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Kinematic aspects of a robot-positioner system in an arc welding

application
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This paper focuses on the kinematic control of a redundant robotic system taking into account particularities of the arc welding 
technology. The considered system consists of a 6-axis industrial robot (welding tool manipulator) and a 2-axis welding positioner 
(w orkpiece manipulator) that is intended to optimise a w eld joint orientation during the technological process. The particular 
contribution of the paper lies in the area of the positioner inverse kinematics, w hich is a key issue of such system off-line 
programming and control. It has been proposed a novel formulation and a closed-form solution of the inverse kinematic problem 
that deals with the explicit definition of the weld joint orientation relative to the gravity. Similar results have also been obtained for 
the known problem statement that is based on a unit vector transformation. For both the cases, a detailed investigation of the 
singularities and uniqueness-existence topics have been carried out. The presented results are implemented in a commercial software 
package and verified for real-life applications in the automotive industry.
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1. Introduction

Welding technology is a traditional application area

of industrial robots, so it encourages intensive research

and development of sophisticated model-based control

and programming tools. Such software systems allow to

optimise some process parameters, which directly

influences the product quality and the working cycle of

the system. Besides, the model-based programming

allows one to complete most of the process preparation

actions without access to the workcell, and therefore, to

make the robotic systems competitive for small-batch

manufacturing. However, there are still a number of

theoretical problems, which at the present stage are

overcome in industry by combining simulation with the

expertise of the designer. This paper concentrates on one

of such problems, the kinematic control of a redundant

robot-positioner system.

Such emphasis on the kinematics is originated from

the dual nature of the robotic system control and

programming, which requires defining both a logical

structure of the manufacturing task and specifying

spatial relations that are presented as motion para-

meters. Obtaining these spatial relations is a very tedious

and time-consuming process, which is typically about

10–100 times longer than the product welding circle

(Bolmsj .o, 1999; Pashkevich, 1996). And even the

application of the off-line programming systems does

not reduce this time drastically, while the robot idle time

(when the robot cannot be used for the production

because of the programming) is obviously decreased.

In the arc welding, the kinematic capabilities of a 6-

axis robot are not usually sufficient to ensure the

required working envelope and/or the desired orienta-

tions of the technological tool (the welding torch). The

robot must move the tool along the weld joint with the
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prescribed velocity and orientation relative to the joint,

while the weld must be also properly oriented relative to

the gravity vector. For this reason, a typical welding

station (Fig. 1) includes several computer-controlled

machines: a 6-axis industrial robot (tool manipulator);

a 1–2-axis positioner (object manipulator); and, op-

tional, a 2–3-axis gantry (robot manipulator).

Such an arrangement forms a redundant kinematic

system, which usually does not possess a closed-form

solution for the inverse kinematics of all the machinery.

Because of the complexity of this problem, it is usually

decomposed in several separate tasks, which are solved

sequentially:

* Optimising the weld joint orientation relative to the

gravity vector (subject to the positioner kinematic

constrains).
* Optimising the welding tool orientation relative to the

weld joint (subject to the joint technological and

geometrical constraints).
* Optimising the robot base location (subject to the

robot and gantry kinematic constraints).

Each of these steps requires multiple coordinate

transformations for the corresponding machines (both

direct and inverse ones). However, in the robotic

literature, the main research activity focuses on the 6

d.o.f. and redundant robots, which are investigated in

detail (Lee, Woernle, & Hiller, 1991; DeMers & Kreutz-

Delgado, 1997; Kauschke, 1996; Hsu, 1993; Perdereau &

Drouin, 1996 and others). To our knowledge, only

Bolmsj .o (1987) and Nikoleris (1990) from the Lund

Institute of Technology (Sweden) investigated the

positioner kinematics for the welding applications.

And even in sophisticated industrial packages, such as

ROBCAD (Tecnomatix Technologies) and IGRIP

(Deneb Robotics), the optimisation process (‘‘redundant

kinematic chain balancing’’) is still semi-automatic and

employs the direct/inverse kinematics for robots, but

only direct kinematics for positioners.

This paper extends the results of Bolmsj .o and

Nikoleris by proposing closed-form solutions for the

optimal weld joint orientation problem and includes a

careful investigation of the singularities and solution

existence issues. There are also proposed expressions for

the positioner configuration indices, which ensure a

unique solution of the problem for a single input and

continuous solutions for a sequence of inputs defining

the welding path. The latter is extremely important for

the coordinated control of the positioner and the robot

in the Cartesian space, when change of the configuration

during welding is not allowed.

The remainder of this paper is organised as follows.

Section 2 describes the kinematic control architecture

and introduces the kinematic description of the welds.

Section 3 is devoted to a formal statement of the weld

joint orienting problems. In Section 4, the direct

kinematic model of a general welding positioner is

derived. Section 5 gives the inverse kinematic solution as

well as a detailed investigation of the singularities and

uniqueness-existence issues. In Section 6, an industrial

implementation is presented and real-life industrial

applications are described. And, finally, Section 7

summarises the main contributions of this paper.

2. Kinematic control architecture

2.1. Control hierarchy

In contrast to the early robotic manipulators, in

which capabilities were limited by the servo-control of

separate joint axes, the modern industrial robotic

systems should implement the task-level control that

essentially simplifies the manufacturing task definition

for the end user (Bolmsj .o & Nikoleris, 1993; Nikoleris,

Bolmsj .o, Olsson, & Brink, 1994). It results in including a

kinematic control module as a built-in part of the

hierarchical control system, where the high-level com-

mand is sequentially decomposed to the lower level

ones, up to the axis drives and the process variable

controllers. However, in spite of the apparent simplicity,

defining of a particular content of each control level

requires development of specific mathematical methods

that take into account particularities of the relevant

technology.

For the arc welding applications, five levels of control

are typically used (Fig. 2). The highest of them highly

relies on the kinematic modelling and deals with

obtaining the optimal technological and geometrical

parameters, such as the orientation angles of the weld

joint and the welding gun, the weld sequence, the weld

speed, etc. The fourth level performs appropriate

coordinate transformations via the direct/inverse kine-

matics of all mechanical components (robot, positioner,

gantry). The remaining three levels deal with the

implementing of tool/workpiece movements in the

Cartesian space, in the manipulator axis space and,

Fig. 1. Welding robotic station.
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finally, in the motor shaft space. (It should be noted that

for some manipulators, the interrelation between the

axis angle and the motor shaft angle is non-trivial.)

At present, control techniques for all the above-

mentioned hierarchical levels are being intensively

developed. For instance, advanced commercial control-

lers already include the forward dynamic models, which

essentially improve the operational speed and accuracy.

However, various aspects of the fourth and the fifth

control levels are still subject of research and only

limited industrial applications are reported.

This paper focuses on the kinematic aspects of the

robot-positioner system (which are essential for the

second control level), assuming that the simultaneous

motion of the robot and the positioner are aimed at

providing the optimal workpiece orientation relative to

the gravity during welding. Since in the modern

controllers such motions are implemented in the

‘‘master-slave’’ mode (when a robot follows the moving

weld joint), the main attention is paid to the positioner

direct/inverse kinematics, as well as to the definition of

the weld joint world orientation in terms of the

technological requirements.

2.2. Kinematic description of the welds

The spatial location of the welding object, as a general

rigid body, can be defined by a single frame that

incorporates six independent parameters (three Carte-

sian coordinates and three Euler angles). However,

defining geometry of each weld requires some additional

efforts, depending on the joint profile. Since capabilities

of modern commercial robotic systems allow to process

two basic types of the contours (linear and circular),

only these cases are considered below.

For the linear joints, a moving frame with the specific

definition of the axes can describe the weld geometry. In

this paper, this frame is defined so that:

* the Xw-axis is directed along the weld joint (Fig. 3);
* the Yw-axis specifies the weld torch approaching

direction (which is normal to the weld joint);
* the Zw-axis completes the right-hand oriented frame

and thus shows the ‘‘weaving’’ direction.

It should be noted that, in practice, it is prudent to

define the Yw-axis as the bisectrix of the corresponding

weld joint surfaces.

Taking into account the above definitions, the

kinematic model of the linear weld relative to the WB-

frame (i.e., the workpiece base frame, see Fig. 3) can be

described by the following homogenous parametric

equation:

WBWðlÞ ¼
nsw ssw nsw � ssw psw þ l � nsw

0 0 0 1

" #

4�4

; ð1Þ

where the parameter l is the welding torch displacement,

the left superscript ‘‘WB’’ refers to the workpiece base

coordinate system, the right superscript ‘‘s’’ and the

subscript ‘‘w’’ denote starting point of the weld, nsw is

the unit vector of the welding direction (axis Xw), s
s
w is

the unit vector of the approaching direction (axis Yw),

Fig. 2. Multi-level control hierarchy.

Fig. 3. Definition of the weld frames for the liner weld.

– – – – – – – – – – – – – – – – – –
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and psw is the position vector of the weld starting point.

It should be stressed that the vectors nsw; s
s
w; p

s
w are

defined relative to the WB-frame and, in practice, they

are easily derived from the workpiece 3D CAD model.

For the circular joints, a similar approach is used, but

the moving frame is computed to ensure the tangency of

the welding path and the Xw-axis at every point (Fig. 4).

It is evident that the initial frame is subject to the

rotational transformation and the weld kinematics is

described by the following parametric equation:

WBWðlÞ ¼
Reðl=rÞ � R

s
w Reðl=rÞðp

s
w � peÞ þ pe

01�3 1

" #

4�4

; ð2Þ

where the parameter l and the sub/superscripts ‘‘WB’’,

‘‘w’’, ‘‘s’’ have the same meaning as in (1), the

orthogonal 3� 3 matrix is expressed as Rs
w ¼

½nsw ssw nsw � ssw	 and defines the orientation of the weld

frame at the starting point, r is the radius of the circular

welding joint, W ¼ l=r is the angle of rotation, the vector
pe defines the position of the circle centre, and ReðWÞ is

the general rotation matrix (Fu, Gonzalez, & Lee, 1987)

around the axis, which is determined by the unit vector

e ¼ ½ex ey ez	
T (see Fig. 4):

ReðyÞ ¼

e2xVW þ CW exeyVW � ezSW exezVW þ eySW

exeyVW þ ezSW e2yVW þ CW eyezVW � exSW

exezVW � eySW eyezVW þ exSW e2zVW þ CW

2

6

4

3

7

5

3�3

;

CW ¼ cosðWÞ; SW ¼ sinðWÞ; VW ¼ 1� cosðWÞ: ð3Þ

As in the previous case, the required vectors nsw; s
s
w; p

s
w

and e; pe; as well as the radius r; may also be easily
derived from the workpiece 3D model using capabilities

of the modern graphical simulation systems to generate

straight lines, planes and circles.

Thereby, expressions (1)–(3) completely define spatial

location (i.e., the position and the orientation) of the

weld joint relative to the WB-frame (workpiece base),

which should be adjusted by the positioner to optimise

the weld orientation relative to the world coordinate

system (see Fig. 1). Hence, the absolute (world) location

of the weld joint is described by the product of the

homogenous matrices

0WðlÞ ¼ ½0TPB � PðqÞ � PFTWB	 �
WBWðlÞ; ð4Þ

where the left superscript ‘‘0’’ refers to the world

coordinate system, the matrix 0TPB defines the absolute

(world) location of the positioner base PB; the matrix
PFTWB describes the workpiece base WB location

relative to the positioner mounting flange PF ; and the
matrix function PðqÞ is the positioner direct kinematic

model, while q is the vector of the positioner joint

coordinates.

To ensure good product quality and to increase the

welding speed, the weld joint should be properly

oriented relative to the gravity. The exact interrelations

between these parameters are not sufficiently well

known and require empirical study in each particular

case. But practising engineers have developed a rather

simple rule of thumb that is widely used for both the on-

line and off-line programming: ‘‘the weld should be

oriented in the horizontal plane so that the welding torch is

vertical, if possible’’ (Bolmsj .o, 1987). It is obvious that

the simulation-based approach requires numerical mea-

sures of the ‘‘horizontality’’ and the ‘‘verticality’’, which

are proposed below.

Let us assume that the Z0-axis of the world

coordinate system is strictly vertical (i.e. directed

opposite to the gravity vector), and, consequently, the

X0Y0-plane is horizontal. Then, the weld orientation

relative to the vector of gravity can be completely

defined by two angles:

* The weld slope yA½�p=2; p=2	; i.e. the angle between
the vector of the welding direction 0nw and the X0Y0
plane.

* The weld roll xAð�p; p	; i.e. the angle between the
vector of the approaching direction 0sw and the

vertical plane that is parallel to the vector 0nw and

the axis Z0 (Fig. 5).

The numerical expressions for y; x can be obtained

directly from the definition of the RPY -angles (Fu et al.,

1987; Craig, 1989), taking into account that the weld

orientation ðy; xÞ ¼ ð0; 0Þ corresponds to the horizontal
direction of the axis Xw and the vertical direction of the

Yw (see Fig. 5):

0WR ¼ RzðcÞ � RyðyÞ � Rxðp=2� xÞ; ð5Þ

where 0WR is the 3� 3 orientation submatrix of the

4� 4 matrix of the weld location; Rx;Ry;Rz are the 3�

3 rotation matrices around the axes X ;Y ;Z; respec-
tively, and c is the yaw angle which is non-essential for

the considered problem. Multiplication of these matrices

leads to

0WR ¼

CcCy CcSyCx � ScSx CcSySx þ ScCx

ScCy ScSyCx þ CcSx ScSySx � CcCx

�Sy CyCx CySx

2

6

4

3

7

5
;

Fig. 4. Definition of the weld frames for the circular weld.

– – – – – – – – – – – – – – – – – – –
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where C and S denote, respectively, cosð:Þ and sinð:Þ of
the corresponding angle specified at the subscript.

Therefore, the weld joint orientation angles y; x can be
derived as follows:

y ¼ atan 2
�0nzw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0szwÞ
2 þ ð0azwÞ

2
q ; x ¼ a tan 2

0azw
0szw

; ð6Þ

where 0nw;
0sw;

0aw are the corresponding column

vectors of the orthogonal matrix 0WR: Taking into

account the interrelations between these vectors, the

angles y; x can be finally expressed as functions of

the weld joint direction 0nw and the approaching

direction 0sw

y ¼ atan 2
�0nzw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0nxwÞ
2 þ ð0n

y
wÞ
2

q ; ð7Þ

x ¼ atan 2
0nxw � 0syw � 0nyw � 0sxw

0szw
: ð8Þ

In the singular case, if nwE½0 071	 and consequently

yE7p=2; the matrix 0WR becomes

0WR ¼

0 cosðcþ xÞ sinðcþ xÞ

0 sinðcþ xÞ �cosðcþ xÞ

�1 0 0

2

6

4

3

7

5

for y ¼ p=2

or

0WR ¼

0 �cosðc� xÞ sinðc� xÞ

0 �sinðc� xÞ �cosðc� xÞ

1 0 0

2

6

4

3

7

5

for y ¼ �p=2:

Hence, the expression for x degenerates (the uncertainty

0/0) and x can take any value from the half-open

interval ð�p; p	: In this case, as follows from the

geometrical meaning, the weld joint is directed strictly

vertically and the approach vector completely lies in the

horizontal plane. So, any value of x is equivalent from

the physical point of view, if yE7p=2:
It should be noted that it is possible to introduce an

alternative definition of the weld roll, which is non-

singular for all values of the weld slope. It is x0A½0; p	

which is the angle between the approaching direction 0sw
and the vertical axis Z0 (see Fig. 5):

x0 ¼ atan 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0sxwÞ
2 þ ð0s

y
wÞ
2

q

0szw
: ð9Þ

As in the case of the angles ðy; xÞ; the description ðy; x0Þ
also defines the 3rd row of the weld joint orientation

matrix 0WR; however, the sign of the component a
z
w may

be chosen arbitrary:

WR ¼

* * *

* * *

�Sy Cx0 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� S2y � C2
x0

q

2

6

6

4

3

7

7

5

:

Hence, the interrelation between both the definitions of

the roll angle x and x0 is given by the equation

cosðyÞ cosðxÞ ¼ cosðx0Þ ð10Þ

and both ðy; xÞ and ðy; x0Þ may be used equally.

Fig. 5. Definition of the weld orientation angles ðy; xÞ:

5



3. Weld joint orienting problems

In the robotic welding station, the desired orientation

of the weld relative to the gravity is achieved by means

of the positioner, which adjusts the slope and the roll

angles ðy; xÞ by alternating its axis coordinates. Using
the kinematic model (4) and the definitions from the

previous section, the problems of the welding joint

orientation can be stated as follows:

Direct Problem. For given values of the positioner axis

coordinates q; as well as known homogenous transforma-

tion matrices 0TPB;
PFTWB and the weld frame location

relative to the object base W; find the weld frame

orientation in the world coordinate system 0W and the

slope/roll orientation angles ðy; xÞ:

Inverse Problem 1. For given values of the slope/roll

orientation angles ðy; xÞ; as well as known homogenous

transformation matrices 0TPB;
PFTWB and the weld frame

location relative to the object base W ; find the values of

the positioner axis coordinates q:

There is also another statement of the inverse problem

for the welding positioner (Nikoleris, 1990) that deals

with a reduced version of expression (4), which describes

only a single unit vector transformation:

0sw ¼ ½0TPB � PðqÞ � PFTWB	3�3 � sw; ð11Þ

where the unit vectors 0sw and sw define the weld

approach direction relative to the world coordinate

system and the object base, respectively. Using the

accepted notations, this formulation can be stated as

follows.

Inverse Problem 2. For given values of the world

coordinates of the weld approach vector 0sw; as well as

for known homogenous transformation matrices 0TPB;
PFTWB and the normal vector orientation relative to the

object base sw; find the values of the positioner axis

coordinates q:

It should be stressed that both the formulations

require two independent input parameters (two angels

or a unit vector); however, they differ by the elements of

the matrix 0WR they deal with. Thus, the first

formulation deals with the third row of the 3� 3 matrix
0WR; which includes only the Z-coordinates ½nz sz az	

that are not sensitive to the rotation around the gravity.

In contrast, the second formulation operates with the

second column ½sx sy sz	
T of this matrix, which incor-

porates the X ;Y -coordinates that are sensitive to the
mentioned rotation. As a result, the second approach

does not allow achieving the desired weld slope and roll

simultaneously. Therefore, the second formulation of

the inverse problem is less reasonable from the

technological point of view.

The only case when the second formulation is

sensible, is the so-called ‘‘optimal weld orientation’’, for

which the approaching vector is strictly vertical (i.e.
0sw ¼ ½0 0 1	Þ and, consecutively, the weld direction

vector 0nw ¼ ½* * 0	 lies in the horizontal plane. But

the first formulation also successfully tackle this case, as

it corresponds to ðy; xÞ ¼ ð0; 0Þ: However, the second
formulation can be successfully applied in the case,

which is singular for the first formulation ðy ¼7p=2Þ;
when defining the roll angle does not make sense. It is

achieved by reformulating the problem, i.e. replacing the

approaching vector by the weld direction vector, which

must be directed vertically (i.e. 0nw ¼ ½0 0 71	). For

this reason, both formulations of the inverse problem

will be considered below.

While applying the inverse formulation to real-life

problems, it should also be taken into account that

engineering meaning of the slope and the roll is not

sensitive to the sign of these angles. For instance, the

negative slope can be easily replaced by the positive one

if the weld starting and ending points are interchanged.

Also, the positive and negative rolls are equivalent with

respect to the gravity force. Therefore, four cases

ð7y;7xÞ must be investigated while orienting the weld

joint for a particular manipulating task. A similar

conclusion is valid for the alternative definition of the

weld orientation angles ðy; x0Þ; where x0 > 0; but two
cases ð7y; x0Þ yield four different matrices 0WR:

4. Direct kinematic problem

As follows from Eq. (4), successive multiplications of

the corresponding homogenous matrices gives, for the

given axis coordinates q; the full world location

(position and orientation) of the weld frame. Then, the

required angles ðy; xÞ or ðy; x0Þ are extracted from the

matrix 0WR in accordance with expressions (6)–(9).

Therefore, the only problem is to find the matrix PðqÞ

that describes the transformation from the positioner

base to its mounting flange (or the face plate).

Because the weld joint orientation relative to the

gravity is completely defined by two independent

parameters, a universal welding positioner has two axes.

Though, the simplest robotic cells also utilise 1-axis

positioners (turntables and turning rolls) that are not

capable of providing the full weld orientation but also

increase a potential of the welding station. Robotic

manufactures also produce 5-axis positioners that are, in

fact, a combination of two 2-axis machines that are

placed into the robot workspace in turn (using the 5th

axis), to make possible changing the workpiece while the

robot is welding on the other side. Therefore, the 2-axis

positioner can be considered as the basic orienting

component of the welding station, so the remainder of

6



this Section is devoted to the positioners with two

degrees of freedom.

While building the positioner model, it should be

taken into account that the intersection point of the

positioner axes may be located above the faceplate, to be

closer to the workpiece centre of gravity (Fig. 6a). Such

a design allows avoiding large payload moments that are

specific for heavy and bulky objects. But in some cases,

this point may lie above the plate (Fig. 6b). For this

reason, it is prudent to release the usual constraint that

assumes locating of the positioner base frame at the

intersection of its two axes.

The kinematic model of the general 2-axis positioner

is presented in Fig. 7. It includes four linear parameters

ða1; d1; a2; d2Þ and one angular parameter a that defines
the direction of the Axis1:Without loss of generality, the
Axis2 is assumed to be normal to the faceplate and

directed vertically when q1 ¼ 0: The geometrical mean-
ing of the parameters is clear from the figure.

Similar to other manipulators, the kinematics of the

positioner can be described by the Denavit–Hartenberg

model (Fu et al., 1987). However, for the considered 2-

axis system, it is more convenient to use a product of

elementary transformations that can be derived directly

from the Fig. 7:

Pðq1; q2Þ ¼
PBT1 � Rxðq1Þ �

1T2 � Rzðq2Þ; ð12Þ

where

PBT1 ¼ Txða1Þ � Tzðd1Þ � Ryð�aÞ;

1T2 ¼ RyðaÞ � Txða2Þ � Tzðd2Þ

and Txð:Þ;Tzð:Þ;Rxð:Þ;Rzð:Þ are the 4� 4 homogenous
transformation matrices that describe, respectively, the

translation and rotation along (or around) the axes

specified by the subscript.

Substituting the regular expressions for the transla-

tional and rotational matrices into Eq. (12) yields the

final result for the non-trivial components of the

positioner transformation matrix Pðq1; q2Þ:

nx ¼ ðC1 þ C2
aV1ÞC2 � SaS1S2; ny ¼ SaS1C2 þ C1S2;

nz ¼ CaSaV1C2 þ CaS1S2; ð13Þ

sx ¼ �ðC1 þ C2
aV1ÞS2 � SaS1C2;

sy ¼ �SaS1S2 þ C1C2;

sz ¼ �CaSaV1S2 þ CaS1C2; ð14Þ

ax ¼ CaSaV1; ay ¼ �CaS1; az ¼ C1 þ S2aV1; ð15Þ

px ¼ ðC1 þ C2
aV1Þ � a2 þ CaSaV1 � d2 þ a1;

Py ¼ SaS1 � a2 � CaS1 � d2;

pz ¼ CaSaV1 � a2 þ ðC1 þ S2aV1Þ � d2 þ d1; ð16Þ

where, similar to Section 2, the vectors n; s; a; p define the
upper 3� 4 block of the matrix P; and C;S;V denote,

respectively, cosð:Þ; sinð:Þ; versð:Þ of the angle specified at
the subscript. It should be noted that compared with the

model proposed by Bolmsj .o (1987), the developed one

includes less geometrical parameters while it also

describes the general case. Besides, the obtained expres-

sions are less awkward and more computationally

efficient than the known ones.

Therefore, expressions (13)–(16) completely define

the direct kinematics of the 2-axis positioner. But

the obtained model can be also reduced to describe the

kinematics of the general 1-axis mechanism (see

Appendix A). It is achieved by fixing Axis1 or Axis2
and choosing an appropriate value of a: For instance,
for the turntables, the only axis variable is q2 while q1 ¼

0: But for the turning rolls the axis variable is q1; while
q2 ¼ 0 and a ¼ 0:

5. Inverse kinematic problems

In accordance with Section 3, solving the inverse

kinematic problem for the positioner means finding the

axis angles ðq1; q2Þ that ensure the desired world

orientation of the weld joint, which is defined by the

pair of the orientation angles (Problem 1) or by the unit

vector (Problem 2). Let us consider these cases

separately.

5.1. Solution of the Inverse Problem 1

Since the weld joint orientation angles ðy; xÞ or ðy; x0Þ
completely define the third row of the orthogonal 3� 3

matrix 0WR; the basic kinematic equation (4) can be

Fig. 6. The 2-axis positioners: the balance (a) and roll-tilt (b).

Fig. 7. The coordinate frames of the 2-axis positioner.
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rewritten as

g
T � 0WR ¼ g

T � ½0TPB � PðqÞ � PFTWB	3�3 �WR; ð17Þ

where the subscript ‘‘3� 3’’ denotes the rotational part

of the corresponding homogenous transformation ma-

trix and g
T ¼ ½0 0 1	: Then, after the appropriate

matrix multiplications, it can be converted to the form

vT ¼ g
T � PðqÞ3�3; ð18Þ

where

vT ¼ ½�Sy CyCx CySx	 � ½
PFTWB �W 	T3�3

and, without loss of generality, the transformation 0TPB

is assumed not to include the rotational components

other than Rz: Further substitution in accordance with
(13) yields three mutually dependent scalar equations of

two unknowns ðq1; q2Þ:

CaSaV1C2 þ CaS1S2 ¼ vx;

CaS1C2 � CaSaV1S2 ¼ vy;

C1 þ S2aV1 ¼ vz; ð19Þ

where vx; vy; vz are the corresponding components of the
vector v: The third of these equations can be easily

solved for q1:

q1 ¼7acos
vz � S2a
C2

a

: ð20Þ

The value of q2 can be found by solving the first and the

second equations for C2 and S2:

C2 ¼ ðS1vy þ SaV1vxÞ=CaðS
2
aV

2
1 þ S21Þ;

S2 ¼ ðS1vx � SaV1vyÞ=CaðS
2
aV

2
1 þ S21Þ:

This leads to the following expression for q2:

q2 ¼ atan 2
S1vx � SaV1vy

S1vy þ SaV1vx
: ð21Þ

Therefore, Eqs. (18) and (19) represent the closed-form

solution of the first inverse problem, which in the

general case for given weld orientation angled ðy; xÞ or
ðy; x0Þ yields two pairs of the positioner axis angles

ðq1; q2Þ:

5.2. Solution of the Inverse Problem 2

For the second formulation, the input data defines the

second column of the matrix 0WR; so the basic

kinematic equation (4) can be rewritten as follows:

0WR � g ¼ ½0TPB � PðqÞ � PFTWB	3�3 �WR � g; ð22Þ

where g ¼ ½0 1 0	T: Then, after the appropriate matrix
multiplications, this equation can be converted to the

form

u ¼ PðqÞ3�3 � w; ð23Þ

where

w ¼ ½PFTWB �W 	3�3 � g; u ¼ ½0TPB	
T
3�3 �

0WR � g

and the subscript ‘‘3� 3’’ means the upper left 3� 3

submatrix of the corresponding homogenous matrix (i.e.

its orthogonal rotational part).

Further expansion of PðqÞ in accordance with (12)

and relevant regrouping yields

½Ryð�aÞ � Rxð�q1ÞRyðaÞ	3�3 � u ¼ ½Rzðq2Þ	3�3 � w; ð24Þ

or, in a detailed form,

ð1� S2aV1Þ SaS1 SaCaV1

�SaS1 C1 CaS1

SaCaV1 �CaS1 ð1� C2
aV1Þ

2

6

4

3

7

5
�

ux

uy

uz

2

6

4

3

7

5

¼

C2 �S2 0

S2 C2 0

0 0 1

2

6

4

3

7

5
�

wx

wy

wz

2

6

4

3

7

5
:

It leads to the following scalar equations:

ð1� S2aV1Þux þ SaS1uy þ SaCaV1uz ¼ C2wx � S2wy;

� SaS1ux þ C1uy þ CaS1uz ¼ S2wx þ C2wy;

SaCaV1ux � CaS1uy þ ð1� C2
aV1Þuz ¼ wz ð25Þ

from which the third one can be transformed to the form

Cauxz � C1 þ Cauy � S1 ¼ ðuz � wzÞ þ Cauxz

and solved for q1:

q1 ¼ atan 2
uy

uxz
7acos

ðuz � wzÞ þ Cauxz

Ca �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2xz þ u2y

q ; ð26Þ

where uxz ¼ Saux � Cauz:
It should be noted that these two alternative solutions

for q1 correspond to different ‘‘configurations’’ of the

positioner, which are strictly defined below. Besides,

both the solutions must be adjusted to the feasible

interval ð�p;p	; since the sum of a tan 2ð:Þ and a cosð:Þ
can be out of the mentioned limits.

To find the value of q2; let us consider the first two
equations of system (25) and solve them for C2 and S2:

C2 ¼ ðwx � vx þ wy � vyÞ=ðw
2
x þ w2yÞ;

S2 ¼ ðwx � vy � wy � vxÞ=ðw
2
x þ w2yÞ; ð27Þ

where

vx ¼ ux þ SaðS1uy � V1uxzÞ; vy ¼ C1uy � S1uxz:

It leads to the following expression for q2:

q2 ¼ atan 2
wx � vy � wy � vx

wx � vx þ wy � vy
: ð28Þ

Therefore, Eqs. (26) and (28) represent the closed-form

solution for the second inverse problem, which in the

general case for given unit vectors ðu;wÞ yields two pairs
of the positioner axis angles ðq1; q2Þ:

5.3. Solution existence and singularities

As follows from Eqs. (20), (21) and (26), (28), the

inverse kinematic problems possess solutions for certain

– – – – – – – – – – – – – – – – – – –

– – – – – – – – – – – – – – – – – – –
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sets of input data only which can be treated as the

positioner ‘‘orientation workspace’’. So, for some inputs,

the computation may fail and a solution does not exist

(if, for instance, a cos argument is out of the interval

½�1; 1	). In other cases, the singularities arise if any value

of q1 or q2 satisfies the kinematic equation (if, for

example, both arguments of a tan 2 are equal to zero).

For the first inverse problem, a detailed investigation

of Eq. (20) shows that the value of q1 can be definitely

computed if and only if

�cosð2aÞpvzp1: ð29Þ

Taking into account the geometrical meaning of vz;
which is the scalar product of the unit vectors extracted

from the third rows of the orthogonal matrices 0WR and

½PFTWB �WR	3�3 (see Eqs. (17), (18)), and denoting

vz ¼ cosðwÞ; wA½0; p	 ð30Þ

this condition can be presented as follows:

Proposition 1a. For Inverse Problem 1, the values of q1
can be computed definitely from expression (20) if and

only if the angle w between Z-axes of the conjugate frames
0WT

R and ½PFTWB �WR	
T
3�3 describing, respectively, the

desired world orientation of the weld joint and its

orientation relative to the positioner faceplate is less than

ðp� 2aÞ or equal to it:

0pwpp� 2a: ð31Þ

For a typical industrial application case, when the Z-

axis of the workpiece frame is parallel to the positioner

Axis2; expression (29) can also be rewritten as

vz ¼ �Sy � n
z
w þ CyCx � s

z
w þ CySx � a

z
wX� C2a: ð32Þ

The corresponding value of q2 is uniquely defined by

expression (21) if either its numerator or denominator is

not equal to zero. A detailed investigation of the

opposite case yields vz ¼ 1 and consequently q1 ¼ 0

(the case of vz ¼ �1 is excluded because of inequality

(29)). So, the existence and uniqueness of solutions for

q2 are subject to the following proposition:

Proposition 1b. For Inverse Problem 1, the value of q2
(for given q1) can be computed uniquely from Eq. (21) if

and only if the Z-axes of the conjugate frames 0WT
R and

½PFTWB �WR	
T
3�3 are not coincide, i.e. w > 0: Otherwise, if

these axes coincide (i.e. w ¼ 0), then q1 ¼ 0 and any value

of q2 satisfies the kinematic equation.

Therefore, for the first inverse problem, the singular-

ity exists only with respect to the positioner Axis2; while
it is oriented strictly vertically and upward (i.e. when

q1 ¼ 0).

However, for the second inverse problem, the singu-

larity may also arise for Axis1: As follows from the

analysis of Eq. (26), the a tan 2 function is indefinite if

uxz ¼ 0 and uy ¼ 0: Moreover, the corresponding kine-
matic equations are converted to the identity, if uz ¼ wz:
So any value of q1 is a solution for such input data.

The corresponding condition can also be presented as

the parallelism of the vector u and Axis1; as well as the
equality for the z-components of u and w; i.e.

u ¼ ½7Ca 0 7Sa	
T; v ¼ ½* * 7Sa	

T: ð33Þ

To ensure definite computing of q1; it is additionally
required that the a cos argument in Eq. (26) belongs to

the interval ½�1; 1	: After appropriate rearranging, this
condition can be presented as

jSaðCaux þ SauzÞ � wzjpCa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðCaux þ SauzÞ
2

q

:

After denoting the angles between the vectors u; v and
the Axis1; Axis2; respectively, as m; Z

Caux þ Sauz ¼ cosðmÞ; wz ¼ cosðZÞ; ð34Þ

and assuming that ðm; ZÞA½0; p	 � ½0; p	; this inequality
can be rewritten as

sinða� mÞpcosðmÞpsinðaþ mÞ: ð35Þ

This yields the following domain for ðm; ZÞ:

mþ a� p=2pZpm� aþ p=2;

� m� aþ p=2pZp� mþ aþ 3p=2: ð36Þ

So, the results for q1 can be summarised as follows:

Proposition 2a. For Inverse Problem 2, the values of q1
can be computed definitely from expression (26) if and

only if the angles m; Z between the positioner Axis1; Axis2
and the vectors u;w; respectively, satisfy inequalities (36)

and; additionally, ma0 and p: Otherwise, if ðm; ZÞ ¼
ð0;p=27aÞ; any value of q1 satisfies the kinematic

equation.

As follows from Fig. 8, the highest ‘‘reachability’’ in

the positioner u-space is achieved for ZA½p=2� a; p=2þ
a	: And, in contrast, if Z ¼ 0 or p; the ‘‘workspace’’ is
reduced to a single cone with the parameter m ¼ p=2� a

or p=2þ a:

Fig. 8. The reachable region on the ðm; ZÞ plane.
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In accordance with Eq. (26), computing of q2 can fail

only in the case of wx ¼ wy ¼ 0; i.e. for Z ¼ 0 or p:
Geometrically, it corresponds to the vector w; which is
normal to the positioner faceplate and, consequently,

cannot be alternated by rotation around the Axis2: So,
the existence and uniqueness of solutions for q2 are

subject to the following proposition:

Proposition 2b. For Inverse Problem 2, the value of q2
(for given q1) can be computed uniquely from expression

(27), if and only if the angle Z between the positioner Axis2
and the vectors w satisfies the conditions Za0 and p:
Otherwise, if Z ¼ 0 or p; any value of q2 satisfies the

kinematic equation (provided that the solution for q1
exists).

Therefore, for the second inverse problem, the

singularity may exist for both axes, when u is parallel

to Axis1 or w is parallel to Axis2:

5.4. Positioner configurations

Similar to other manipulating systems, the positioner

inverse kinematics is non-unique because of the ex-

istence of two solution branches (see ‘‘7’’ sign in

Eqs. (20) and (26)). However, both the off-line pro-

gramming and the real-time control require distinguish-

ing between them to ensure continuity of the positioner

motions. For this reason, the direct kinematics must

yield an additional output, the configuration index M ¼

71 describing the positioner posture, which is also used

as an additional input for the inverse transformation, to

produce a unique result.

For the first inverse problem, the configuration index

is defined trivially (see Eq. (20)), as the sign of the

coordinate q1:

M1 ¼ sgnðq1Þ: ð37Þ

But for the second problem, such an index must identify

the sign of the second term only (see Eq. (26)). So it

should be defined as

M2 ¼ sgn q1 � atan 2
uy

uxz

� �

: ð38Þ

From the geometrical point of view, the index M2

indicates the relative location of two planes passing

the Axis1: The first of them is obtained by rotating of the
X0Z0-plane around Axis1 by the angle q1: And the

second plane is passed via Axis1 and the vector u: It
should be also noted that the index M2 substantially

differs from the traditional one for robotics orientation

index M5 ¼ sgnðq5Þ (Canudas de Wit, Siciliano, &

Bastin, 1996; Sciavicco & Siciliano, 1996), which

describes the wrist configuration of the typical 6 d.o.f.

manipulator.

5.5. Optimal orienting of the weld joint

As adopted by practising engineers, the optimal weld

orientation is achieved when the approaching vector is

strictly vertical and, consecutively, the weld direction

vector lies in the horizontal plane, i.e. ðy; xÞ ¼ ð0; 0Þ and
0sw ¼ ½0 0 1	: Let us investigate this particular case in
details.

For both the inverse problems, substitution of the

values ðy; xÞ and the vector 0sw into Eqs. (20), (21) and
(26), (28) yields the similar result:

q1 ¼7acos
szw � S2a
C2

a

;

q2 ¼ atan 2
S1 � s

x
w � SaV1 � s

y
w

S1 � s
y
w þ SaV1 � sxw

: ð39Þ

So the condition of the solution existence (36) is reduced

to

szwX� C2a or Zpp� 2a: ð40Þ

This means that the ‘‘working space’’ of the positioner

does not include the cone with the downward directed

central axis and the aperture angle 4a: And, thereby, the
corresponding welds cannot be optimally oriented. But

it can be proved that applying the first inverse problem

with the input parameter

x0 ¼ maxf0; 2aþ Z� pg; ð41Þ

the orientation of such welds can be essentially

improved and approached to the optimal one. The

corresponding ‘‘suboptimal’’ solution is defined by the

axis angles

q1 ¼ p; q2 ¼ �atan 2ðsyw=s
x
wÞ; ð42Þ

i.e. the exact equalities are achieved for the first and

second equations of system (19), while for the third one

the residual is minimised only. Another approach, which

is based on the simultaneous optimisation of all

residuals is presented in Appendix B.

5.6. Comparison with other techniques

The main contribution of this paper is the novel

formulation and the closed-form solution of the inverse

kinematic problem for the robotic positioner, which

takes into account the complete orientation of the weld

joint with respect to the gravity. Besides, a new,

computationally more efficient, solution for the known

inverse problem has been obtained which deals with

only the partial definition of the weld orientation.

In comparison with other results, the proposed

approach does not require a heuristic-based iterative

search (Bolmsj .o, 1987) or a solution of two quadratic

equations and their root checking by a substitution

(Nikoleris, 1990). In addition, the proposed definition of
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the weld orientation allows investigating the permissible

tolerances with respect to the optimal weld orientation.

5.7. Generalisation of the results

In the general case, the robotic welding station may

also include a 3-axis or a 1-axis positioner which

manipulates the workpiece. For the 3-axis positioner,

the proposed model can be expanded by adding the

rotational term Rzðq0Þ to the left-hand side of (12),

which corresponds to RzðcÞ in (5). So the kinematic

equations (17) and (22) can be analytically solved for q0
after computing q1 and q2 provided that the additional

constraint is imposed to resolve the redundancy. It

should be also noted that the kinematics of the 3-axis

positioner is similar (up to a certain degree) to the

kinematics of a robotic wrist, which is studied in detail

in Wampler (1989) and Pashkevich (1997). However, the

wrist axes are usually perpendicular to each other, while

the welding positioners are not subject to this constraint.

The direct kinematic model of the general 1-axis

positioner can be easily derived from (12) and (16) by

eliminating Axis2 and setting q2 ¼ 0: However, because
of limited capabilities of such machine, the inverse

kinematic problems should be modified by replacing the

exact equalities (18) and (23) with the residual mini-

misation condition. In this case, both the inverse

problems are also resolved analytically. For instance,

for the first inverse problem, the least-squares solution

of Eq. (18)

½vT � g
T � Pðq1Þ3�3	 � ½v

T � g
T � Pðq1Þ3�3	

T
-min

q1
; ð43Þ

after the unit vector and the orthogonal matrices

multiplication yield

g
TPðq1Þ3�3v-max

q1
ð44Þ

that leads to the homogenous trigonometric equation

vy � C1 þ ðSavx � CavzÞ � S1 ¼ 0; ð45Þ

which is solved using the methodology applied above.

(However, one of the two possible solutions must be

rejected because it gives the maximum of (43) instead of

the minimum; see Appendix A for details.)

The presented 2-axis positioner model can be also

generalised by releasing the typical industrial constraint

with respect to the Axis2 that is assumed to be strictly

vertical while q1 ¼ 0: This generalisation can be done by
replacing the matrix product Ryð�aÞRxð�q1ÞRyðaÞ in

Eq. (12) by Ryð�a1ÞRxð�q1ÞRyða2Þ that courses only a

slight modification of the analytical expressions describ-

ing the kinematic models.

6. Industrial implementation

The algorithms developed here have been successfully

implemented on the manufacturing floor, as a novel

component of the ROBOMAX CAD package (Buran

Co, Russia–USA). This package is a powerful integrated

system for the computer-aided design and the off-line

programming of the welding robotic cells (Kurkin,

Kukareko, & Pashkerich, 1998). The core of ROBO-

MAX has being developed in Robotic Laboratory of

BSUIR (Minsk, Belarus) in cooperation with several

other technical universities, and now the package has

been widely used in the Russian automotive industry. In

particular, it has been successfully applied by leading

Russian automotive companies, e.g. for the manufactur-

ing line design for the LADA cars and the GAZEL

lorries and mini-vans (Lobzin et al., 1999). In contrast to

other robotic CAD packages, which employ a lot of

interactive tools, ROBOMAX incorporates a number of

numerical routines which enable the user to design the

welding robotic cells (lines) in the semi-automatic mode.

In particular, it includes the software tools for the

automatic robot placement, distribution of the weld

joints among the robots and optimisation of the robotic

cell layout. It should be stressed that all the above-

mentioned tools require fast and reliable coordinate

transformations for the welding positioner which have

been considered in this paper.

Thus, using the proposed direct and inverse kinematic

routines, the designer can optimise the spatial location

of both a single weld and a collection of welds. In the

case of a single weld, the user can directly input the

desired angles ðy; xÞ to obtain the coordinates ðq1; q2Þ or,
alternatively, he can choose these coordinates in the

interactive mode, picking a point from the plots (Figs. 9

and 10) describing the functions yðq1; q2Þ; xðq1; q2Þ or
x0ðq1; q2Þ: For the collection of the weld joints, the

positioner kinematic models are employed in the Pareto-

optimisation algorithm that yields a compromise solu-

tion, optimising the orientation of the ‘‘worst welds’’

from the given set. The developed routines are also

Fig. 9. 3D plot of the function x0ðq1; q2Þ:
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utilised for the weld clustering, i.e. for dividing them in

groups that are processed separately, for different

positioner postures.

As reported by the manufacturing experts from the

GAZ Company (Lobzin et al., 1999), ROBOMAX has

been successfully applied to the design of four welding

lines (consisting of 35 robots) for the lorry production of

the Gazel family. The primary problems during the

design were the optimal robot placement, the manufac-

turing task clustering (i.e. distribution of 432 welds

among robots) and the off-line programming of the

corresponding robot-positioner systems. These pro-

blems were solved using the relevant ROBOMAX tools,

which utilise the kinematic routines that are discussed in

the paper. During the design, there were compared

several solutions created using different software

packages. The best of them was the ROBOMAX

solution, which required only 35 robots to fulfil the

manufacturing task (while the alternative designs

required at least 2 robots more). Besides, all of the 432

welds were accessible in the optimal (or sub-optimal)

orientation, while some of the alternative designs

required eliminating several welds from the robotic

processing (and, consequently, they were left for manual

welding). Hence, the developed technique has yielded

the solution, which ensure better quality because of the

proper workpiece orientation during the welding and

elimination of the manual operations.

The recent application of ROBOMAX is the design of

a robotic welding station for a new LADA car

(AutoVAZ Co, Russia). The station includes four

KUKA robots and a positioner with 7 d.o.f. (Fig. 11),

which is actually a combination of three 2-axis

positioners. The workpiece consists of two longerons,

two floor connectors, an engine mounting flange, and a

conductor plate with fixture jigs and clamps. The

manufacturing task was divided among the robots

taking into account the total length of the welds

ð1120 mmÞ; number of the overlap welding layers (both
straight and weaved), and the relative spatial location of

the weld joints. It resulted in the distribution of from 6

to 8 weld joints per robot. Then, using the ROBOMAX

‘‘autoplace’’ tool, a primary layout of the robotic cell

was created, which takes into account the kinematic

capabilities of the relevant robot-positioner systems

separately. Then, in the final stage, the design was

optimised and verified for the complete workcell with

four robots and the positioner. The program in SRCL-

language was also created (Siemens Robot Control

Language) for the robot controllers with a cycle time of

23:3 s: As follows from the results of the industrial tests,

the proposed kinematic algorithms ensure the required

properties of the weld joint orientation during the

processing, and allow to avoid the kinematic singula-

rities which are difficult to eliminate while using other

techniques.

7. Conclusions

The developed technique allows to coordinate move-

ments of two manipulators (the robot and the posi-

tioner) taking into account the particularities of the

welding technology. Combining their kinematic descrip-

tions with technological knowledge, it becomes possible

to implement the multi-level control and to plan the

optimal weld path for both the linear and the circular

joints (or piecewise linear/circular ones). By using this

technique together with the workpiece CAD-data, it is

also possible to achieve an essential time reduction of

the design and programming for the robotic welding

station.

The particular contribution of this paper deals with

the inverse kinematics of the 2-axis positioner, which is a

key issue in the coordinated kinematic control of the

welding robotic system. It has been proposed the novel

formulation and the closed-form solution of the inverse

problem that deals with the explicit definition of the

weld joint orientation relative to the gravity. Similar

results have been also obtained for the known problem

Fig. 10. The contour plot of the function x0ðq1; q2Þ:

Fig. 11. Robotic station for the welding of the longerons.
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statement (Bolmjo and Nikoleris) that is based on the

unit vector transformation. For both the cases, a

detailed investigation of the singularities and the

uniqueness-existence topics have been carried out.

The obtained results have been implemented in the

commercial software that is already used in the Russian

automotive industry. These results will also encourage

further research in the task-level control of the welding

robotic systems, such as optimising of the weld sequence

and the optimal weld joint clustering in accordance with

the dynamic capabilities of the robot and the positioner.
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Appendix A. Inverse problems for the 1-axis positioner

As mentioned in Section 5.7, the developed technique

can be also applied to the case of the 1-axis positioner,

which is used in some industrial applications. However,

it should be taken into account that because of the lack

of the degrees of freedom, the 1-axis positioner is not

able to provide a complete required weld orientation (in

the general case). So, for such machines, the inverse

kinematic problems can be stated in a modified form, as

a minimisation of the corresponding residuals of the

kinematic equations.

A.1. Solution of the first inverse problem

For the first problem, Eq. (18) must be replaced by

the expression

½vT � g
T � Pðq1Þ3�3	 � ½v

T � g
T � Pðq1Þ3�3	

T
-min

q1
;

which after the multiplication and rearranging (and

taking into account that vTv ¼ 1; gTg ¼ 1 and PPT ¼ I)

is reduced to

g
TPðq1Þ3�3v-max

q1
:

The corresponding scalar form can be obtained directly

from Eqs. (18) and (19):

CaSaV1 � vx þ CaS1 � vy þ ðC1 þ S2aV1Þ � vz-max
q1

:

Differentiating this expression with respect to q1 yields

the following equation:

vy � C1 þ ðSavx � CavzÞ � S1 ¼ 0

which in the non-singular case has two solutions but

only one of them gives the desired minimum of the

residual (provided that aAð0; p=2Þ):

q1 ¼ a tan 2vy=ð�Sa � vx þ Ca � vzÞ;

where all notations are taken from Section 5.1.

A.2. Solution of the second inverse problem

For the second problem, Eq. (23) must be replaced by

the expression

ðu� Pðq1Þ3�3 � wÞ
T � ðu� Pðq1Þ3�3 � wÞ-min

q1

which after corresponding transformation is reduced to

uT � Pðq1Þ3�3 � w-max
q1

:

For the 1-axis positioner, the rotational part of the

homogenous matrix Pðq1Þ is the following:

Pðq1Þ ¼

C1 þ C2
aV1 �SaS1 CaSaV1

SaS1 C1 �CaS1

CaSaV1 CaS1 C1 þ S2aV1

2

6

4

3

7

5
:

So, differentiating the objective function with respect to

q1 gives the following equation:

½ux uy uz	 �

�S2aS1 �SaC1 CaSaS1

SaC1 �S1 �CaC1

CaSaS1 CaC1 �C2
aS1

2

6

4

3

7

5
�

wx

wy

wz

2

6

4

3

7

5
¼ 0:

This is transformed to the scalar form

½ðuxwy � uywxÞSa þ ðuywz � uzwyÞCa	 � C1

þ ½ðS2auxwx þ C2
auzwzÞ � ðuxwz þ uzwxÞCaSa	 � S1 ¼ 0:

The obtained equation also has (in the non-singular

case) two solutions, but only one of them gives the

desired minimum of the residual:

q1 ¼ �atan 2
ðuxwy � uywxÞSa þ ðuywz � uzwyÞCa

ðS2auxwx þ C2
auzwzÞ � ðuxwz þ uzwxÞCaSa

:

To prove this, it is necessary to present the objective

function as a linear function of C1 and S1 and substitute

both of the solutions to it.

A.3. Optimal orienting of the weld joint

To find the solution for the special case, when the

weld joint direction is horizontal and the welding torch

is vertical, let us apply the second inverse problem

solution with the input vector u ¼ ½0 0 1	T: The direct
substitution of these values gives (provided that

aAð0; p=2Þ):

q2 ¼ atan 2
wy

�ðSawx � CawzÞ
;

which looks similar to the general solution of the first

inverse problem.
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Appendix B. Optimisation-based solution of the inverse

problem for the 2-Axis positioner

As it is proved in Section 5.3, for the 2-axis positioner,

for certain the set of input data, the exact solution of the

inverse problem does not exist. So, in this case the

inverse problems may be also reformulated in the similar

way (see Appendix A), as the minimisation of the

corresponding residuals.

B.1. Solution of the first inverse problem

Similar to the 1-axis positioner case, the minimisation

of the residual square sum is replaced by

J ¼ g
TPðq1; q2Þ3�3v-max

q1;q2

whose corresponding scalar form is

J¼ ðCaSaV1C2þCaS1S2Þ � vxþ ðCaS1C2�CaSaV1S2Þ � vy

þ ðC1 þ S2aV1Þ � vz-max
q1;q2

:

Differentiating this expression with respect to q1 and q2
yields the following system of equations:

ðSaS1C2 þ C1S2Þ � vx þ ðC1C2 � SaS1S2Þ � vy

� ðCaS1Þ � vz ¼ 0;

ð�SaV1S2 þ S1C2Þ � vx � ðS1S2 þ SaV1C2Þ � vy ¼ 0;

which may be also presented as

ðSaS1vx þ C1vyÞ � C2 þ ðC1vx � SaS1vyÞ � S2 ¼ CaS1vz;

ðS1vx � SaV1vyÞ � C2 � ðSaV1vx þ S1vyÞ � S2 ¼ 0:

From the second equation, it can be obtained that

S2 ¼7
S1vx � SaV1vy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21 þ S2aV
2
1

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2x þ v2y

q
;

C2 ¼7
SaV1vx þ S1vy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21 þ S2aV
2
1

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2x þ v2y

q
:

Substituting these expressions into the first equation

gives

S1ðS
2
aV1 þ C1Þðv

2
x þ v2yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21 þ S2aV
2
1

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2x þ v2y

q
¼7CaS1vz:

Then, taking into account that ½vx vy vz	
T is the unit

vector and factoring out, the equation for q1 can be

transformed to

S1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21 þ S2aV
2
1

q � ½ðS2aV1 þ C1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2z

q

8Cavz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21 þ S2aV
2
1

q

	

¼ 0:

Provided that S1a0; the last equation can be rewritten
as

ðS2aV1 þ C1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2z

q

¼7Cavz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21 þ S2aV
2
1

q

:

Then, after computing squares of both the sides and

rearranging, it is transformed to the product

½vz � ðS2aV1 þ C1Þ	 � ½vz � ðS2aV1 þ C1Þ	 ¼ 0

which gives two possible cases for root finding. The first

of them, when vz ¼ S2aV1 þ C1; corresponds to a

straightforward solution of the kinematic equation

and, obviously, yields a minimum of the residuals.

While the second case, when vz ¼ �ðS2aV1 þ C1Þ; corre-
sponds to the residual maximum.

In the singular case, when S1 ¼ 0; i.e. q1Af0;pg; the
objective function derivatives are equal to zero if

ðS2vx þ C2vyÞ � C1 ¼ 0; ðS2vx þ C2vyÞ � V1 ¼ 0:

It gives two sub-cases to investigate, which are q1 ¼ 0

and p: If q1 ¼ 0 (i.e. C1 ¼ 1 and V1 ¼ 0), the value of the

objective function J is equal to vz: Otherwise, if q1 ¼ p

(i.e. C1 ¼ �1 and V1 ¼ 2), the objective is equal to

ðS2a � C2avzÞ: Therefore, if the exact inverse kinematic
solution does not exist (i.e. vzp� C2a), the optimisa-

tion-based formulation yields

q1 ¼ p; q2 ¼ �atan 2ðvy=vzÞ:

The geometrical meaning of this result is the following:

the welds that are directed ‘‘partially downward’’ must

be ‘‘overturned’’ using the capabilities of Axis1 and

‘‘approached’’ to the vertical line (i.e. the gravity) using

the capabilities of Axis2:

B.2. Solution of the second inverse problem

Similar to the 1-axis positioner case, the minimisation

of the residual square sum is replaced by the maximisa-

tion of

J ¼ uT � Pðq1; q2Þ3�3 � w-max
q1;q2

;

and its scalar form can be presented as

J ¼Iux0 þ SaðuxzC1 þ uyS1Þm � IC2wx � S2wym

þ IuyC1 � uxzS1m � IS2wx þ C2wym

þ Iuz0 � CaðuxzC1 þ uyS1Þm � wz;

where

uxz ¼ Saux � Cauz; ux0 ¼ ux � Sauxz;

uz0 ¼ uz þ Cauxz:

Computing of the derivatives with respect to q1 and q2
yields the following system of equations:

ða1C1 þ a2S1ÞC2 þ ða3C1 � a4S1ÞS2 ¼ �b1C1 þ b2S1;

ðb3 þ a4C1 þ a3S1ÞC2 þ ðb4 þ a2C1 � a1S1ÞS2 ¼ 0;
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where

a1 ¼ uxzwy � Sauywx; a2 ¼ Sauxzwx þ uywy;

a3 ¼ uxzwx þ Sauywy; a4 ¼ Sauxzwy � uywx;

b1 ¼ Cauywz; b2 ¼ Cauxzwz; b3 ¼ ux0wy;

b4 ¼ ux0wx:

From the second equation it can be obtained that

S2 ¼8
b3 þ a4C1 þ a3S1

R
; C2 ¼7

b4 þ a2C1 � a1S1

R
;

where

R2 ¼ ½D� C2
aB

2 þ 2Saux0B	 � ðw
2
x þ w2yÞ;

D ¼ u2xz þ u2y þ u2x0; B ¼ uxzC1 þ uyS1:

Substituting these expressions into the first equation

gives

C2
aAB� SaAux0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B� C2
aB

2 þ 2Saux0B
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w2Z

q

¼ CaAwz;

where A ¼ uyC1 � uxzS1:
Then, after computing squares of both the sides and

rearranging, it is transformed to the product, which

gives three cases for root finding:

C2
aB� Saux0 ¼8Cawz and A ¼ 0:

The first of them, with the ‘‘minus’’ sign, corresponds to

a straightforward solution of the kinematic equation

and, obviously, yields a minimum of the residuals. While

the second case, with the ‘‘plus’’ sign, corresponds to the

residual maximum.

If A ¼ 0 and, correspondingly,

q1 ¼ atan 2ð7uy=7uxzÞ;

the objective function derivatives are equal to zero if

ðux0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2xz þ u2y

q

Þ � ðC2wy þ S2wxÞ ¼ 0:

Therefore, the second angle can be expressed as

q2 ¼ atan 2ð8wy=7wxÞ:

It gives four sub-cases to choose the right combination

of the signs ‘‘7’’, depending on the particular vectors u

and w: The geometrical meaning of this result is the
following: first, the vector w must be rotated around

Axis2 to be located in the plane X0Z0; then, it should be

rotated around Axis1 to achieve the same angle with

respect to this plane as the vector u:
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