
HAL Id: emse-00704688
https://hal-emse.ccsd.cnrs.fr/emse-00704688

Submitted on 3 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Multiobjective optimization of robot motion for laser
cutting applications

Anatol Pashkevich, Alexandre Dolgui, Oleg Chumakov

To cite this version:
Anatol Pashkevich, Alexandre Dolgui, Oleg Chumakov. Multiobjective optimization of robot motion
for laser cutting applications. International Journal of Computer Integrated Manufacturing, 2004, 17
(2), pp.171-183. �10.1080/0951192031000078202�. �emse-00704688�

https://hal-emse.ccsd.cnrs.fr/emse-00704688
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Multiobjective optimization of robot motion for
laser cutting applications

ANATOLY P. PASHKEVICH, ALEXANDRE B. DOLGUI and OLEG A. CHUMAKOV

Abstract. This paper focuses on the enhancement of
automatic robot programming techniques for laser cutting
applications. Such technology has already gained essential
industrial acceptance, but its application for small lot
production is limited by the tedious and time-consuming
process of robot programming. Currently, even sophisticated
graphical simulation systems do not allow optimization of
robot motion using multiple criteria, nor does it take into
account redundancy caused by the tool axial symmetry. The
particular contribution of this paper lies in the area of
multiobjective optimization of robot motions via graph
representation of the search space and dynamic programming
procedures. It presents algorithms that allow generation of
smooth manipulator trajectories within acceptable time,
simultaneously considering kinematics, collision and singula-
rities constraints of the robotic system, as well as the
limitations of the robot control units. The efficiency of the
algorithms has been carefully investigated via computer
simulation. The presented results are implemented in a
commercial software package and verified for real-life
applications in the automotive industry.

1. Introduction

In the last few decades, laser machining has gained
essential industrial acceptance as an alternative to
mechanical processing and is widely used in various
fields of manufacturing. It has significant advantages
over traditional production methods due to its high
process quality combined with high speed, high
precision and potential flexibility (Geiger and Otto
2000). In the automotive industry, for instance, the
panels of the small series models are made in two steps.
First, sheet metal parts are deep drawn, and then they
are cut into their final shape. Using a laser, this can be

done fast and precisely, since the required contour
processing depends on the program of the robotic
system only.

However, manual teaching of robotic laser system is
very tedious and time-consuming. It requires temporary
exclusion of the robot from the manufacturing process
and specific preparation of processing components,
which have to be properly marked. For complex proces-
sing contours, the time required for marking is substan-
tially larger than the time for the robot teaching itself
(Bauer 1996). In some cases, an expensive coordinate
measurement machine has to be used for marking.

In contrast to manual teaching, off-line program-
ming generates the control code by means of computer
graphics, based on a virtual scene, and away from the
factory floor. As the result, the down time of a robot
may be reduced by 80–85%, enabling very small batch
sizes to become economically feasible (Sendler 1994).
This approach also allows interactive program debug-
ging through line-by-line visualization of what is
happening on the screen.

At the moment, there are a number of offline robot
programming systems and robotic simulation packages
on the market. Some of the most common are RobCAD
(Tecnomatix Technologies), IGRIP (Deneb Robotics),
CimStation (Silma) and Workspace (Robot Simula-
tions). These implement a number of good graphical
and path-planning methods; however, there still exists a
considerable gap between their capabilities and the
requirements of a particular technology. Currently, the
robot programs for some cutting applications are
constructed interactively. The ultimate goal is the
automatic generation of reliable programs from designs
and drawings, similar to CNC-machine programming
methods. For this reason, this is still an area of active
development.

For laser cutting applications, both 2D and 3D
offline programming systems are also available on the
market. The main contribution in this area has been

Authors: A. P. Pashkevich and A. B. Dolgui, Systems Optimisation Laboratory,

University of Technology of Troyes, 12, rue Marie Curie B.P. 2060, Troyes,

France. E-mail: dolgui@utt.fr. O. A. Chumakov, Robotic Laboratory, Belarusian

State University of Informatics and Radioelectronics, 6 P. Brovka St., Minsk,

220600, Belarus.

1



from Geiger and his co-workers (University of Erlangen-
Nuremberg, Germany). They have developed technol-
ogy oriented techniques, which simultaneously consider
the part geometry, process parameters and some
properties of the machine tool (Geiger and Kolléra
1994, Bauer and Backes 1995, Backes et al. 1996, Otto et

al. 1997). However, the existing techniques may be
applied only to non-redundant kinematic structures,
which are based on gantries with five-axis robots.

This paper focuses on enhancement of the 3D
offline programming techniques for six-axis robots that
possess inherited redundancy with respect to the
cutting. In contrast to the known methods, the
proposed approach takes into account this redundancy
in combination with kinematic, collision and singula-
rities constraints of the robotic system, as well as the
limitations of industrial control units. It relies on
simultaneous optimization of multiple criteria for all
joint coordinates and allows generation of smooth
manipulator trajectories within acceptable time for
industrial applications.

The remainder of this paper is organized as follows.
Section 2 is devoted to a formal statement of the
considered problem and describes performance mea-
sures, which compose the vector criteria. In section 3,
the search space is converted into a directed graph and
the problem is reformulated in terms of combinatorial
optimization theory. Section 4 includes the main results
and presents optimization algorithms for both separates
performance measures and their combinations. Section
5 contains simulation results and their analysis. In
section 6, industrial implementation is presented and,
finally, section 7 summarizes the main contributions of
this paper.

2. Problem statement

In the general case, the offline programming system
should convert workpiece description information into
a robot control code program taking into account both
the manipulator capability and technological con-
straints (heat-affected zone, feature straightness, kerf
width, etc). However, the core for the program
generation tool is a set of optimization routines that
focus on robot motion planning and control.

2.1. General optimization problem

Let us assume that input data for the motion
planning system are presented by two vector functions

fpðtÞ; nðtÞ: jnðtÞj ¼ 1; t 2 ½0;T �g ð1Þ

where t is a scalar argument (time); p(t )˛R 3 defines
the x,y,z-coordinates of the tool tip, and n(t )˛R 3 is the
unit vector of the tool axis orientation, which must be
normal to the processing surface (figure 1). These data
can be directly extracted from the graphical model of
the workpiece by, for example, defining the processing
contour as an ‘augmented line’.

To describe spatial location of the robotic tool, let us
introduce another unit vector

aðtÞ ¼ _ppðtÞ=j _ppðtÞj; ð2Þ

which is tangential to the workpiece surface and points
to the tool motion direction (here ‘dot’ denotes the
time derivative). Assuming that the vectors a(t) and n(t)
are mutually orthogonal, i.e.

_ppðtÞT aðtÞ ¼ 0; ð3Þ

at each point of the processing, a contour may be
associated with the coordinate frame in which the x-axis
is directed along the path, the z-axis is directed along
the cutting tool, and the y-axis completes them to
obtained the right-hand oriented triple (see figure 1).
The corresponding matrix of homogenous transforma-
tion is defined as:

H ðtÞ ¼
aðtÞ nðtÞ � aðtÞ nðtÞ pðtÞ
0 0 0 1

� �

4�4

ð4Þ

where ‘6 ’ denotes the vector product.
The introduced sliding frame H(t) can be used as a

pivot for defining the complete pose (or spatial
location) of the robotic tool, which requires six
independent parameters (three Cartesian coordinates
and three Euler angles) to be described in a manip-
ulator control unit. However, for cutting technology,

Figure 1. Defining task frames.

2



five parameters are sufficient because the tool is axially
symmetric. Hence, the cutting tool locations L can be
defined accurate to the rotation around vector n = [nx ny
nz]

T

Lðt ; gÞ ¼
Rn ðgÞ 3�3 0

0 0 0 1

� �

	H ðtÞ;

t 2 ½0;T �; g 2 ð�p; p�;

ð5Þ

where g˛(7p,p] is the rotation angle and Rn(g) is the
corresponding 36 3 orthogonal rotation matrix:

and

Cg ¼ cosðgÞ; Sg ¼ sinðgÞ; Vg ¼ 1� cosðgÞ:

Therefore, the robotic task description (5) includes
one undetermined parameter g (i.e. one redundant
degree of freedom), which can be used for optimiza-
tion purposes. Indeed, the technological tool can be
rotated around the laser (or plasma) beam axis
without any influence on the quality of processing,
provided that this motion does not contradict to robot
kinematic and collision constraints. The latter are
defined by binary functions Ck(L) and Cc(L) whose
non-zero values correspond to the constraint violation.
(These functions are standard routines of industrial
robotic CAD packages; they take into account manip-
ulator geometry and link lengths, joint coordinate
limits, joint speed limits, workspace geometry, etc.) In
addition, to ensure the singularity-free motion of the
manipulator, let us define another binary function
Cs(L) whose zero value defines an admissible distance
to singularities. The latter can be expressed as the
lower bound of the manipulator manipulability, for
example (Yoshikawa 1985). So, the considered pro-
blem of robot motion planning can be stated as
follows.

Original design problem. For a given manipulator task
described by parametrized homogeneous matrix-func-
tion L(t ,g), t˛[0;T], find a scalar function g(t )˛(7p;p]
which defines the continuous sequence of feasible tool
locations L(t,g(t)) and minimizes (or maximizes) given
performance measure

J fLðt ; gðtÞÞ; t 2 ½0;T �g ! min
gðtÞ

ð6Þ

subject to kinematic, collision and singularities con-
straints

Ck ½Lðt ; gðtÞÞ� ¼ 0; Cc ½Lðt ; gðtÞÞ� ¼ 0; Cs ½Lðt ; gðtÞÞ� ¼ 0:

ð7Þ

Geometrical interpretation of this problem may be
presented as searching for the best path on the plane
that avoids prohibited regions indicating constraint
violations. It should be noted that, in spite of the
apparent similarity with mobile robot path planning
(Latombe 1991), the considered problem essentially
differs by objective functions, which are considered in
detail in the next section. Besides, in contrast to the
mobile robotics, for this problem there are no explicit
initial and target points that must be connected by a
feasible path (they are defined accurate to the line
segment). However, some similarities can be found with
motion planning for redundant manipulators (Siciliano
1990) and multi-robot assembly systems (Bonert et al.
2000).

2.2. Performance measures

For the considered task, which needs only five
degrees of freedom, the redundant parameter g may
be used to smooth the trajectory in joint variable
space, in order to avoid sharp turns of the cutting
tool (figure 2). This requirement may be formalized
in several ways: as minimization of energy, minimiz-
ation of joint velocities, minimization of joint co-
ordinate range, minimization of joint displacement,
etc. However, in each case it is necessary to deal with
vector criterion because the dimension of this space is
obviously higher than one.

RnðgÞ ¼

n2
xVg þ Cg nxnyVy � nzSg nxnzVg þ nySg

nxnyVg þ nzSg n2
y Vg þ Cg nynzVg � nxSg

nxnzVg � nySg nynzVg þ nxSg n2
z Vg þ Cg

2

6

6

6

6

4

3

7

7

7

7

5

Figure 2. Smooth control of the tool orientation.

3



For a typical industrial robot, which possesses six
degrees of freedom, the mapping from the task space
{L} to the joint variable space {Q} is described by the
inverse kinematic function

Q ¼ InvKinðL;M Þ ð8Þ

which is parameterized by the configuration index M

that allows us to resolve a non-uniqueness problem.
This index M belongs to a finite set (usually eight
elements) which corresponds to different robot pos-
tures, such as ‘elbow-up/down’, ‘arm left/right’, ‘wrist plus/
minus’.

To ensure continuity of the joint-space trajectory,
all of the inverse solutions must have the same
configuration index (or belong to the same topolo-
gical set). For example, if a robot starts with the
‘elbow-up’ solution, it cannot switch to the elbow-
down configuration part way along the trajectory.
Therefore, the mapping from the task space to the
joint variable space defines several self-motion mani-
folds (Burdick 1989)

Q ðt ; g;M Þ ¼ InvKin½Lðt ; gÞ;M �; t 2 ½0;T �; ð9Þ

that must be considered separately during optimization.
In addition, let us define a similar space for the tool
orientation angles

Fðt ; g;M Þ ¼ ToolAng½Lðt ; gÞ;M �; t 2 ½0;T �; ð10Þ

which has a particular meaning depending on a
convention adopted by the robot manufacturer (angles
‘a, b, c’ for KUKA robots, ‘o, a, t’ for PUMA robots, etc).
For similarity purposes, in this paper the orientation
angles will be denoted as j1, j2, j3.

Therefore, for given M, the function g(t) defines six
joint trajectories qk(t)

gðtÞ ! fq1ðtÞ; . . . q6ðtÞg; ð11Þ

each of which may be evaluated by the following cost
functionals:

Joint coordinate range

J
ðkÞ
D

½qðtÞ� ¼ max
t

½qkðtÞ� �min
t

½qkðtÞ�: ð12Þ

Joint coordinate deviation from a prescribed value rk (from
the centre of joint tolerances, for example)

J
ðkÞ
d ½qðtÞ� ¼ max

t
jqkðtÞ � rk j: ð13Þ

Joint coordinate displacement

J ðkÞs ½qðtÞ� ¼

Z �

0

j _qqkðtÞjdt : ð14Þ

Joint maximum speed

J ðkÞv ½qðtÞ� ¼ max
t

½ _qqkðtÞ�: ð15Þ

It is obvious that mapping from the task space to the
tool orientation space, which yields three trajectories

gðtÞ ! f’1ðtÞ; . . .’3ðtÞg; ð16Þ

may also be evaluated applying the same performance
measures: tool angle range, deviation, displacement,
and maximum speed.

The geometrical meaning of these functionals is the
following. The range measure evaluates the width of the
smallest tube that contains the corresponding function.
The deviation shows the bias of this tube relative to the
prescribed value. The displacement characterizes the
total amount of joint motion (without regards to the
motion direction). Finally, the maximum speed esti-
mates function smoothness.

It should be stressed that such functionals are
computed for each joint variable, so the resulting
performance measure is a vector:

J ðQ Þ ¼ col½ J ðq1ðtÞÞ; . . . ; J ðq6ðtÞÞ�; ð17Þ

J ðFÞ ¼ col½ J ð’1ðtÞÞ; . . . ; J ðj3ðtÞÞ�: ð18Þ

It also possible to evaluate the joint space trajectory by
scalar criteria such as the following.

. Maximum energy

JE ½qðtÞ� ¼ max
t

b _qqðtÞTW _qqðtÞc; ð19Þ

where W is the weighting matrix, and

. Maximum of inverse manipulability

JM ½qðtÞ ¼ max
t

b1=detð J ðqðtÞÞ J ðqðtÞÞTÞc; ð20Þ

where J is the manipulator Jacobian matrix.

2.3. Optimizing multiple objectives

As follows from the previous section, it is not
possible to describe completely the considered design
requirements by a single objective. Although in ideal

4



(and obviously ‘utopian’) cases, all of the introduced
objectives tend to zero, minimizing one of the
components may degrade the performance in another.
Therefore, the designer must choose one of the
techniques that are usually used to balance multiple
criteria (Steuer 1986, Cleary 1990, Pamanes and
Zeghloul 1991, Chen et al. 1995, etc).

In this paper, instead of giving preference to a
particular objective or optimization technique, it is
proposed to leave the final decision until the design
stage, when it may be chosen from the following
options:

. defining the priority of partial objectives or the
primary objective;

. applying the minimax technique, i.e. the worst-
case optimization;

. assigning weights to combine multiple criteria in
the linear function (weighted sum approach).

Independent of the chosen technique, the vector-
optimization engine must include the scalar-optimiza-
tion routines that are developed in the following
sections.

3. Search space representation

A practical method to obtain the optimal solution
under complicated constraints (equation (7)) is sam-
pling of the search space (or presenting it by a grid).
Such an approach transforms this space into a directed
graph, with the states uniquely representing the matrix
of the tool location L and the vector of joint coordinates
Q. A single path in the grid is composed of a sequence
of segments connecting two adjacent nodes.

3.1. Graph model

For the considered problem, the given path (1) may
be described by an evenly-distributed sequence of
nodes:

fpi ; nig; i ¼ 0 : n ð21Þ

where

kpi � pi�1k ¼ �S ; 8i ¼ 1 : n

and DS is the sampling distance, which ought to be
small enough to provide the desired approximation of
the contour, but large enough to meet the control unit
requirements.

Similarly, the interval of the redundant parameter
g˛(7p,p] may be divided into m segments

g 2 f�p : 2p=m : pg ð22Þ

and locations L[t,g(t)] are tested for kinematic, collision
and singularities constraints (equation (7)). So, after
extraction of only those locations that satisfy the
constraints, each node of the path (1) can be mapped
into a set of tool locations and corresponding joint
coordinates

the number of which varies from node to a node.
Therefore, the feasible search space canbe represented

by a multi-layer directed graph (figure 3) with vertices

V ¼ fLif g ð24Þ

and edges

E ¼ fðLif ;Lkl Þji ¼ k � 1; _i ; j ; k; lg ð25Þ

where each layer corresponds to a particular config-
uration index M. As the result, the robotic path-
planning task is reduced to the following network
optimization problem.

Transformed design problem. For a given set of vertices
V and set of edges E, find the ‘best’ path of length n

Q

ðg0 . . . gnÞ ¼ hL0j1 ! L1j2 ! . . .Lnjn i ð26Þ

with initial state V0˛{L0j } and final state V0˛{Lnj }, which
minimizes the specified performance index.

pi ; ni
� �

�!
Li1; Li2; . . . Lim

Qi1; Qi2; . . . Qim

8

<

:

9

=

;

ð23Þ

Figure 3. Graph representation of the search space.

5



It should be stressed that, in this formulation, both
the initial and final states are not unique, but the
problem can be transformed to the classical one by
adding virtual start and end nodes (common for all
layers). In addition, all nodes are solvable for inverse
kinematics and are admissible for collision and singu-
larity tests (otherwise they are excluded from the graph
(V,E) on the stage of the graph generation).

An alternative formulation of the problem deals
with seeking the ‘best’ sequence

G ¼ ðg0; g1; . . . gnÞ; gi 2 Gi ; ð27Þ

such that each element belongs to its own finite set Gi,
which is extracted from equation (22) by testing Lij for
kinematic, collision and singularity constraints (equa-
tion (7)). Because for typical industrial cases n4 1000
and the sets Gi, may include up to 50 elements, the
exhaustive search is impractical and there is a need to
apply computationally efficient procedures. Clearly, the
finer the search space representation, the closer is the
solution to the true optimum, but the heavier is the
computational load. However, there exist lower bounds
for the grid resolution, which is determined by robotic
controller parameters and is discussed below.

3.2. Path sampling constraints

As assumed in previous sections, the sequence {ni, pi}
is extracted from the workpiece graphical model where
the cutting contour is converted into the ‘augmented
line’. Performing such a conversion, the designer must
specify the appropriate distance between vertices DS, to
meet two competing goals. On the one hand, the
distance should be small enough to ensure the desired
accuracy of the path approximation. On the other,
there exists a lower bound of the sampling step, which
is determined by the parameters of a control unit. Let
us investigate this problem in detail.

In industrial robot controllers, the path segments
are generated using trapezoid velocity profiles that typically
include three sections (acceleration, uniform motion,
and deceleration). Their duration depends on the
desired displacement and velocity/acceleration con-
straints imposed on each joint variable and on the
Cartesian coordinates. Moreover, in continuous motion
mode (i.e. without stopping at the path nodes), the
segments are joined in such way that the acceleration
section of the succeeding segment coincides with the
deceleration section of the preceding one. As a result,
the velocity is maintained at the same level both for
uniform motion and acceleration/deceleration sections
(figure 4(a)).

However, for short segments, the trapezium reduces
to a triangle (figure 4(b)). In addition, the travel time
for each section is sampled using the controller ‘clock
time’ (towards a greater value) and is lower-bounded.
Therefore, for short segments, the basis of the triangle
is fixed while its height is adjusted to ensure the desired
square that must be equal to the displacement. Thus,
the joining of very short segments may yield a velocity
that is less than the desired one (figure 4(c)).

To estimate the minimal value of DS, let us assume
that key constraints for the path planning are imposed
on the Cartesian coordinates:

j_ssðtÞj � _ssmax; j€ssðtÞj � €ssmax ð28Þ

and the length of the acceleration/deceleration section
is equal to the lowest allowable value tmin. Then,
computing the square under the corresponding velocity
profile and taking into account the time-sampling,
yields

DS � _sstminmax 1; 1þ int
_ssmax

tmax€ssmax

� �	 


: ð29Þ

Analysis of this expression for typical robots shows that
the second term of the ‘max’ function may be
neglected. Therefore, for engineering practice it can
be used in a simplified version:

DS � _sstmin ð30Þ

Applying this expression to the usual industrial cases
(contour speed 0.05 m/s; clock time 0.016 ms; at least
four time-samples per acceleration section) gives a
rather high lower bound for the path sampling step,
which is equal to 3.2 mm. Therefore, this constraint
should certainly be taken into account by a CAD
operator who normally tries to set the step to be less
then 1 mm. To overcome this trouble, it is necessary to
combine short contour segments into straight and

Figure 4. Velocity profiles for different DS.

6



circular portions that are efficiently reproduced by a
typical robot controller. It should be also noted that the
sampling step DS is bonded by the ‘clock time’ of the
Cartesian path planning (i.e. ‘upper’ control level),
while joint-level planning is usually sampled with
shorter time periods (up to 1 ms).

4. Generation of optimal path

Since the considered performance measures differ
by their properties (additive, non-additive, etc), the
optimization technique should also be different. In this
section, several algorithms are proposed that minimize
the performance measures (12)–(20) in acceptable
time. To simplify the description of the algorithms, the
joint coordinates corresponding to the location Lij are
denoted as qk(i,j), and the trajectories corresponding to
the solution vector G are denoted as qk(i,jgi). The
algorithms are equally applicable for optimization in
both joint variable space q and tool orientation space j,
while the description below is given for the first case
only.

4.1. Minimization of coordinate deviation

The optimization problem

J
ðkÞ
d ðGÞ ¼ max

i
jqkði; jri Þ � rk j ! min

G

ð31Þ

that minimizes the deviation of the kth joint variable with
respect to the prescribed value rk may be solved in a
straightforward way, just by selecting for each time instant
ti the value of g˛Gi that yields a local minimum of the
considered difference. It is obvious that such a solution
also ensures a global optimum, although in the general
case it is not unique. However, using the proposed
multiobjective approach, the detected ‘critical nodes’

ðir ; jr Þ ¼ arg max
i

min
j

jqkði; jÞ � rk j

� �

ð32Þ

that correspond to the maximum deviation of q(t), may
be converted into constraints, which are taken into
account in the next steps, while applying other
optimization criteria. Within the proposed formulation,
such a transformation is performed by simple reduction
of the set Gi up to one element gjo.

It can be proved that a similar approach can also be
applied to the minimization of the weighted sum

J wd ðGÞ ¼
X

k

wk J
ðkÞ
d ðGÞ ! min

G

; ð33Þ

and the ‘worst’ component

J md ðGÞ ¼ max
k

J
ðkÞ
d ðGÞ ! min

G

; ð34Þ

of the vector performance measure.

4.2. Minimization of the coordinate range

The optimization problem

J
ðkÞ
D

ðGÞ ¼ max
i
bqkði; j�i Þc �min

i
bqkði; j�1Þc ! min

G

; ð35Þ

which minimizes range of the kth joint variable, may be
solved by simultaneous application of the previous
algorithm and the nonlinear optimization technique.
The problem can be reduced to seeking the best-
prescribed value rk that yields a minimum of the
corresponding deviation:

f ðkÞðrkÞ ¼ max
i

min
j

jqkði; jÞ � rk j

� �

! min
rk

ð36Þ

In this case, the value rk is treated as the middle of the
coordinate range, so the optimal solution rk

o; gives two
‘critical nodes’

fðiþr ; j
þ
r Þ; ði

�
r ; j

�
r Þg ¼ arg min

rk

max
i

min
j
jqkði; jÞ � rk j

� �

;

ð37Þ

that correspond to the upper and the lower levels
respectively. Similar to the previous case, the optimal
solution is not unique, so the critical nodes may also be
converted into constraints for the next optimization
steps.

The minimization of the weighted sum

J w
D
ðGÞ ¼

X

k

wkJ
ðkÞ
D

ðGÞ ! min
G

; ð38Þ

and the ‘worst’ component of the vector objective

J m
D
ðGÞ ¼ max

k
J
ðkÞ
D

ðGÞ ! min
G

; ð39Þ

are also reduced to the minimization of the nonlinear
function of six unknowns r = (r1, r2, r6)

T

f wðrÞ ¼
X

k

wk max
i

min
j

jqkði; jÞ � rk j ! min
r

ð40Þ

or

f mðrÞ ¼ max
k

max
i

max
j

jqkði; jÞ � rk j ! min
r

: ð41Þ

7



However, because of the non-smooth and poly-
modal nature of the objective function, conven-
tional nonlinear optimization methods (step des-
cent or gradient search, for instance) cannot be
used here. An alternative approach is based on
sophisticated random search techniques, e.g. simu-
lating annealing, in particular (Kirkpatrick et al.
1983).

4.3. Minimization of coordinate increment

For the discrete representation of the search space,
the coordinate velocity is estimated by the finite
difference computed for the successive time instants
(increment). Therefore, the related optimization pro-
blem is stated as

J ðkÞ
v ðGÞ ¼ max

i
jqkði; jr i Þ � qkði � 1; jr i�1Þj ! min

G

; ð42Þ

and can be solved by means of the dynamic program-
ming. To prove it, let us assume that, at the pth stage,
there have been found all optimal sequences

G

ðp; wÞ ¼ hg0; g1; . . . ; gp�1; wi; ð43Þ

with the last element w˛Gp and the corresponding
performance measures are denoted as Fp(w). Then, for
the next stage, the optimal sequence

G

ðp þ 1; gÞ ¼ hg0; g1; . . . ; gp�1; w; gi; ð44Þ

with the last element g˛Gp + 1 may be found from the
following recursion

Fpþ1ðgÞ ¼ min
w2Gp

maxfFpðwÞ; jqkðp þ 1; jgÞ � qkðp; jwÞjg:

ð45Þ

Therefore, staring from p – 1 and sequentially
increasing the length of the sequence, for each end
state the recursion finds both the optimal path and the
corresponding performance measure. Therefore, the
last step is a simple selection of the best end state from
the set g˛Gn.

It is obvious that a similar approach can also be
applied to minimization of the weighted sum and the
‘worst’ component of the corresponding vector
performance measure. In addition, because of the
common properties of the objectives JE, JM and Jv,
which are based on minimax expressions, such a
recursion can be used for minimization of the
maximum energy or the inverse manipulability as
well.

4.4. Minimization of coordinate displacement

Using the discrete search space, this optimization
problem is stated as follows:

J ðkÞs ðGÞ ¼
X

i

jqkði; jgi Þ � qkði � 1; jri�1
Þj ! min

G

; ð46Þ

In contrast to the previous case, it is an additive
performance measure that is accumulated along the
path. However, it can also be minimized by applying the
dynamic programming. Using the notation adopted in
the previous section, the corresponding recursion can
be written as

Fpþ1ðgÞ ¼ min
w2Gp

fFpðwÞ;þjqkðp þ 1; jr Þ � qkðp; jxÞjg: ð47Þ

So, staring from p = 1 and sequentially increasing the
length of the sequence G8(p,g), for each end state, the
recursion finds both the optimal path and the
corresponding performance measure. As in the pre-
vious case, the last step deals with the selection of the
best end state from the set g˛Gn. It can easily be proved
that a similar recursion also yields an optimal solution
for the weighted sum and the ‘worst’ component of the
corresponding vector performance measure.

5. Simulation results

To demonstrate the proposed technique, let us
consider the simple example shown in figure 5. The
manipulator consists of three revolute joints and three
links of lengths l1 = 1.0, l2 = 1.0 and l3 = 0.25. The cutting
contour is defined as a square with the side d = 0.8,
whose angles are rounded with radius r = 0.10. The
centre of the contour is located at the point (1.0, 1,0)
and is surrounded by an obstacle (see figure 5) with gap
Dd = 0.05. After the sampling, the contour is presented
as a set of 60 uniformly distributed nodes (shown as
small circles).

The direct kinematic model of this manipulator is
described by the following equations:

x � l1 cosðq1Þ þ l2 cosðq1 þ q2Þ þ l3 cosðq1 þ q2 þ q3Þ;

y ¼ l1 sinðq1Þ þ l2 sinðq1 þ q2Þ þ l3 sinðq1 þ q2 þ q3Þ;

j ¼ q1 þ q2 þ q3; ð48Þ

where q1, q2, q3 are the joint coordinates, and x, y, j are
the tool location parameters (two Cartesian coordinates
and an orientation angle). To derive the inverse
kinematic model, let us define

x 0 ¼x � l3 cosðjÞ;

y 0 ¼y � l3 sinðjÞ;
ð49Þ

8



and sequentially solve the obtained equations for q2, q1
and q3:

q2 ¼Macos x 0ð Þ
2
þ y 0ð Þ

2
�l 21 � l 22

� �

=2l1l2;

q1 ¼atan2
x 0 l1 þ l2 cos q2ð Þð Þ þ y 0l2 sin q2ð Þ

y 0 l1 þ l2 cos q2ð Þð Þ � x 0l2 sin q2ð Þ
;

q3 ¼j� q1 � q2;

ð50Þ

where M = sgn(q2) is the configuration index.
Using the inverse model and altering the tool

orientation j with the step of 108, a set of 1385 feasible
tool locations {Lij} and a corresponding set of joint
coordinates {Qij} have been generated. To detect
collisions, both the manipulator and the obstacle were
described by a set of line segments. Then, all pairs from
these sets were examined for intersections, until any
one was detected. For this example, the approach yields
satisfactory results and is not time consuming. In
addition, only one configuration index was found, M =
7 1 yields the required solutions for all nodes of the
cutting contour.

To investigate the relative importance of the
considered performance measures, optimal solutions
were first found for a single objective applied to a
single coordinate q1, q2 or q3. The following optimiza-
tion criteria were used: the minimum of the range JD
, the minimum if the maximum increment Jv , and
the minimum of the total displacement Js. The
obtained solutions are presented in figures 6 – 8
where the search trees for the objective Js are also
shown (as a background and demonstration of the
search space shape). As follows from these plots, the
optimal solutions differ mainly at the beginning and

Figure 5. A planar three degree of freedom illustrative
example.

Figure 6. Optimal solutions for the coordinate q1.

Figure 7. Optimal solutions for the coordinate q2.

Figure 8. Optimal solutions for the coordinate q3.

9



the end, while their middle parts almost coincide. In
addition, an insufficiently small sampling step causes
inclination of these segments, although they should
obviously be close to the horizontal to ensure the
minimum of Js.

The corresponding numerical values of the
considered performance measures are presented in
tables 1–3. The minimization of Js (joint displace-
ment) yields a result that is also satisfactory for other
objectives, so it may be chosen as the primary
performance measure to present the engineering
requirement of a ‘smooth’ trajectory. However,
further analysis shows that minimizing Js for one joint
may lead to a very sharp profile for the remaining
ones, especially for the third joint (see figures 9 and
10). Therefore, the competing objectives must be

balanced by computing the weighted sum or the
‘worst’ component of the vector criteria.

The results for the simultaneous optimization of all
joint trajectories are presented in table 4. As follows
from these results, the weighted sum approach (with
equal weights), as well as the ‘worst case’ minimization,
yield roughly the same results, which are also close to

Table 1. Performance measures for optimization of q1 [deg].

Objective JD
(1) Jv

(1) Js
(1)

Minimum of range JD
(1) 19.09 2.69 56.56

Minimum of increment Jv
(1) 32.9 1.47 42.79

Minimum of displacement Js
(1) 19.09 1.47 27.70

Table 2. Performance measures for optimization of q2 [deg].

Objective JD
(2) Jv

(2) Js
(2)

Minimum of range JD
(2) 41.32 3.31 98.78

Minimum of increment Jv
(2) 50.72 2.54 69.24

Minimum of displacement Js
(2) 49.76 3.19 62.92

Table 3. Performance measures for optimization of q3 [deg].

Objective JD
(3) Jv

(3) Js
(3)

Minimum of range JD
(3) 11.50 10.69 161.8

Minimum of increment Jv
(3) 52.26 3.84 105.0

Minimum of displacement Js
(3) 52.26 3.84 105.0

Table 4. Complete sets of the performance measures for all case studies (in parenthesis, given minimum achievable values).

Objective Js
(1) Js

(2) Js
(3) Jv

(1) Jv
(2) Jv

(2) JD
(1) JD

(2) JD
(3)

(27.7) (62.9) (105.0) (1.47) (2.54) (3.84) (19.09) (41.32) (11.50)

Minimum of weighted displacement
P

k

wk J
ðkÞ
s 106.6 153.6 105.7 3.96 3.70 4.00 51.31 76.80 52.72

Minimum of maximum increment max
k

J ðkÞv 107.1 157.2 105.0 3.82 3.86 3.84 52.06 78.58 52.26

Minimum of displacement J ð1Þs 27.7 222.6 3080.3 2.76 19.43 355.31 19.09 66.09 357.26

Minimum of displacement J ð2Þs 281.5 62.9 1901.8 24.31 3.57 202.50 62.49 49.76 335.59

Minimum of displacement J ð3Þs 107.1 157.2 105.0 3.82 3.86 3.84 52.06 78.58 52.26

Figure 9. Joint trajectories for minimization of Js
(1).

Figure 10. Joint trajectories for minimization of Js
(2).

10



the result for the minimization of J s
(3). Therefore, in

this particular case, the third joint may be considered as
a ‘key’ one and the solution presented in figure 11 may
be chosen as the output of the vector optimization
process. However, in the general case, it is prudent to
generate a set of candidate solutions by altering the
weights of the combined performance measure and
automatically selecting only Pareto-optimal ones. The
obtained set of solutions must be presented to the
designer who makes the final decision.

6. Industrial implementation

The algorithms developed here have been success-
fully implemented on the manufacturing floor, in
ROBOMAX CAD package (Buran Co, Russia-USA),
which is a powerful integrated system for computer-
aided design and offline programming of industrial
robotic cells. It is already used in the Russian
automotive industry and has been successfully applied
to the design of manufacturing lines/cells for Lada
cars (AO AutoVAZ, Tolyatti), GAZEL lorries (AO
GAZ, Nizhniy Novgorod) and ZIL mini-vans (AMO
ZIL, Moscow). The package is completely integrated
with Autodesk CAD products and includes a number
of auxiliary tools, which enable the user to design a
robotic cell and generate a control program, taking
into account the particularities of the technology
employed.

In application to laser and plasma cutting technol-
ogy, the Robomax/Laser subsystems (figure 12) allows
one to design the workcell layout and optimize the
robot motion using multiobjective optimization techni-
ques. As the first step, using standard routines of the
Autodesk Mechanical Desktop (AMD), the mathema-
tical description of the cutting contour is presented in
the form of the ‘augmented line’. The user may define
either the desired distance between vertices or their
total number. In addition, the user can estimate the

Figure 12. Robotic cell design and programming using Robomax/Laser.

Figure 11. Joint trajectories for minimization of Js
(3).

11



minimum number of vertices required to keep the
accuracy within the tolerance setting.

The main design procedure consists of three
iteratively repeated steps. The first step is the selection
of the proper manufacturing environment and the
location of the manufacturing task within the robot
workspace. The user can assemble and optimize the
layout of the cell interactively using functions incorpo-
rated in the system. The required components (robotic
manipulators, workpiece positioners, clamping devices,
protective fences, columns, etc) may be added from a
library. To optimize the position of the workpiece, a set
of performance measures is used that take into account
such important features as distance to the obstacles,
closeness to joint limits, and the required range of joint
motion.

The second step deals with path planning using
algorithms described in the previous sections. The goal
is to utilize the redundancy, which is introduced by the
tool rotation around its axis of symmetry. To balance
competing objectives, the designer can interactively
assign priorities or weights, as well as activate/deactivate
some of the criteria. In particular, it is possible to
choose between joint/tool angles optimization, and to
change the preferable criteria after visual analysis of the
obtained path.

For the third step, the obtained solution is verified
using realistic simulation of the manufacturing envir-
onment. The Robomax interactive debugger enables
the user to evaluate both the total path and its separate
segments, corresponding to elementary motions be-
tween the nodes.

In addition, it is possible to inspect the velocity and
acceleration profiles for each joint, as well as details of
the manipulator 3D motion. If the user is not satisfied
with the current solution, he or she can return to the
first or the second step to change the design parameters
and so get a new solution.

After finishing this optimization cycle, the obtained
path is converted into the control program in the
robotic system language. In this stage, it is also possible
to optimize the program, in order to eliminate some
nodes (that belong to straight-line segments), or to add
any necessary additional commands required for
controlling the technological parameters. Finally, the
created program is downloaded to the robotic cell
controller (see figure 12).

The recent application of ROBOMAX/Laser is the
offline programming of a robotic cutting station for
AMO ZIL (Moscow). The station includes a KUKA
PR161 robot and corresponding positioning and
clamping devices. It is used for small-batch manufactur-
ing, which requires frequent reprogramming (almost
every day). The industrial experience has shown that

the developed technique provides good capabilities for
generating optimal programs for robotic cutting of 3D
parts of complex shape.

7. Conclusions

The developed technique allows the generation of
optimal movements of robotic manipulators in 3D
space, taking into account the kinematic redundancy
and particularities of the laser cutting technology.
Incorporating these results in a graphic simulation
system leads to the essential reduction of process
planning time, enabling even very small batch sizes to
become economically feasible for robotic processing.

The particular contribution of this paper deals with
the multiobjective optimization of robot motion that is
based on simultaneous optimization of performance
measures for all joint coordinates. To generate smooth
motion, each joint trajectory is evaluated by a set of
performance indices such as the coordinate range,
deviation, maximum increment, and total displace-
ment. The search space is converted into the directed
graph and the problem is re-formulated in terms of
combinatorial optimization theory. The optimal solu-
tion is obtained via dynamic programming procedures
that minimize the weighted sum of the objectives (or
the ‘worst’ of them) and yield the result within an
acceptable time for industrial applications. During the
optimization, the weights are altered to generate a set
of Pareto-optimal solutions.

The proposed algorithms have been implemented
in a commercial software package that is already used in
the Russian automotive industry. The algorithms will
also encourage further research into multiobjective
optimization of robot systems for this technological
application, such as the optimization of a robotic cell
layout and the optimization of a contour processing
sequence.

Acknowledgements

The authors gratefully acknowledge Vladimir
Markov and Sergej Marmuzevich (Buran Co, Moscow)
for their support and collaboration in the industrial
implementation of the work described in this paper.

References

BACKES, F., GEIGER, M., and FRANKE, V., 1996, Technology
oriented off-line programming for 3D laser processing.
Technical Papers of the North American Manufacturing Research
Institution (SME), pp. 241–246.

12



BAUER, L., and BACKES, F., 1995, Offline-programming of 3D
laser systems. Preprints of the Fourth International Workshop on
Robotics in Alpe-Adria Region, Pörtschach, 1, pp. 47–50.

BAUER, L., 1996, Offline-programming for 3D-laser systems.
European Symposium on Lasers, Optics, and Vision for Productiv-
ity in Manufacturing, SPIE Proceedings, 2787, 34–42.

BONERT, M., SHU, L. H., and BENHABIB, B., 2000, Motion
planning for multi-robot assembly systems. International
Journal of Computer Integrated Manufacturing, 13(4), 301–310.

BURDICK, J. W., 1989, On the inverse kinematics of redundant
manipulators: characterization of the self-motion mani-
folds. Proceedings of the IEEE International Conference on
Robotics and Automation, Scottsdale, AZ, pp. 264–270.

CHEN, W., ZHANG, O., YANG, Z., and GRUVER, W. A., 1995,
Optimising multiple performance criteria in redundant
manipulators by subtask-priority control. Proceedings of the
IEEE International Conference on Systems, Man, and Cybernetics,
Vancouver, Canada, pp. 2534–2539.

CLEARY, K., 1990, Incorporating multiple criteria in the
operation of redundant manipulators. Proceedings of the
IEEE International Conference on Robotics and Automation,
Cincinnati, Ohio, pp. 618–624.

GEIGER, M., and KOLLÉRA, H., 1994, Tool path optimisation for
2D laser cutting. Production Engineering, Annals of German
Academic Society for Production Engineering, 1(2), 155–158.

GEIGER, M., and OTTO, A., 2000, Laser in der Elektronikproduktion
and Feinwerktechnik, Tagungsband des 3. Erlanger Seminars LEF
2000 (Bamberg: Meisenbach).

KIRKPATRICK, S., GELATT, C. D., and VECCHI, M. P., 1983,
Optimisation by simulated annealing. Science, 220(4598),
671–680.

LATOMBE, J. C., 1991, Robot Motion Planning (Dordrecht,
Netherlands: Kluwer Academic).

OTTO, A., BACKES, F., and GEIGER, M., 1997, Enhanced process
planning for 3D laser beam welding of sheet metal parts.
The Second World Congress on Intelligent Manufacturing Processes
and Systems, Budapest, Hungary, pp. 491–496.

PAMANES, J. A., and ZEGHLOUL, S., 1991, Optimal placement of
robotic manipulators using multiple kinematic criteria.
Proceedings of the IEEE International Conference on Robotics
and Automation, Sacramento, CA, pp. 933–938.

SENDLER, U., 1994, Offline-programmiertes Laserschneiden im
Automobilbau. VDI-Z, 136(1/2), 28–30.

SICILIANO, B., 1990, Kinematic control of redundant robot
manipulators: a tutorial. Journal of Intelligent Robotic Systems,
3(3), 201–212.

STEUER, R., 1986, Multiple Criteria Optimisation: Theory, Computa-
tion and Application (New York: Wiley).

YOSHIKAWA, T., 1985, Manipulability of robotic mechanisms.
International Journal of Robotics Research, 4(2), 3–9.

13


