (6/6)

Result with effect on contour (right)



  

Time smoothing

→ The curves are much less noisy
→ The periodicity is not guaranteed (observed here because 
data is periodic)

Effect of spatial smoothing (previous slides) on time response :

A B C



  

Time smoothing

→ The artery movements are periodic: we apply a time smoothing 
(covariance in time) which is periodic.

A B C

Both smoothings are krigings since they are based on covariance.

The shape of the functions I(x,t) after smoothing has very little 
functional assumptions (infinite number of basis functions in the 
RKHS). But there are assumptions in the covariance structure 
(i.e., the RKHS).

C x (t1, t2) = Cov( I (x ,t1), I (x , t2))=exp (−sin2
(t1−t2 ))



  

Final results

...

The sequence (space then time) allows to reduce the complexity
  Space smoothing:  inversion of a 3721 x 3721 matrix
  Time smoothing: inversion of a 50 x 50 matrix
  Time and space: inversion of a 186050 x 186050  matrix !!



  

Conclusions (1/2)

● Space and time have been handled in the following way

1. Space treatment, time taken as a random event
2. Time treatment, independently at each point in space
⇨ never construct the complete time-space covariance matrix 
(1860502 here).

● Some physical features are accounted for : spatial 
neighborhoods based on data and a priori that time neighborhoods 
are periodical.



  

Conclusions (2/2)

● Such statistical model is well-adapted to noisy data. The effect of 
noise on physical models is difficult to control. Here, it is controlled 
through the choice of the covariances (with effects on likelihood, 
variances …).

● In other words, statistical models focus on data, physical models on 
physics. Physical models can predict response for new inputs (e.g., 
new material parameters), statistical models can simulate new data 
(with or without noise, for the same input).

● A promising research direction : mixing statistical and physical 
models. Examples:

• Use statistical model to denoise (get contours …), then physical 
identification. This is a current practice.
• More originally: define covariance based on PDE's.
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