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Abstract We propose two exact methods to solve an integrated emptopetable and
job-shop-scheduling problem. The problem is to find a mimmuost employee-timetable,
where employees have different competences and work dsiniftg, so that the production,
that corresponds to a job-shop with resource availabilitystraints, can be achieved. We
introduce two new exact procedures: 1) a decomposition ahdeneration approach and
2) a hybridization of a cut generation process with a branwhzound strategy. We also
propose initial cuts that strongly improve these methodsedisas a standard MIP approach.
The computational performances of those methods on benkhmsiances are compared
to that of other methods from the literature.

Keywords Employee Timetabling Problemlob-shop Job-shop with resource availability
constraints Probing- Cut generation Branch and Bound

Introduction

The purpose of a manufacturing factory is merely to produseesgoods to meet some
demand. Due to limited resources, an optimal production @aisually hard to compute.

The complexity lies mainly in two intertwined aspects: 1)raguction schedule, that is an

allocation of human and material resources to the differasks (or jobs) that have to be
processed, and 2) an employee timetable, that ensurefiéhatinan resources required by
the production schedule are actually met.
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Except for special cases, each aspect is per se a difficlitgump as shows the huge
literature on both scheduling problems (e.g., see Pined®{ and Leung[[Leu04]) and
timetabling problems (e.g., see Ernst et [al. [EJKS04] anth@® et al. [SPRO5] for states
of the art). As a consequence, the resulting integratedgmohbas long been considered as
too complex to be solved in practice and it is usually decaseddnto an assignment part
and a scheduling part, resulting in sub-optimal solutions.

Because of economical and financial pressure, higher peaioces must be sought for,
through elaborate and adequate optimization procedutes. i$ why some recent efforts
have been made to actually tackle the integrated problechitda paper is one of them
(indeed, this is the continuation of a previous work on a $&mproblem [GLPR10] to try
out the performances of cut generation processes for attegjproblems).

In this paper, we propose two exact methods to solve an miedjiemployee-timetable
and job-shob-scheduling problem. First, we provide a pesgéscription of the problem we
intend to solve, together with an integer linear formulat{&ectior1L), and we stress its
links with the existing works (Sectidd 2). Then, we introdumur two new procedures: a
decomposition and cut generation approach (Settion 3)a&ybridization of a cut genera-
tion process with a branch and bound strategy (Settion 4) cdmputational performances
of those methods on benchmark instances are compared toftbtiter methods from the
literature (Sectiof]5). Some conclusions are finally draw8ectiol b.

1 A model integrating an employee timetabling and a job-shop saduling problems
1.1 Problem description

Our purpose is to solve two decision levels which interaa gilobal optimization process:
a timetabling and a scheduling problem.

The job-shop problem consists in processing alsatn jobs on a seK of m different
machines. Each jobis made of a sequence of operatiddg, Oi2, . ..,Om which have to
be scheduled according to a given order. Each oper&@jphas a processing tima; € N.

It can be processed exactly by one of thevailable machines. This performing machine
is denoted bym;j. For the sake of clarity, we denote py the processing time of jobon
machinek. It is not allowed to preempt operations.

An operation can only be processed on mackiifian operator, able to use this resource,
is available. We thus introduce a &bf u operators where each operatonasters a subset
Ke of machines. We assume that the operators work on a threesgbiém. Consequently,
the time horizorH we use is divided into a s&of o consecutive and identical shifss,
s1, ..., Sg—1. Each shift corresponds to a time period and has a fixed darati(thus:

H = o - m). Each employee is assumed to be available on a subset of siiftsThe cost
of its assignment to machirleduring shifts is denoted bycexs Furthermore, regulation
constraints impose that an operator must not work more tharsbift among each triplet of
consecutive shifts.

The objective of the problem is to find a minimum cost assigmroéoperators to both
machines and shifts in such a way that a feasible operatmgesee exists for each machine
for a target makespa@nax < H (maximum of the completion times of operations).

A small illustrative instance is provided by Example 1 (shaw Figure[1). It consists
of 2 jobs, 2 machines, 3 employees and 3 shifts. The shiftiduares 7= 8 hours H = 24).
We want to schedule each operation before the end of the.daZhax = 24.



In Figure[d1.a), the job data (machines and durations) aréq®d. Employee data are
displayed in Figur€ll.b). The costs to assign an employedgarthchine are displayed for
all shifts for which the employee is assumed to be available.

Figure[d.c) illustrates an optimal solution (with a totastof 9) for Example 1. In this
solution, a production plan with a makespan of 20, lower Bag;, is obtained. Employee
e; (respectivelyey) is assigned to machiney, (resp.m) during s in order to perform
operationgD11 and Oy, (resp.O1). During the last shift,, operationO;; is processed on
my by es.
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c) An optimal solution

Fig. 1 Example 1

1.2 Aninteger linear programming model

In this section, we propose an integer linear programmingehff®] associated with the
problem at hand. For the sake of clarity, this mathematarahfilation is split into four parts:
the objective-function, the employee timetabling subbtem, the job-shop sub-problem,
and the coupling constraints.

Beforehand, we define the release date, or head (respgdiielatency duration, or
tail), denotedrix (respectivelydy), associated with the processing of jobn machinek.
These dates are simply induced by the conjunctive consdrassociated with the job se-
quences. They can be computedifn- m) time using the following recurrence relations:

{rik:O ?:L...,n I.<:n11 (1)
n=rk+pki=21....,n j=L...m-1 k=mj |I=myy
dik = Cmax ?le-wn k:mm @)
dk=di—pii=1...,n j=1...m=1 k=my |=my

Let us now define the two groups of binary decision variabiegslved in the model:

— Xeks= 1 if and only if operatoeis assigned to machireduring shifts, O otherwise
— Vike = 1 if and only if jobi is processed on machikeat timet, O otherwise



Objective-function

[Pl min@= egEk; 2 Ceks® Xeks (3)

Employee timetabling specific constraints

o-1
Xeks= 0 e=1...pu (4)
Xxekszo e:17"'7u (5)
KkERe 57
%(xeks+xek(s+1)+xek(s+2))glezl,...,u $s=0,...,0-3 (6)
kee
Xeks€ {0,1} e=1....u k=1...m s=0,....0—-1 (7)

Job-shop specific constraints

dik—Pik
% t Yk + Pk <Cmax i=1,...,n k=mp 8
=
dik—Pik
z Yike = 1 i=1,...,n k=1,....m 9)
t=Tik
lik Crmax
ZOYikt+ S Vk=0i=1..n k=1..m (10)
t= t=dix—pik+1
t t—pik ) .
yi|U_ ZyikuSOIZ:La"'?n levvm_l k:mj
U=Tik+Pik U=Tik
=M1y t=Trik+pPik,--,di —pi (11)
n  min(dk—pPit)
ZI Viku<1lk=1....m t=0,...,Cnax (12)
i=Yu=max(ri.t—pi+1)
Yike € {0,1} i=1,....n k=1....m t=0,...,Chax (13)

Coupling constraints

n min(dik—pix.t)

EEXekS—Zl z Viku>0 k=1....m t=0,....Chax S=[t/T] (14)
ec i=lu=maxrix,t—pi+1)

In this formulation, assignment variabbegsare fixed to 0 if employeedoes not master
resourcek (@) or is not available during shi&dﬂ)ﬂ. Constraints[(6) formalize the regula-
tion rules stating that an employee must not work more thanghift among each triplet
of consecutive shifts. Constrainfg (8) ensure that all jescompleted prior to the target
makesparCnax Each operation has to be processed within its time winddw{I@) and
cannot start prior to the completion of its job predece$gdly. (Furthermore, at most one op-
eration can be processed on a given machine at each ins2hntéstly, coupling constraints

1 In our implementation, those variables are not created. basaesare thus created if and only if the
employeee can work on machink (k € K¢) and is available on shii(se€ &)



(I34) ensure that an operation on a machine can be procesigetiagualified employee is
assigned to the machine at hand.

This model is at the core of this work: both procedures of 8adi and}4 aim at solving
it, using different decomposition strategies.

For the scheduling stage, one may remark that operators emagdvailable and/or not
assigned to some machines for some shifts over the timedmoiTherefore, we have to take
into account for each machine a collectigof time periods on which it cannot process any
operation. Obviously, these periods depend on an instamtia of decision variablegqs
sincex corresponds to a particular assignment of operators torbattines and shifts. This
leads to the so callgdb-shop scheduling problem with availability constraint

However the problem can be reduced to a classical job-shiogdsting problem by
creating additional fictional jobs, as stated in the follogvproposition:

Proposition 1 Let us consider a time slat = [a,,y] corresponding to an unavailabil-
ity period on machine k. To take into account this fixed indigtiperiod is equivalent to
consider the additional job=i composed of m operations with execution donf@itCmay|
and a null processing time except one of them (without logeérality the first one) with
execution domaifiay , By] and a duration equals tpi.x = (By — dy).

Proof Operations ofg with an execution domaifi0,Cnax] and a null processing time can
be processed at any moment. Schedulinthus only depends on the scheduling of the only
operation with a non-null processing duration, i.e., the wich has to be processed lon
during u. Let us denote byD}‘F this specific operation. Because all other operationis of
have a null duratiorO!‘F can be placed at any rank of the sequence of operatiaps of

O has a duratiorB, — ay) and a processing domafar,, B,]. Schedulingd. there-

fore implies that machink is fully dedicated toOikF during u. No real job can indeed be
processed ok duringu. Machinek is in fact not used during. This complete the proof.

In the following, we will denote byl the set ofng fictional jobs associated with the
fixed inactivity periods o¥, with ng = card{Y’}. Given an assignment vectarthe schedul-
ing component associated with our problem consists in éhgakhether a feasible oper-
ating sequence associated with both real and fictional jpbslf) exists for each machine
and for the target makesp&max.

2 Existing works

As it has already been mentioned, the integrated approatualy considered as too com-
plex to be solved in practice and, as a consequence, mucledftéhature deals either
with production scheduling problems (e.g., See [Pih04043tor states of the art) or with
timetabling problems (e.g., seée [EJKE04, SBR05]). In whiidf's, the main works dealing
with integrated problems and/or decomposition procedarepresented in Subsectlonl2.1.
Subsectio 2]2 is dedicated to solution procedures fosfap problems.

2.1 Integrated problems and decomposition procedures

Only few attempts exist that cope with an integrated sofutitethod. To the best of our
knowledge, the existing works either deal with differemguiction systems and/or solve it
using fundamentally different approaches.



In Daniels and Mazzold [DM94], flow-shop scheduling contexts considered, and
the authors assume that each operation must be processedrbgdhine parallel to a set
of operators devoted to this operation during its entirecessing time. Moreover, each
employee can only be assigned to a subset of operationsudeoé skills considerations)
and no shift partitioning of the time horizon is consider€dnsequently, operators can be
simply considered as additional parallel machines. Thep@se an enumerative approach
of brand and bound type for solving this problem.

In the context of project scheduling, Alfares and Bailey [ABPropose an integer linear
programming model and dynamic programming based hewgisTiceir problem is rather
simple since the only constraints are precedences amomgtmpes, and that the volume of
human resources on any given day is big enough for the opesadif that day.

More recently, Cheri [Che0D4] considers a parallel machihedaling problem that in-
volves job scheduling coupled to a resource allocation @orapt; the processing times are
inversely related to the amount of resources allocatedtandlijective is to minimize the to-
tal cost associated with both scheduling and resourceaitot A column generation based
branch and bound is proposed for solving this problem.

Several other authors use decomposition procedures. Sockdures originate from
Benders decomposition [Ben62]. In its basic version, it igemeric method for solving
problems that contain groups of variables of different regu(e.g., MIPs with integer and
continuous variables). The key idea is to assign some tiakes to a group of variables and
to find the best solution consistent with this particulatansiation. The major underlying
idea relies on dual inference with respect to Lagrangiaaxeglon and Dantzig-Wolfe de-
composition. Thus, the key element of this approach is theaten of Benders cuts that
exclude superfluous solutions. Classical Benders cutoamafated by solving the dual of
the subproblem obtained when the trial values are fixed, ploéing a “nice” substructure
in the global problem. Such an approach is commonly usedr@y@ms involving strategic
as well as operational decisions.

During the last two decades, extensions of this powerfut@ggh have been proposed:
in particular, hybridization with constraint programmitgghniques or logic based Benders
decompositions. One of the main pioneering works explgitirese ideas is due to Hooker
[HOO3[Hoo0H,Hoo07] jointly with some other contributdfer instance, il [Hoo05,Hoo07],
an hybrid method combining constraint programming techesg mixed integer linear pro-
gramming and logic based Benders decompositions is dasfgngolving a “planning and
scheduling problem” in which tasks are to be assigned tditiasiwith some consumption
considerations.

Similar solution procedures have been used by Artigues to solve a
model linking a job-shop scheduling stage to an employeettibling component. To the
best of our knowledge, their model is the previously studiexiel that is the closest to the
one developed in this paper. More precisely, afsef additional activities to be completed
by a set of operators is introduced. The subset of activities eaehnaipr is able to perform
is known. Each operation associated with the job-shop proli then assumed to require,
during its processing, a predefined number of these emp@dpeeach activitya € A. As
in our case, the time horizon is assumed to be partitionedentical shifts. Clearly, the
processing of a given operatidd; during shifts induces a fixed requiremedks of op-
erators devoted to the execution of each actigityn this particular time slot. Notice that
this model allows an operator to work simultaneously on sEwe@achines. Moreover, an
employee shift can cover more than one scheduling periog é@nsequence, the authors
allow the aggregation of activity demands for the operatiprocessed during a given shift.



A lexicographic optimization problem where the makespanimization is the primary ob-
jective whereas the employee cost minimization is the sgagnobjective is considered.
The problem tackled in our study corresponds to the secoge stithe problem described
in [AGRVO09].

As for the solution procedure, Artigues et al., unlike weaVily rely on constraint pro-
gramming. Indeed, two constraint programming based fortiouls, in association with lin-
ear programming relaxations, are proposed. The first (@icanstraint programming for-
mulation models both job-shop scheduling and employedéaibtieg components by means
of global constraints. A linear programming relaxationdzhen the employee timetabling
part is used for search tree pruning and reduced cost reduistiproposed. The second
constraint programming formulation relies on a decompasitivolving the domains of the
starting time variables, and leading to the definition of dadhintervals associated with
each activitya € A. A new linear programming relaxation, including the scHerucompo-
nent, is introduced by means of additional binary varialifggergetic reasoning feasibility
checking techniques can thus be exploited. Both constpaggramming formulations are
solved using a backtrack search strategy.

In [GLPR10], Guyon et al. investigate the integration of ampéoyee timetabling and
a production scheduling problems. At the first level, theynage a classical employee
timetabling problem whereas at the second level, they asuilying a feasible production
schedule for a set of interruptible tasks with qualificatiequirements and time-windows.
They propose two exact methods to solve the resulting pneblde former is based on a
Benders decomposition while the latter relies on a specd@oohposition and a cut gen-
eration process. Although this second approach has sonie diaslarities with the first
one presented in this paper, most of the key components tfuuatsre, master and slave
problems, ...) differ. In particular, the scheduling stagSLPRI0] (scheduling on parallel
machines with preemption) can be reduced to a polynomiallable flow problem, while
in the present work the scheduling stage (a job-shop) is &iRptete and notoriously hard
to solve in practice.

2.2 Solution procedures for job-shop problems

As it is mentioned above, the scheduling stage is a job-shoplgm, which is an NP-
complete problem. Hence an important issue is how to sokfidéiently. For this particular
sub-problem, we rely on the existing litterature.

More precisely, we want to solve a job-shop with availapiibnstraints. This is NP-
hard since job-shop without unavailability periods is athg strongly NP-hard [RK76.GJ79].
Due to their evident utility for applications, schedulingoplems with availability con-
straints are specifically adressed in the scheduling titeed BFHS88, DM94, Lee96, SS98,
[Scho, Agg044, GHO5, WSC05, LS08.MCZ10].

In particular, Maugtére et al.[MBB0O5] show that 5 categories of the job-shop duhe
ing problem with availability constraints have to be digtilshed. The type of problems
we consider in this paper corresponds to the class dert®2dvhich refers to the job-
shop problem witmon-crossableinavailability periods andon-resumabl®perations. In
[Agg02], Aggoune defines a method (based on the search ofshpath problem) to solve
up to optimality problems ofP2 with only two jobs. He also proposes an exact branch
and bound method (that exploits the classical disjunctiaplg representation of the job-
shop problem [RS&4]) for any problem &2 [Agg04h)]. Other effective attemp{s [MBBD5,




[Zri05] to solve the job-shop scheduling problem with auailisy constraints clearly show
the growing interest of researchers for it.

As said before, the scheduling part of our problem can be aeenclassical job-shop
problem with fictional jobs. Since the concern of our papes weat to investigate that spe-
cific sub-problem but mainly to deal with the integrated peoly we chose to use the ded-
icated job-shop solver of [Riv99] as a black box. In briefstholver is a classical branch
and bound process where the key point is the use of the imteesidections on disjunc-
tions [Car75], the immediate selections on ascendangesnt sets [CP89, CF90] and the
shaving proceduré [CP94, MS96] as elimination rules. A syiion these elimination rules
can be found in[[CPPR04]. Since the aim of the solver is eitbdind a solution within
a givenCnay Or to prove that there is no such solution in a given amountf@me, in
each node we try to build a feasible solution using seriabdaling based on the current
deadlines of operations. If this procedure fails, we refexgrecedence constraints on jobs
and we build a feasible solution on each machine (using [Zfar8hese solutions provide
us with earliest starting times and latest starting times#éxh operation. Clearly, most of
the time, these dates do not fulfill the precedence relationstraints of jobs (otherwise we
have a feasible solution and we are done). So in order toifgehé greatest violation, the
earliest starting times and latest starting times are aptetidough the precedence relations
of each job by a forward and backward process. This gives evanation of violation for
each job: we select the job with the lowest compliance lemdlthen we develop two nodes
by halving the time window of one of its operations.

From a functional point of view, the solver is given a CPU tilmeit, so it can fail to
prove that there is a solution or not (job-shop is not a paldity easy scheduling problem).
We can also select to use the shaving procedure or not: indfefed hard problems this
elimination procedure is essential, for easy problem iuges a CPU over-consumption
that may be sometimes avoided.

3 A decomposition and cut generation approach
3.1 Problem decomposition

Due to the intrinsic two-level decision structure[Bf, it seems quite natural to investigate
decomposition methods based on the splittingRinto two interacting sub-problems:

— A master problem corresponding to the employee timetaldlamgponent ofP): [ETF|
— Aslave or satellite problem corresponding to the scheddomponent ofP]: [JobShop

This approach clearly relies on the relaxation of the cauptionstraintd(14).

3.2 Master problem

The master probledETF is an employee timetabling problem that attempts to find a min
imal cost assignment of operators to both machines and ,shifisre coupling constraints
binding operators and machines are relaxed. This problelying only on the decision
variablesxeys is stated as follows:



[ETP: min© = Ceks" Xeks
252

Cut
@.0).6). @

whereCut denotes a set of valid inequalities that are iterativelyeaid the model. They
invalidate solutions of ET P which do not lead to a feasible solution for the scheduling
component ofP].

3.3 Slave problem

Let us denote by an optimal solution to the current master probl@T F. Clearly,x is
a particular assignment of operators to both machines aiftd.d¥loreoverx’is a feasible
solution for the global probleriP] if it satisfies the scheduling compongdbbShop To
perform this test, we first define aggregate information éasexin the following way :

z_kszmin(EEieks,l) k=1,....m s=0,...,0-1 (15)
ec

Clearly,z = 1 if at least one operator is assigned to mackidering shifts, O other-
wise (the machiné& is not used). Each machine requires an employee for its imgefore,
machinek can be used during shitf and only if zs= 1. Considering those entries, check-
ing whether or nofJobShopis feasible for a given assignmextcan be performed by
solving the following decision problem:

[JobShoz)] : Is it possible to find an assignment of decision variables§atig:

n  Min(Cmax (0+1)-71) o
Z Vik =0 k=1,....m veES (16)
i=lt=maxrix,u -1 pix)

@).@. @19 @), @2 a3

whereS, = {s € §%s = 0} denotes the set of time slots during which machireannot be
used with respect to employee resources defined by

[JobShofz)] is a job-shop scheduling problem with fixed inactivity pelsolt can be
reduced to a classical job-shop scheduling problem (segoBitton[1, Sectioh 112). The
only difference with the job-shop specific constraints preed in Sectiop 112 relies on con-
straints [I6). These constraints prevent, with respezt tiee use of any machine during a
shift for which no operator has been assigned.

3.4 Cut generation process

Let us denote by the vector determined, according[fal(15), by a feasibletmmivtof [ET P).

If [JobShogz)] is unfeasible, it implies that jobs cannot be processed thighavailable
resources defined iy ConsequentlylJobShoz)] fails whenx does not lead to a feasible
solution for probleniP]. x must therefore be discarded from the set of feasible saisitio
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Trivially, z (and thusx) is unfeasible because at least one machine among those who
are temporarily not used should be available for executijodp.8A valid cut translating this
simple finding in mathematical terms is:

3.2 Bes* Yeks> 1 17)
eckE keKese

wherefs = 1 if zs = 0, 0 otherwise.

This inequality should be added to the p@hit of the master problenETF. Since
there is a finite number of eligible assignments of employedsth machines and shifts,
the process stops in a finite number of steps.

3.5 Initializing the pools of valid inequalities
3.5.1 Introduction

In order to speed up the convergence of the process in sucheogtration approaches,
it is often interesting to initialize the pool of cuts with alset of inequalities allowing
to (partially) recover the feasibility when solving the rteasproblem. In this section, we
propose three different valid inequalities leading to sanhnitialization of the se€ut of
[ETH.

3.5.2 Probing cuts

Basically, probing refers to an elimination technique use@nhancing MIP solvers[Savi94].
The underlying idea is to fix a decision variable to one of @aitds, and to measure the con-
sequence in terms of logical implications. If fixing this iednle leads to an unfeasibility, it
clearly implies that no solution with the current variablue exists. In some cases, some
variables (namely binary variables) can thus be definitifiged.

In our approach, this idea is exploited to identify shiftgidg which some machines
must be used. For this purpose, we specify for each madhihe list Y of shifts during
whichk cannot be used. The exhaustive list of shifts where therenachine which cannot
be used is denoted b= U , YX. Notice that according to propositibh 1 (see Sedfioh 1.2),
each inactivity shifts on machinek can be modeled by an additional fictional job. Clearly,
modeling this inactivity by a fictional job is equivalent tetg. = 0. If the resulting job-shop
scheduling problem (with fixed inactivity periods) is urdéae, then at least one inactivity
pair (k, S) involved inY" must be removed, i.e., the associated mackimest be used during
shifts. That leads to the following so-called probing cut:

e;k;esge Oks* Xeks=> 1 (18)

whereas = 1 if se€ YX, 0 otherwise.

In our experiments, and for obvious computational consitiens, we focused only on
configurations (machink, shifts) of Y corresponding to singletons (e (g, ss)) or pairs
of couples (e.g.(ki1,s3) A (kz,%)). Notice that if a probing cut is generated for a given
singleton, this implies that machirkehas to be used during shit In the following, such
singleton will be refered to &#ed by probing
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3.5.3 Minimal number of working shifts per machine

The valid initial inequalities presented in this sectioa based on the computing of a lower
boundLBy for each machind representing the minimum number of worked shifts which
are required to ensure the feasibility [f. The corresponding cut simply makes sure that
machinek will be used during at leastBy shifts:

Xeks> LBy k=1,...,m (29)
ecE|keKese
LBy relies on the computing of an upper boumd< g on the maximal number of shifts
during which machiné can be used. By symmetryByx can hence be defined as follows:
LBy = (0 — 0d’). Itis computed by Algorithria]1.

Algorithm 1 Computing ofLBy
o0’ + max(LBL,LB2)
unfeasible— false
repeat
Of « ¢’ fictional operations which have to be processed éor a duration ofrt
[JobShop] <« job-shop problem that aims to schedule eachijeld and each operation &
if [JobShop] is unfeasiblehen
unfeasible— true
else
o'+ o' +1
end if
until (unfeasible v (o’ > o)
LBy < o—a’

At the beginning of AlgorithniIl, we use two auxiliary Iowerlbtds:LBﬁ and LBE.
Indeed, computind.Bx from scratch can be time-consuming and those auxiliary dsun
greatly improve the performances. They are defined as fellow

— LB} is the number of pairs (machitkeshift s) fixed by probingsed 3.5):
LBt = card{s € S|(k,s) is fixed by probing
- LB& is based on the sum of processing times of operations whiagh toebe scheduled

on machinek:
jeJ Pik
LB = {L@ : 1
s

3.5.4 Preventing multiple assignments

The two groups of cuts defined above do not prevent from géngrsolutions assigning
multiple operators to the same pair (machine, shift). Saditi®ns are clearly sub-optimal
since assignment costgsare strictly positive and a machine needs only one operatoe t
handled. This third collection of initial cuts ensures tatinost one operator is assigned to
any pair (machine, shift) :

Xeks<1l k=1,....m s=0,...,.0-1 (20)
ecE|(keKe)A(seSe)
Even if they could seem redundant, according to our expetisn¢hese additional cuts
are quite efficient in solving the master probl&aT P.
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3.5.5 Algorithm

The overall process underlying the cut generation apprpeesented in this section is sum-
marized in AlgorithniP:

Algorithm 2 Exact cut generation process

LB+« 0
repeat
X <— optimum of[ETF|, with a cost:Ox
if Xis definedthen
LB+ O
V(k;s) € {Kx S} Zs ¢ MiN(Feck Xeks 1)
feasible< solvgJobSho[z)]
if = feasiblethen
add cut[(IF¥) to the po&ut of [ETH
end if
end if
until (feasible)V (xis not defined)
return LB

4 An hybridization of a cut generation process with a branch ad bound strategy
4.1 Introduction

In this section, we present a second exact solution straiegy classic approaches for
tackling hard combinatorial optimization problems are fijized: branch and bound and
cut generation process. Like in the decomposition and cuérggion process (see Section
[3), we also decompose the probléRi into two independent sub-problems. The method’s
main particularity relies on the fact that the global pracesntrol is ensured by a vectnr —
of indicatriceswhich decides whether a machikés available for processing jobs during a
given shift or notzis instantiated by an enumerative process.

The underlying global process is explained in Sedfioh 4t Main components asso-
ciated with the branch and bound approach are detailed WSsehion§ 4.2]1 o 4.7.4, while
implementation issues and the overall algorithm is preskimt sub-Sectioh 4.2.5.

4.2 The global process

Let us define, for any couplg,s) of machine/shift, arndicatrice representing the avail-
ability of machinek during shifts (implying that at least one operator is assignekldaring
S):
—1 if machinek is not constrained during shit
V(k,s) e {(KxS} zs= 0 if machinek must not be used during sh#t
+1 if machinek must be used during shit

In this alternative approach, the vectds exploited to guide the global process, and its
instantiation is performed by means of an enumerative agprof branch and bound type,
as described in Sectiohs 4P. 110 412.4.



13

Thus, each node of the search tree corresponds to a padikklity planning on the
set of machine®. A given vectorzleads to two sub-problemiE T P(Z)] and[JobShoz)]
derived from the decomposition principle exploited prexgly. The employee timetabling
sub-problenmET P(Z)] can be formulated as follows:

[ETP(Z)] : min Gz = ZEk% éceks- Xeks
ecE keRese
EEXeks: s V(kss) e {{Mx S}zs# -1} (21)
Cut

@66 0

whereCut denotes a set of valid inequalitids [17), already defineddati8n[3, that are
iteratively added to the model.

Clearly,[ETP(z)] aims at finding a minimal cost assignment of operators to huth
chines and shifts, the solution space being limited to asséntsx consistent with con-
straints[[21l)[JobShoyz)] is exactly the same as in Sect[onl3.3.

In our approach[JobShoyz)] is first solved. If it is feasible, the linear relaxation of
[ETP(2)] is then solved up to optimality thanks to a LP solver. Theesponding optimal
solution clearly gives a lower bouridB(z) associated with the current no¢®.

Let us denote by B the value of the incumbent solution (best solution foundas). f
If either 1) LB(Z) > UB, 2) the LP-relaxation ofETP(Z)] has no feasible solution or 3)
[JobSho[z)] is unfeasible, then the current distributiniis not consistent. The associated
node in the enumeration search tree is discarded and a aelkiy occurs.

Otherwise, the collection of implication rules detailedSactiof 4.213 is performed, as
well as a consistency test consisting in forcing any non waimed pair (machiné, shift
s) (zs = —1) to be inactive(zs = 0), and solving the resulting sub-problefisT P(Z)]
and[JobShoz)]. If the solutiony of [JobShofz)] is once again feasible, then the optimal
solution(x) of [ETP(2)], if defined, yields a feasible solutidr, y) of value©®zto the global
problem[P]. If ©z < UB, then an improved solution {] has been exhibited: it becomes
the new incumbent solution, atdB is updated. Otherwise, a clit{17) is added to the pool
Cutin problem[ET F. Notice that inequalitie$(17) are valid for any node of tearsh tree.

Sectior 4.2.b provides the detailed implementation isselased to this procedure.

4.2.1 Branching strategy

The enumerative strategy we use is a binary branching schienexpand the current active
node, a pair (machinle shifts) is selected by the means of a branching heuristic. Two child
nodes are then created, corresponding respectivegy te 0 (machinek must not be used
during shifts) andzs = 1 (machinek must be used during shij.

In our implementation, the node associatedito= 0 is systematically explored first.
The reason for this choice is that prohibiting machine @gtieads to a more constrained
problem, and thus to a much more reduced search tree size.

The branching heuristic we use selects the pair of macﬂn"nie(Eéj defined as follows:
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— k is the machinek € K with the minimal difference between the number of available
shifts and the lower bounidBy of the number of worked shifts dn(sed 3.5.8):

k= argmax.y ss-s 7.~ 1 (card{(k,s) € {K x S} |zs € {~1,1}} — LBy)
— Sis the mostardive shift such that no decision has been taken on (:Eaéﬁ:

S=argmaxse §z,=—1)
Several other branching heuristics have been investigateglone presented above has
been the most efficient in the experiments.

4.2.2 Lower bound

As mentioned before (s€e #.2(E T P(z)] aims at finding a minimal cost assignment of op-
erators to both machines and shifts consistent with theentiistributionz. Clearly, an
optimal solution to problemiET P(Z)] gives a valid lower bound associated to the related
node in the search tree. For obvious computational reasanenly solve the linear relax-
ation of[ET P(Z)] for each node of the search tree.

4.2.3 Implication rules

In order to reduce the search space and thus to speed up @esprdwo implication rules
have been defined.

Probing based implication rul€The first implication rule is based on the probing strategy
detailed in Sectiof 3.5.2. It aims at checking if succesdi¥eisions about the absence of
work for some pairs (machine, shift) are not too restrictach restrictions could indeed
prevent any descendant of the branching node from leadiadeasible complete solution.
For this purpose, each non constrained pair (machine) shifie current distributioz (i.e.,
7= —1) is in turn forced to inactivityzs = 0). The resulting sub-problefdobShoz)] is
solved, and if unfeasibility is detected, we canzgto 1, i.e., any subsequent distribution
in the sub tree satisfies that machireis used.

Implication rule based on the minimal number of working shifer machineThis implica-
tion rule ensures that, for each machine K, the lower bound.By on the minimal number
of working shifts (se€3.513) is verified. This logical rukncbe expressed as follows:

(card{s€ Szs# 0} =LBy) = (Zs=1 Vs {Szs=—1})
4.2.4 Consistency checking

As mentioned in Sectidn4.2, we perform a consistency testdohnon prunechode of the
search tree. This test aims at checking if the partial distion zassociated with the current
branching node is already a complete feasible solution foptbblem.

To do so, we first get a complete instantiatiorz bf/ settingzcs = 0 for any pair (machine
k, shifts) that the current partial distributiandoes not constraint (i.ez,s = —1). For the re-
sulting complete distribution, we check the feasibility of botfE T P(z)] and[JobShoz)].
If these two sub-problems are feasible, the associatethapsiolutions yield a feasible solu-
tion for the global probleniP]. They can hence be compared to the best incumbent solution.
Otherwise, adding the cUt{lL7) to the p@it of valid inequalities in problenfET P pre-
vents us from generating such a non consistent distribloyognumeration.
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4.2.5 Algorithm

The hybridbranch and bound / cut generationethod described above is summarized in
Algorithms[3 td8. AlgorithnfiB is the main algorithm; it regetio algorithm§&M} tbI8 described
hereafter. In our implementation, we used the two follonspgcific data structures:

— P: atypical stack which is used to store the nodes of the Is¢eze in a Last In, First
Out (LIFO) order

— y. anode of the search tree. Each ngds characterized by 5 attributes:

— k € M: the machine of the selected branching variable used tarcmby

s S the shift of the selected branching variable used to coospr

explorede {true, falsg. If true, the node has already been explored and its two

children have been (if necessary) generatetalffg it is the first time the node is

met.

valuee {—1,0,1}: fixed value for the branching variable used to constpuct

— decisionslist of the decisions (due to the branching variable s&ecind the impli-
cations rules) related to nogeBy construction, each descendant nodg mspects
all these decisions.
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Algorithm 3 Hybrid Branch and Bound and cut generation procedure

UB ¢ 4o
Vke MVse Szg+ —1
P + {Node(k=0, s=0, value=-1, explored=false, decisiong=0
repeat
y + node at the top oP
if = y.exploredthen
y.explored« true
Zykys = y-value
if [JobShogz)] is not unfeasibléhen
imply(y, 2)
f « evaluatey, 7)
if (f#—1)A(f<UB)then
(k) € {KxS} (%) ¢ Zs
V(k,s) e {KxYzs=—1} Zs«+ 0
X +— optimal solution of ET P(Z)]; cost:©z
if (Xexisty A (Gz < UB) A ([JobShofz)| is feasiblg then
UB+ Oz
else
add cut[(IF) to the s&ut of [ETP
end if
¥(k,S) € {K xS} Zs ¢ (%)
if = leaf(z) then
branchP 2)
else
removeP,2)
end if
else
removep, 2)
end if
else
removep,2)
end if
else
removeP,2)
end if
until P=0
return UB
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Algorithm 4 Implication rules: implyf, 2)

if y.value=0then
if card{s€ Sz,xs# 0} = LBy then
forall se Sdo
if z,xs= —1then
Z_y.ks «—1
y.decisions— y.decisionsJ {Z,xs = 1}
end if
end for
end if
forall se Sdo
if Z,ks= —1then
Z_y.ks<* 0
if [JobShogz)] is unfeasiblehen
Z_y.ks «—1
y.decisions— y.decisionsJ {Z, s = 1}
else
Zys+ —1
end if
end if
end for
end if

Algorithm 5 Evaluation: evaluate(2)

result« -1
X+ optimal solution of the LP-relaxation ¢E T P(z)|; cost: LP
if X existsthen
result«— LP
end if
return result

Algorithm 6 Branching: branci¥ 2)

K argmaxy sz 1 (card{(k.s) € {K x S} s € {~1.1}} — LBy)
S« argmaxse Sz = —1)

P+ PU Node(k=|i, s=s, value=1, decisions{zs= 1})

P+ PUNode(k=k, s=s, value=0, decisionsfzg = 0})

Algorithm 7 Removing: remové¥ 2)

Vd € y.decisions Zjygs <+ —1
P« P\y

Algorithm 8 Leaf: leaf@)

forall (k,s) € {K x S} do

if zxs= —1then
return false
end if
end for

return true
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5 Computational experiments

In this section, we first describe the instances used as #d¢edsand the methods used as
comparison (section 8.1). We then briefly evaluate the é@steof the initial inequalities
(sectior 5.R). Finally, we investigate the experimentdiadsgor of the methods proposed in
this paper (sectiopn3.3).

5.1 Test bed and methods

To test the methods proposed above, we used the generatstafces of [AGRV09].
We have defined 6 categories of instances of increasing Biweeach category, two sets
of 25 “feasible” (respectively “unfeasible”) instancexbdeen generated. The parameters
used as inputs by the instance generator are displayed la[Iab

In Table[d, columru refers to the total number of employees, of whagy, areextra
employeesThose extra employees ensure that the production regeimsncan always be
mathematically met (as in_ [AGRV09]). However we make a disgion between the two
types of instances. In the case of “feasible” instancesptbduction requirements can ac-
tually be met in pratice: virtually no extra employees aredesl and, even though more
expensive, they do not incur a prohibitive cost (they areclly outsourced personel or
regular staff working overtime). In the case of “unfeasibfestances, it is not possible to
meet production requirements without extra employees.tlaoske have a prohibitive cost,
making the instances unfeasible in practice (an extra gyeplbas a cost of 1000, that dom-
inates the sum of all other costs; hence, if a solution hastda@.g., 8028, that means that
8 extra employees are needed).

In Table[1,0* is the best known solution fdP]. It is the optimum for 577% of all
cases; otherwise it corresponds to the best solution foyreltber the hybrid branch and
bound / cut generation method described in Se¢fion 4 or a BliRsapplied to the formal-
isation[P] (within a CPU time limit of 2 hours for each method). For thectBnpatible in-
stances picked out frorh [AGRVD,nax is the optimal makespan of the job-shop problem.
For the 285 other generated instan&gax is computed as follows: 1) a heuristic makespan
CheUr to the job-shop problem is found thanks to our job-shop sdlvie Sectioi 2.R), 2) the
numberd of shifts is fixed to]CiEY /| and 3)Crmaxis fixed to( - ).

We try to solve every instance with the two exact methods@segd above:

— Cut: the decomposition and cut generation approach describ8ddtiod B ;
— HyBB: the hybrid branch and bound / cut generation method destiibSectiofi 4.

As a basis for comparison, we also try to solve each instaiitte w

— MIP: a MIP solver applied to the formalisatidR].

— AGRV09: a slightly modified version of the method proposed in [AGR}/Ondeed, Ar-
tigues et al. solve a lexicographic optimization problenevethe makespan minimiza-
tion is the primary objective whereas the employee cost nigtion is the secondary
objective. We thus defingRV09 as the second stage, the minimal makespan value being
directly fixed in a preprocessing stage.

— Heur: a heuristic solution. A heuristic solution to the job-stmpblem is found thanks
to our job-shop solver (cf. Sectidn 2.2) and every pair (mraghshift) that is worked is
fixed. The employees are then assigned optimaly using a Milgrs¢Note: a simpler
heuristic, where employees are assigned greedily instegatimaly, has also been tried
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# max
type category n m u Uextra | Skillsper | Crmax o
(incl. Hextra) employee
ejsbx 4 x 25 6 4 25 10 2 8 € [37,56) € (17,33

k) ejsbx 6 x 25 6 6 25 10 4 10 [ €[4870 € [24,73
2 ejs8x 8 x 40 8 8 40 20 4 8 € [44,64 € [70,106
s ejs8x 8 x 50 8 8 50 20 4 10 | €160,80 € [40,64]
h ejs10x 10x 40 | 10 | 10 40 20 4 8 € [72,80 € [174,286

ejs10x 10x 50 | 10 | 10 50 20 4 10 | €[80,100 €[81,133
° ejsbx 4 x 25 6 4 25 21 2 8 € [40,56) € (800912013
= ejsbx 6 x 25 6 6 25 19 4 10 [ €1]50,70 € [8028 18015
a ejs8x 8 x 40 8 8 40 32 4 8 € [64,64 € [220403203
u“c-’ ejs8x 8 x 50 8 8 50 42 4 10 | €160,90 € [190402803]
S ejs10x 10x 40 | 10 | 10 40 30 4 8 € [72,80 € [39056 50055

ejs10x 10x 50 | 10 | 10 50 40 4 10 | €[80,100 | <[350564706

Table 1 Parameters of the 300 instances (25 instances per category)

out; it is barely faster thaneur and produces drastically worse solutions, and thus it has
been discarded.)

CPU time has been limited to 5 minutes for the two categoriesnall instances ejsg
4 x 25 and ejs6< 6 x 25. Is has been limited to 10 minutes for the four categorfdsig
instances ejs& 8 x 40, ejs8x 8 x 50, ejs10x 10x 40 and ejs1& 10x 50.

In the remaining (if it is not specified), the initial ineqitas of Sectiorl 3.6 are added
to the three method®ut, HysBB andMIP. We did not experiment the interest of the initial
cuts forAGRVO9.

5.2 Initial inequalities

To evaluate the initial inequalities described in Sediid @e first compare in Tablé 2 the
results of the LP-relaxation dP] with and without the initial inequalities. In this table,
columnLP/©* gives the deviation between the optimum of the LP-relaxatib[P] (LP)
and the best known solution fge] (0%).

linear relaxation(P) of [P] linear relaxation(P) of [P] with initial inequalities
category # initial preprocess| LP total
LP/O* time LP/©* | . " ) : .
inequalities time time time
ejsbx 4 x 25 83.3% 0.3s 98.1% 48.3 0.2s 0.2s 0.4s
ejsbx 6 x 25 66.9% 1.0s 87.8% 69.3 1.1s 1.0s 2.1s
ejs8x 8 x 40 65.8% 4.4s 87.7% 127.8 5.7s 3.9s 9.6s
ejs8x 8 x 50 70.3% 8.7s 85.9% 1234 10.3s 9.9s | 20.2s
ejs10x 10x 40 62.4% 21.5s 82.3% 211.6 49.1s 22.3s | 714s
€js10x 10x 50 61.9% 44 .4s 70.6% 194.5 74.7s 52.3s | 127.0s
Total 68.4% 13.4s 85.4% 129.1 23.5s 14.9s | 38.4s

Table 2 Impact of the initial inequalities on the LP-relaxation.tersces are not distinguished by type, since
the results are almost identical in both cases.

For each type and each category of instances, the LP-relaxatmuch better with the
initial inequalities: the average ratid®/©* is indeed 17% higher when the initial inequal-
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ities are used, and the extra computing time remains modéésen average and about
128sfor the worst case).

To further chalenge the initial inequalities, we compam rte of success of the three
exact methodscit, HyBB, MIP), depending on whether the initial inequalities are used (T

ble[3).

Cut HyBB MIP
category _ v_v_ithout N With _ v_v@thout _ _\_Nith _ v_v_ithout N With
initial cuts | initial cuts || initial cuts | initial cuts || initial cuts | initial cuts

ejsbx 4 x 25 0.0% 98.0% 72.0% 100.0% 86.0% 100.0%
ejsbx 6 x 25 0.0% 44.0% 28.0% 74.0% 46.0% 76.0%
ejs8x 8 x 40 0.0% 20.0% 0.0% 52.0% 26.0% 60.0%
ejs8x 8 x 50 0.0% 16.0% 0.0% 28.0% 12.0% 28.0%
ejs10x 10x 40 0.0% 12.0% 0.0% 18.0% 2.0% 16.0%

ejs10x 10x 50 0.0% 2.0% 0.0% 4.0% 0.0% 0.0%

[ Total [ 0.0% [ 320% [ 167% | 46.0% | 287% | 46.7% |

Table 3 Impact of the initial inequalities on the exact methods. Insés are not distinguished by type, since
the results are almost identical in both cases.

It is very clear from these results that the initial ineqtiedi proposed in Sectidn_3.5
strongly improve all three methods. The improvements iiqdarly important forcut and
HyBB. Indeed, these two methods cannot solve instances larger&hiobs without initial
inequalities. As a matter of fact, the initial cuts are aegnated part of the two exact meth-
odscut andHyBB proposed in this article and they are nicely complementamhé other
components of those methods.

As stated before, the initial inequalities are added to eaethod described in the re-
maining (except foAGRV09).

5.3 Exact methods

In this section, we compare the resultats of the two exactodstive have proposed in this
paper Cut andHyBB) with other approachesi{P, AGRV09 andHeur).

Table[4 reports the performances of each method. Cokumpesglives the percentage
of instances solved to optimality within the time limit. @ohntime displays the average
computation time. Columgap gives the average deviation to the best known soluB6n
B. The statistical significance of those results is verifiedahyexhaustive computation of
Kruskal-Wallis tests for every pair of methods and every snee; when relevant, p-values
are provided in the following discussion.

Table[® compares the successes of the different methods.taltie can be read as a
matrix a;; whereg;; is the number of instances the methiablves to optimality within the
time limit whereas the methogddoes nota;; gives the number of successes of the method

Furthermore, TablE]6 provides a direct comparison betwkertvio best performing
methodsHyBB andMIP. In this table successs the number of instances solved to optimality
by both methodsjme(S)is the CPU time in case of success (that is for the instandesdso
to optimality by both approaches); agdp(F) is the average deviation to the best known
solution in case of failure (that is when at least one metladd)f

2 gap=min (l, %) if a solutionvaluehas been found, 1 otherwise



Cut HyBB MIP AGRVO9 Heur
category - - . a -

success| time | gap [| success| time | gap || success| time | gap || success| time | gap || success| time | gap
ejsbx 4 x 25 100% 2s 0% 100% 1s 0% 100% 1s 0% 88% 53s | 1% 8% Os | 17%
ejsbx 6 x 25 60% 122s | 5% 76% 86s | 0% 84% 65s | 0% 44% 182s | 31% 0% Os | 49%
ejs8x 8 x 40 36% 387s | 7% 68% 234s | 4% 68% 264s | 2% 32% 478s | 47% 0% Os | 35%
ejs8x 8 x 50 16% 504s | 10% 24% 461s | 5% 28% 454s | 2% 8% 568s | 45% 0% Os | 24%
ejs10x 10x 40 8% 548s | 17% 16% 529s | 8% 20% 525s | 43% 0% 601s | 51% 0% 1s | 28%
ejs10x 10x 50 4% 588s | 28% 8% 571s | 6% 0% 594s | 92% 0% 601s | 73% 0% 1s | 28%
Total 37% [ 358s[ 11% [ 49% [ 314s] 4% [[ 50% [ 317s] 23% [ 29% [ 414s][ 41% [ 1% [ Os [ 30%

(a) “feasible” instances

Cut HyBB MIP AGRVO09 Heur
category - - . - -

success| time | gap || success| time | gap || success| time | gap || success| time | gap || success| time | gap
ejsbx 4 x 25 96% 27s | 0% 100% 3s 0% 100% 4s 0% 0% 298s | 26% 0% Os | 27%
ejsbx 6 x 25 28% 239s | 9% 72% 115s | 2% 68% 131s | 1% 0% 299s | 42% 0% Os | 44%
ejs8x 8x 40 4% 576s | 11% 36% 436s | 4% 52% 367s | 1% 0% 600s | 31% 0% Os | 27%
ejs8x 8 x 50 16% 510s | 15% 32% 432s | 9% 28% 463s | 18% 0% 600s | 34% 0% Os | 34%
ejs10x 10x 40 16% 514s | 15% 20% 493s | 2% 12% 543s | 57% 0% 601s | 25% 0% 1s | 17%
ejs10x 10x 50 0% 600s | 30% 0% 601s | 2% 0% 600s | 96% 0% 601s | 33% 0% 1s | 20%
[ Total 27% [ 411s[ 13% [ 43% [ 347s[ 3% || 43% [ 351s[ 29% || 0% [500s][32% [ 1% [ Os [ 28%

(b) “unfeasible” instances

Table 4 Performance of each method (average values)

T
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dominated dominated
i j Cut | HyBB | MIP | AGRVO9 | Heur Cut | HyBB | MIP | AGRVO9 | Heur
=2 Cut 56 0 1 18 54 40 0 1 40 40
= HyBB 17 73 4 30 71 25 65 4 65 65
g MIP 20 6 75 33 73 26 4 65 65 65
S | AGRV09 5 0 1 43 41 0 0 0 0 0
© [ Heur 0 0 0 0 2 0 0 0 0 0
(a) “feasible” instances (b) “unfeasible” instances

Table 5 Comparison of the number of instances solved by each method

category success|— HyBB . MIP
time(S) [ gap(F) [[ time(S) [ gap(F)
ejsbx 4 x 25 25/25 1s - 2s -
ejsbx 6 x 25 19/25 19s 2% 12s 2%
ejs8x 8 x 40 15/25 39s 10% 89s 4%
ejs8x 8 x 50 6/25 22s 6% 92s 3%
ejs10x 10x 40 4/25 195s 9% 478s 51%
ejs10x 10x 50 0/25 - 6% - 92%
[ Total [[ 697150 [ 27s [ 6% [ 47s [ 43% |
(a) “feasible” instances
category success||—— Y58 ___MIP
time(S) [ gap(F) [[ time(S) | gap(F)
ejsbx 4 x 25 25/25 3s - 4s -
ejsbx 6 x 25 17/25 40s % 52s 4%
ejs8x 8 x 40 9/25 143s 6% 95s 1%
ejs8x 8 x 50 7125 61s 12% 111s 25%
ejs10x 10x 40 3/25 36s 2% 127s 64%
ejs10x 10x 50 0/25 - 2% - 96%
| Total [ 6U/150 | 42s | 5% || 49s | 48% |

(b) “unfeasible” instances

Table 6 Comparison ofiyBB andMIP in case of success or failure (average values)

From all those experiments, the first general conclusioraistiss is the best perform-
ing methods on any kind of instances. Then cormeandcCut, thenAGRV09 and the poorest
method isHeur. Typically, HyBB solves to optimality more instances than the other methods
(butMIP on small instances) and besides it solves them faster wiselcéeeds or provides
tighter bounds when it fails.

From Tabld™®, it is clear thatyBB achieves better success and gap tixarr, and this
is statistically significant (p-values 10~ 7). HyBB is also better thanGrvo9 (all p-values
< 10°3). Compared taut, HyBB is more successful and provides tigher gap (p-vakaes
0.05 for success, and 107 for gap); it also seems to be faster, but this is not statiijic
significant (p-value- 0.6 on feasible instances). Furthermore, nonewf, AGRV09 Or Heur
solves to optimality an instance thatBB does not (see Tab[é 5).

As a consequencdyBB is only challenged byiIp for the title of best method. From
Table[3, it is not clear whethelyBB has better success thurp; indeed, the two methods
cannot be distinguished on this criteria (p-valu@.8), nor on the computation time. The
dominance ofiyBB is however quite clear for the gap (p-value$.05). Tabld 6 allows for a
more detailed analysis. In case of succ#gsB is quicker (however, the statistical relevance
is not so good). In case of failurgyBB provides a significant better gap (p-value$.003).
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All'in all, HyBB performs generaly better thamp, with exceptions. It is not dominated
for the success, nor for the computation times, and achiegter gaps. In particular, on
hard instances that none of the methods salyBB is clearly better: the gap is significantly
lower, and does not explode when the size of the problemases moreover it must be
noted thatiyBB provides feasible solutions for all 300 instances, while failed for 74 of
them. Nevertheless, on some instan®&B,may outperforniiyBB (e.g., for small instances).

Similar detailed analysis confirm 1) thagBB also outperformgut, AGRV09 andHeur
(all results are statistically significant); 2) thetp outperformscut (except for big in-
stances)AGRV09 andHeur; 3) thatCut outperformsAiGRV09 andHeur.

Note thatHeur, which is never very good, is very consistent in providingyvguickly
feasible solutions with a gap of about 30%. Such solutionsiargood for small instances,
but become competitive for the big ones. Actuatlyur outperforms every method bigBB
on the most challenging instances. This is essentially dubke fact that, within the given
time, methodgut, MIP andAGRV09 may fail to find a feasible solution for such instances.

One should notice here that the comparison with [AGEV09]dstotally fair. Indeed,
[AGRV(09] solves more general problems than the methodsriteestin this article. We
remind the reader thdt [AGRV09] tackles a problem where gatzican require more than
one employee to be processed. It also addresses a probleriweihierarchical objectives:
1) minimizing the makespan and 2) minimizing the employest.ceurthermoreAGRV09
is not competitive at all on unfeasible instances becausieeofery high costs of thextra
employees. The method (dichotomy) has not been fitted fdr &st problems.

To conclude with these experiments, we point out that réatlye instances of the prob-
lem tackled in this paper are intractable with the currenthods. Indeed one can observe
that none of the methods experimented here can solve irestavith more than 10 jobs and
10 machines; starting from 8 jobs and 8 machines, all methads serious difficulties. This
is not a surprise since the job-shop sub-problem itself isbyvifficult to solve, even with
only 10 jobs and 10 machines.

6 Conclusion

In this paper we have proposed two different procedureslie sm integrated employee-
timetable and job-shob-scheduling problem, and we havie&esl them through compu-
tational experiments. In the process, we have outlinedlratits that significantly help the
finding of a solution for our own methods, but also for a stadddlP approach.

Our first method, the decomposition and cut generation piweeCut), is rather dis-
appointing. However, its mixed results can easily be erpldi the generated cuts do not
contain enough global information and tend to eliminatey@iné current solution. Stronger
cuts would be necessary; however the design of such cutsiepfmebe quite difficult and
unpredictable perspectives (a tighter collaboration ithjob-shop solver) would probably
be the key. This phenomenon illustrates the fact that iategrproblems require ad-hoc,
well-tuned procedures that are capable of using the veticpéarities of the problem.

The second method, the hybridization of a cut generatiosge® with a branch and
bound strategyHyBB) provides very good results and greatly improves over théope
mances of the best methods of the literature.
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As for future research directions, the relevance of theidjzation of a cut generation
process with a branch and bound strategy should be provethen iotegrated problems,
e.g., that incorporate different scheduling and/or tirbktg constraints. Furthermore, vari-
ants of this hybridization should be tried out to provide st faitial convergence that would
allow to quickly get good feasible solutions.
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A Computing environment

All experiments have been carried out on a standard PC [R)t€l6ore(TM) i3 CPU M 370 @ 2.40GHz, 2.39
GHz, 3.42 Go RAM) running MS Windows XP. Our own proceduresiarplemented in Java. The software
of is the original one, kindly provided by the autBpand is written in C++. Mixed integer and/or
continuous linear programs have been solved with llog Cp&g;Xor constraint based scheduling, we used
llog Solver 6.7 and Scheduler 6.7.
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