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Abstract 

Gas Hydrates are crystalline water based solids composed of a three dimensional network of 

water molecules. They form a network of cavities in which molecules of light gases can be 

encapsulated depending on their size and affinity. Gas hydrates can by their nature not be 

classified as chemical compounds since they do not possess a definite stoechiometry. In 

contrast they have to be regarded as solid solution phases, the stoechiometry of which is not 

fixed but depends on the composition of the surrounding liquid. At equilibrium, the 

composition dependence of the hydrate phase can be described by means of the classical van 

der Waals and Platteeuw model [1]. In the framework of the model, Langmuir constants are 

used for expressing the relative ability of light components to get enclathrated within the 

cavities. The work consists in considering again the enclathration of host species, not at 

thermodynamic equilibrium, but during the crystallization process taking place under non-

equilibrium conditions. It aims at proposing a new formulation for the hydrate composition as 

a function of new intrinsic constants which are based on Langmuir kinetic constants. 
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1 Introduction 

Clathrates are solid phases in which a solid network of hydrogen-bonded molecules is 

organised to generate an internal structure of nanometric cavities capable of encapsulating 

other components. If the solid network is a water-based network, and if the encapsulated 

molecules are gas molecules, the corresponding phases are referred to as “gas hydrates”. From 

the sixties, the investigation of gas hydrates, and in particular the thermodynamics of gas 

hydrates, has been the subject of intense research activities, with respect to both experimental 

studies as well as modelling in order to understand and prevent the formation of hydrates in 

oil pipelines. In fact, the combination of light hydrocarbons and water, from the gas phase, or 

from the liquid phase, can be observed both in gas production and oil production processes. 

The thermodynamics of hydrate formation/dissociation has been well understood and a 

model description has been established by the fundamental work of van der Waals and 

Platteeuw [1]. The originality of their model [1] is to consider light molecules as adsorbed 

molecules, and to consider the hypothetical empty network of water molecules providing the 

cavities as a solid acting as the adsorbent. The light molecules are distributed in the cavities 

with respect to their relative affinity. The relative affinity between a guest atom or molecule 

and the water molecules forming the cavity is quantified by the respective Langmuir constant. 

The Langmuir constant has been tabulated from a physical description which depends on the 

interaction potential between the guest molecule and the structure. The overall structure is 

physically stable once the cavities are filled to a sufficiently great extend. 

The fact that the empty cavities of the lattice structure are capable of encapsulating light 

molecules can be used as a profitable property to separate molecules, for example from gas 



mixtures. The original idea has been developed in order to separate molecules that could not 

be separated by classical distillation. From the beginning of the 1990s, the concept has moved 

towards the capture of CO2. Many laboratories have recently focused on the investigation of 

the CO2/N2 and the CO2/CH4 gas mixture, respectively, with respect to both, post combustion 

separation applications and natural gas production. 

The present paper has been motivated to explore theoretical considerations which follow 

from the fact that the hydrate crystallisation is a non-equilibrium process. Whereas the total 

quantity of gas to be encapsulated in order to stabilise the structure physically is fixed by 

thermodynamic considerations, the relative composition of the hydrate is governed by the 

kinetics of the crystallisation process. The hydrate composition becomes dependent on the 

classical Langmuir constant, but also on new intrinsic constants. Finally, the hydrate 

composition during crystallization becomes dependent on the geometry of the reactor in 

which the experiment is being performed. In fact, the hydrate composition depends on the 

composition of the bulk phase in a way which is in detail outlined in this work. The bulk 

composition in turn depends on the coupling between the gas consumption rate at the surface 

of the crystal and the mass transfer rates at the boundary of the bulk phase. The overall 

modelling of the process is based on the (simultaneous) modelling of all those single 

elementary steps. It would require taking into account population balances in order to model 

nucleation, growth, agglomeration, and mass transfer to describe the gas absorption at the 

gas/liquid interface. This paper focuses on the modelling of the growth rate only and does not 

deal with this global modelling which has been reviewed in detail by Ribeiro and Lage [2]. 

In conclusion, the paper presents a new description of the growth rate and hydrate 

composition during crystallisation. The first part of the document is devoted to the description 

of the structure of the hydrate and to the definition of the intrinsic rate of integration of the 

gaseous species into different types of cavities, based on intrinsic kinetic constants describing 

the Langmuir type of adsorption. The second part deals with the classical description of the 



thermodynamics of the hydrate formation. However, the resulting expressions are modified 

by consideration of the non-equilibrium nature of the hydrate crystal growth. Finally, a 

mathematical approach is proposed to solve the coupled equations accounting for mass 

transfer (diffusion around crystals) and intrinsic growth rates. 

2 Hydrate structure 

Clathrates are ice-like solid phases in which the water molecules form a three-dimensional 

network. The underlying crystallographic organisation is based on H-bonds between the 

constituting water molecules. The clathrates of water are also designated improperly as 

“porous ice” because the water molecules form a solid network of cavities in which the 

molecules of gases, volatile liquids or other small molecules can be captured. Each structure 

is a combination of different types of polyhedra sharing faces between them. Jeffrey [3] 

suggested the nomenclature ef to describe each of these polyhedra: e is the number of edges of 

the face, and f is the number of faces with e edges. Currently, three different structures, called 

sI, sII and sH, have been precisely determined experimentally. A complete description of the 

structures, the characteristics of which are compiled in Table 1, can be found in the books of 

Sloan and Sloan and Koh [4,5]. For example, structure sI is a cubic structure, the unit cell of 

which is composed of 42 water molecules, where the cavities possess a radius of 1.2 nm. It 

provides a network composed of two pseudo spherical cavities 512 and six cavities 51262 which 

is capable of encapsulating gas molecules of a size and dimension being compatible with the 

respective internal radius of the cavities of 0.395 nm and 0.433 nm. 



Table 1. Structure of gas hydrates 

 sI sII sH 

    

Cavity 512 51262 512 51264 512 435663 51268 

Number of cavities 2 6 16 8 3 2 1 

Average cavity radius (nm)a 0.395 0.433 0.391 0.473 0.391 0.406 0.571 

Variation in radius, %b 3.4 14.4 5.5 1.73    

Coordination number 20 24 20 28 20 20 36 

Number of water molecules 42 136 134 

Cell parameter a (nm) 1.1956c 1.7315d 1.2217 

Cell parameter b (nm)   1.0053e 

Cell volume (nm3) 1.709c 5.192d 1.22994e 

a [4], p. 33. 

b Variation in distance of oxygen atoms from centre of cages ([4], p. 33). 

c For ethane hydrate [6]. 

d For tetrahydrofuran hydrate, from [6]. 

e For methylcyclohexane-methane hydrate [6]. 

3 Langmuir approach describing the enclathration during crystallization 

derived from kinetic considerations 

The classical approach of van der Waals and Platteeuw [1] provides a description of the 

thermodynamics of equilibrium involving clathrate hydrate phases. In this approach, the 

encapsulation of gas molecules in the empty cavities is described similarly to the adsorption 



of molecules on a two dimensional surface. The model assumptions lead to a Langmuir type 

of equation for describing this “adsorption” of guest species onto the empty lattice sites. 

Different cases may be distinguished, depending on the degree of complexity of the system 

with regard to the presence of different types of guest species and different types of cavities in 

the empty hydrate lattice. The simplest case considered deals with a hydrate system 

containing a single type of guest species 0j j=  and a single type of cavity 0i i= . In the 

second case, hydrate formation in a system containing gN  different potential guest species 

g1,...,j N=  in a single type of cavity 0i i=  is taken into account. The third case treated here 

generalises the second case in that it accounts for the presence of cavN  different types of 

cavities cav1,...,i N=  in the empty, metastable hydrate lattice. In the following, the set of 

indices of the guest components, { }g1,...,N , is designated as gS , whereas the set { }cav1,...,N  

counting these indices i  is denoted as cavS . 

During crystallisation (here in a liquid system), the crystal is assumed to be surrounded by 

two successive layers: an integration layer and a diffusion layer. The integration layer is the 

region of volume in which a transition between the solid state and the liquid state occurs. 

Following the approach of Svandal et al. [7], the integration layer can be considered as a 

solidification layer. It is described by means of the scalar phase field and a composition 

variable. The composition of the liquid phase layers with respect to g1,...,j N=  species is 

characterised by a vector of generalised concentrations 
T

g1( , , )Nζ ζ ζ=
r

K . For chemical 

engineering applications, especially applications concerning crystallisation processes in 

liquids, liquid phase non-idealities are often neglected and the fugacity is replaced by a 

concentration variable jζ . In this section and in the remaining parts of this work, the variable 

ζ  to characterise the composition with respect to the concentration of the guest species is 

chosen to be the mole fraction x . At the interface between the solid and the integration layer, 



the scalar phase field assumes the value 1 (solid state). Furthermore, local equilibrium is 

assumed. The local equilibrium composition is characterised by the set of mole fractions jx  

for all gj S∈ . Then, in the direction of the second interface, between the integration layer and 

the diffusion layer, the scalar field varies from 1 (solid state) to 0 (liquid state), and the 

composition varies from jx  to , intjx . In contrast to Svandal et al. [7], a model description of 

the profiles of the scalar phase field or the composition variables is not given in this work. We 

only assume that they exist and simplify the problem by introducing Eq. (13) which is 

described below. 

The modelling of the diffusion layer is easier, since it is a liquid, though continuous, phase 

throughout. The composition varies from , intjx  at the interface between the integration layer 

and the diffusion layer to , bulkjx  at the interface between the diffusion layer and the liquid 

bulk phase. A schematic representation of the different regions surrounding the hydrate phase 

under formation conditions is given in Figure 1. 
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Figure 1. Elementary steps of gas integration in the vicinity of the growing hydrate surface. 

 



In such a system, the different species j are enclosed by the sites in proportion to their relative 

affinity. The rate of enclathratation, , ej ir , is directly proportional to the product of the mole 

fraction , intjx  of j  and the fraction of empty cavities, 1iθ− , according to 

 , e , , e , int(1 )j i x j i j ir k x θ= − , (1) 

where , , ex j ik  is the corresponding kinetic rate constant of enclathration of species j in a cavity 

of type i,. The subscript x at the symbol k refers to the mole fraction as the particular 

concentration variable chosen for ζ . 

The liberation of guest species j  from the cavities of type i  due to the declathration 

process can be described by the following rate law 

 , d , dj i j i j ir k θ= , (2) 

In other words, the corresponding molar rate , dj ir  is directly proportional to the occupancy 

factor j iθ , i.e. the fraction of cavities i  which are filled with guest species j . 

As a result, we can define a local flow rate of component j which results from the 

unbalance between adsorption and desorption: 

 , e , d , , e , int , d(1 )j i j i j i x j i j i j i j iF r r k x kθ θ= − = − −  (3) 

Eq. (3) can be rewritten as: 

 , , e
, e , d , d , int

, d

(1 )x j i
j i j i j i j i j j

j i

k
F r r k x

k
θ θ

 
= − = − −  

 
 (4) 

Particular case of equilibrium 

At equilibrium, 0j iF = , and the following relation is derived from Eq. (4), holding for all 

gj S∈ , taking into account that , bulk , intj j jx x x≡ ≡ : 



 , , e
, d

, d

(1 ) 0x j i
j i j j

j i

k
k x

k
θ θ

 
− − =  

 
, (5) 

With the Langmuir constants ,x j iC  defined as the ratio between the rate of enclathration and 

declathration according to: 

 , , e
,

, d

x j i
x j i

j i

k
C

k
= , (6) 

Eq. (5), can be re-written as: 

 ( )
cav g

, (1 ) 0x j i j i j i
i S j S

C x θ θ
∈ ∈
∀ ∀ − − =  (7) 

Summing up Eq. (7) over all guest species leads to 

 g

g g

,

, ,

1
1

1 1

x j i j
j S

i i
x j i j x j i j

j S j S

C x

C x C x
θ θ

′ ′
′∈

′ ′ ′ ′
′ ′∈ ∈

= ⇔ − =
+ +

∑

∑ ∑
 (8) 

Finally, by inserting Eq. (7) into Eq. (8), the following relation is derived for j iθ  

 

g

,

,1
x j i j

j i
x j i j

j S

C x

C x
θ

′ ′
′∈

=
+ ∑

 (9) 

4 Enclathration during crystallisation 

The surface of crystal is supposed to be covered with cavities under formation, which can be 

regarded as “opened cavities” or active sites. They are assumed to cover the surface and we 

can define a concentration iΓ  (number of moles of active cavities of type i  per unit of 

surface area, 2[ ] molmiΓ −= ). Each type of opened cavity i  is exposed to a rate j iF  (mole of 

component j /mole of cavity of type i /unit of time). During the growth of the crystals, the 



rate by which the gas molecules j (mole per unit of time) are incorporated into the cavities of 

the newly created volume is given by: 

 j i i sF AΓ  (10) 

Where sA  denotes the total surface area of the growing crystals. The crystal is assumed to 

grow at a rate G  ( 1[ ] msG −= ). The increase in volume of the quantity of solid newly formed 

per element of time dt  is given by 

 s

dV
GA

dt
=  (11) 

The volume of the newly formed solid is composed of water molecules which build a network 

of cavities of different types i. Their molar volumetric concentration is ic  (mole of cavity of 

type i per unit of volume) and they are occupied by gas molecules of type j. The occupancy is 

given by j iθ (mole of component j /mole of cavity i ). The flow rate by which the gas 

molecules j (mole per unit of time) are incorporated in the cavities of the new volume is: 

 si j i i j i

dV
c c GA

dt
θ θ=  (12) 

From Eq. (10) and Eq. (12), it follows for all cavi S∈  and all gj S∈  that 

 i j i i j iF c GΓ θ=  (13) 

Summing up Eq.(13) over all gj S∈  leads to 

 i i i iF c GΓ θ=  (14) 

A general consideration to be taken into account is the following relationship that for each 

cavity i , but for two different molecular adsorbents j  and j′ , is obtained from Eq. (13): 



 
g g cav

j i j i j i j i

j S j S i S
j i j i j i j i

F F F

F

θ
θ θ θ

′

′∈ ∈ ∈
′ ′ ′

 
∀ ∀ ∀ = ⇔ =  

 
 (15) 

From Eq. (15) it follows that a characteristic constant ia  can be defined according to: 

 
g cav

j i
i

j S i S
j i

F
a

θ∈ ∈

 
∀ ∀ =  

 
 (16) 

After summation over all guest species j , the total flow rate iF  of guest molecules arriving at 

the cavity i  under construction is 

 
g g g

i
i j i i j i i j i i i i

j S j S j S i

F
F F a a a aθ θ θ

θ∈ ∈ ∈

= = = = ⇔ =∑ ∑ ∑  (17) 

Thus, with Eq. (14) it can be found from Eq. (17) that for all cavi S∈  

 i
i

i

c
a G

Γ
=  (18) 

During crystallisation, the cavities of the crystals under formation can encapsulate 

components in consideration of the unbalance between the declathration and enclathration 

rate. Therefore, from Eq. (4) and (6), the overall rate j iF  by which molecules of type j  are 

accumulated in the cavities of type i  is given by 

 ( ), e , d , d , , int(1 ) 0j i j i j i j i x j i j i j iF r r k C x θ θ= − = − − ≥  (19) 

However, once it has been formed and because it has been formed, the hydrate can be 

considered being in equilibrium with the integration layer at compositionjx . For this phase, 

all of the conditions characterising a state of equilibrium and especially: 

 , (1 )j i x j i j iC xθ θ= −  (20) 



are assumed to hold. Therefore, upon substituting the right hand side of Eq. (20) for j iθ  in Eq. 

(19) one arrives at 

 ( ), e , d , d , , int (1 )j i j i j i j i x j i j j iF r r k C x x θ= − = − −  (21) 

Another way to describe the problem is to start again from Eq. (19) and to write it in the 

form 

 , , int
, d

(1 )j i
x j i j i j i

j i

F
C x

k
θ θ= − −  (22) 

Combining Eq. (22) with 

 j i
j i

i

F

a
θ =  (23) 

leads to the following identity 

 , , int
, , int

, d , d

(1 )1 1
(1 )

1 1
x j i j i

j i x j i j i j i
j i i j i i

C x
F C x F

k a k a

θ
θ

  −
+ = − ⇔ =   + 

, (24) 

being valid for all gj S∈  and cavi S∈ . The equality of Eq. (21) and Eq. (24) reads 

 ( ), , int
, d , , int

, d1 1
x j i j

j i x j i j j
j i i

C x
k C x x

k a
= −

+
, (25) 

which is equivalent to 

 , int
, int

, d1
j

j j
j i i

x
x x

k a
− =

+
 (26) 

Eq. (26) has a strong consequence. The left member of the equality in Eq.(26) is a driving 

force, expressed here by a difference of the mole fraction of the species to be integrated in the 

structure under growing. This driving force is the same for any cavities. It means that the right 

member of the equality in Eq.(26) is also independent of the cavity. It can be stated more 



specifically that the ratio , dj i ik a  is independent of the nature of the cavity. Upon expressing 

ia  by means of Eq. (18) in terms of ic , iΓ  and G , the ratio , dj i ik a  is given by 

 , d , dj i j i i

i i

k k

a Gc

Γ
=  (27) 

The independence of , dj i ik a  of the nature of the cavity i  gives rise to the definition of a 

kinetic constant jk , which is to be regarded as an intrinsic kinetic constant of component j  

 , d
i

j j i
i

k k
c

Γ=  (28) 

By expressing , dj i ik a  in Eq. (26) by means of Eq. (27) and (28) in terms of jk  and G  and 

solving for jx , the following relationship is obtained 

 , int 1
j

j j
j

k G
x x

k G
=

+
 (29) 



 

Table 2 summarises the relations that allow for the calculation of the hydrate composition as a 

function of the composition of the liquid phase in the vicinity of the growing hydrate crystal. 

The expressions are dependent on the composition , intjx  at the interface between the 

integration layer and the diffusion layer. 

To composition can be evaluated from a mass balance in Eq. (30) giving the equality 

between the integration rate due to the Langmuir type of enclathration (lef-hand-side), and the 

gas diffusion around (right-hand-side): 

 ( )
g

cav

w
s s , bulk , int

w
i j i j j j

j S
i S

GA c d A x x
M

ρθ ∗

∈ ∈

 
∀ = − 
 

∑
o

, (30) 

where , bulkjx  is the mole fraction of j  in the bulk phase, and jd ∗  ( 1[ ] msjd ∗ −= ) the mass 

transfer coefficient of the guest species j  around the crystal, respectively. wρo  and wM , 

respectively, stands for the density ( 3
w[ ] kg mρ −=o ) and the molar mass ( 1

w[ ] g molM −= ) of 

the solvent (water), respectively. *id can be estimated from a classical correlation between the 

dimensionless Reynolds, Sherwood and Schmidt numbers of/around the crystal particle 

(index “p”), pRe , pSh  and Sc, as for example by the one of Armenante and Kirwan [8] 

which can be retained 

 0.52 1 3
p pSh 2 0.52Re Sc= +  (31) 

 pSh j

j

d l

D

∗

= , 
4/3 1/3

pRe
l ε

υ
= , Sc

jD

υ=  (32) 

In the equations compiled in Eq. (32), l is the diameter of the crystals under growing and υ  

the kinematic viscosity of the liquid phase, approximated by the kinematic viscosity of the 

pure solvent, i.e. water.jD  ( 2 1[ ] m sjD −= ) denotes the diffusivity of the gas in the solvent. It 

can be extrapolated from the value at a given temperature by using the correlation of Wilke 



and Chang (1995) [9] in which constjD Tη = . η  is the dynamic viscosity at temperature T , 

ε  stands for the energy dissipation rate per unit mass of the fluid, here water. For the case of 

a stirred reactor equipped with a four blades impeller, the following relationship for ε  is 

provided by Baldi et al. [10]. 

 
( ) ( )5 3
stirring rate impeller diameter

liquid volume
ε =  (33) 



 

Table 2 Occupancy factor of enclathrated molecules as a function of the composition in the 

liquid phase. The equations of the right-hand column are obtained from the 

classical Langmuir expressions from Eq. (9) (left column) upon replacing jx  by the 

expression of Eq. (29) (right column). 

 
Thermodynamic 

equilibriuma 

Local equilibrium resulting from a kinetic 

equilibriuma 

j iθ  

g

,

,1
x j i j

x j i j
j S

C x

C x′ ′
′∈

+ ∑
 

, int

1

j

j j
j

k

Gx x
k

G

=
+

 

 

g

, , int

, , int '

(1 )

1 (1 )
j x j i j j

j x j i j j
j S

K C x k G

K C x k G′ ′ ′
′∈

+
+ +∑

 

iθ  g

g

,

,1

x j i j
j S

x j i j
j S

C x

C x

∈

′ ′
′∈

+

∑

∑
 

g

g

, , int

, , int '

(1 )

1 (1 )

j x j i j j
j S

j x j i j j
j S

K C x k G

K C x k G

∈

′ ′ ′
′∈

+

+ +

∑

∑

 

1 iθ−  
g

,

1

1 x j i j
j S

C x
∈

+∑
 

g

, , int

1

1 (1 )j x ji j j
j S

K C x k G
∈

+ +∑

 

a The Langmuir coefficient is usually calculated by using a modified Kihara approach in which the mole fraction 

jx  of the guest component j  is replaced by the corresponding fugacity 
jf . Expressing the relation between the 

Langmuir coefficients 
,x jiC  and 

,f j i j iC C=  as 
,x j i j j i iC x C f= , an approximate relation can be derived for 

calculating 
,x jiC  as a function of 

j iC  by using a simplified version of Henry’s law in the form of 

, w m,exp( )j j H j jf x k pV RT∞ ∞= , where liquid phase non-idealities expressed by means of the activity coefficient as 

well as the pressure dependence of 
m, jV ∞ , the partial molar volume of j  at infinite dilution, are neglected. In this 

relationship 
, wH jk∞  is Henry’s constant of the guest species j  in the solvent water at the saturation pressure of 

the solvent. By proceeding in that way, the approximate relation 
, , w m,exp( )x j i j i H j jC C k pV RT∞ ∞=  is obtained. 



Thus, once numerical values for jk  ( 1[ ] msjk −= ) and for G  are assumed, the , intjx  values 

can be determined as the solution of the system of the N  non-linear equations Eq. (34).This 

set of equations is obtained by substituting the expressions for j iθ  of Table 2 into Eq (30) 

 ( )
g

cav

g

, , int
, bulk , int

, , int

(1 )

1 (1 )
j x j i j j

i j j j
j S

i S j x j i j j
j S

K C x K
G c d x x

K C x K∈ ∈ ′ ′ ′ ′
′∈

 
+ 

∀ = − + + 
 

∑
∑

 with w

w
j jd d

M

ρ∗=
o

 (34) 

where the quantity jd  has the dimension of a molar flux and thus 2 1[ ] mol m sjd − −= . The last 

equation to be taken into account for completely solving the problem is a relation expressing 

the hydrate stability. The subject of this work is not to describe the physical model inherited 

from the model of van der Waals and Platteeuw [1]. For more details on that issue, see [4,5]. 

A fruitful reading could also be our previous study [11] which has motivated the work 

presented in this article. In fact, it focuses on the inter-dependency of internal parameters (i.e. 

Kihara parameters versus reference state parameters) and points to the difference between the 

experimental data from different laboratories. 

The fundamental equation expressing the hydrate stability is deduced from statistical 

thermodynamics. It demonstrates that the hydrates become stable once the cavities are 

sufficiently filled, without considering the chemical nature of the components. 

 ( )
cav

H
w ( , , )

ln 1
β

i i
i S

T p

RT

µ θ ν θ
−

∈

∆ = −∑
r

 (35) 

In Eq. (35), R is the universal molar gas constant and θ
r

 is the vector of independent 

occupancy factors. The summation is to be performed over all types of cavities (e.g., the two 

types of cavities, 512 and 51262 in case of a sI hydrate with a stoichiometry of 2 and 6, 

respectively, as shown in Table 1), counted by the index i . H
w
βµ −∆  is the difference of the 

chemical potential of water in the hydrate phase and the chemical potential of water in an 



hypothetical empty hydrate lattice, denoted as β . It can be calculated since, at equilibrium, 

the chemical potential of water in the solid phase and in the liquid phase are equal. The 

difference between the chemical potential of water in the liquid phase and in the β -phase, 

L
w ( , )T pβµ −∆ , is calculated by means of the following relation originating from classical 

thermodynamics, explained in detail in [4,5] 
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L LL L
m, w 0 m, ww w 0 0
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T p

H T p V T pT p x T p
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RT RT RT RT

a T p x

β ββ βµ µ − −− − ∆ ∆∆ ∆= − +

−

∫ ∫
r

r

 (36) 

In Eq. (36), 0T  and 0p  are reference values for temperature and pressure, taken to be 

273.15 K and 0 MPa [11], respectively, whereas x
r

 denotes the vector of independent mole 

fractions in the liquid phase indicating the composition dependence of L
w
βµ −  and L

wa , the latter 

of which stands for the activity of water in the liquid phase. L
m, w ( , )V T pβ −∆  denotes the 

difference in the molar volumes of water in the liquid and the β -phase, respectively. The 

latter has been measured with high accuracy by von Stackelberg and Müller [12]. The value 

of L
m, w 0( , )H T pβ −∆  can be expressed as temperature dependent according to Sloan and Sloan 

and Koh [4,5]. The last parameter of the equation is L
w 0 0( , )T pβµ −∆ . Numerical values 

published for this parameter show strong variations among different laboratories [4,5]. 

Therefore, it needs to be selected with precaution when being used in calculations of the 

Langmuir coefficient together with Kihara parameters which are retained on the other hand 

[11]. Once L
w
βµ −  is calculated, which in equilibrium is equal to H

w
βµ −∆ , the hydrate 

composition needs to satisfy the identity given by Eq. (35). Hence, by eliminating iθ  from 

Eq. (35) via the expression presented in Table 2, the growth rate G  fulfils the equation 

 
cav g

H
, , intw ln 1

1

β
j x j i j

i
i S j S j

K C x
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µ ν
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∈ ∈

 ∆ = − +  + 
∑ ∑  (37) 



Finally, the local equilibrium is defined when the values of G  and , intjx  for all gj S∈  satisfy 

Eq. (34) and (37). 

The calculation procedure is outlined in more detail in Figure 2. It is a double convergence 

loop. In the first loop, an iteration is performed on the growth rate in order to satisfy Eq. (37) 

describing the hydrate stability. From a physical point of view, the G  value is the value at 

which the structure can grow by incorporation of solute gas to such an amount that is 

sufficient for stabilising the structure (i.e. the cavities are filled to a sufficient extend). The 

relative proportion to which the different gas molecules j  are entering the structure is 

determined in the second convergence loop which is an indirect consequence of the 

competition between the diffusion rates around the crystals and integration rates in the 

structure. By this competition the , intjx  values are fixed. 

Even for a system containing only a single hydrate forming component Aj ≡ , it can be 

demonstrated that the hydrate phase does not form at equilibrium. Eq. (35) along with the 

expressions presented in Table 2, can be written at kinetic equilibrium, during crystallisation, 

and yields to Eq. (37), and after mathematical reformulation to Eq. (38). At thermodynamic 

equilibrium, Eq. (35) leads to Eq.(38) 

 ( )
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where the index “cryst” indicates that the properties are calculated during crystallisation. jx  is 

to be calculated from , intjx  by means of Eq. (29). At equilibrium, the following relation holds 
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On the other hand Eq. (36) becomes: 
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V T p p T RT
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β β βµ µ− − −∆ − ∆ = ∆ − −  (40) 

Eq. (40) shows that in general the difference L L
w cyst w eq( ) ( )β βµ µ− −∆ − ∆  does not vanish. Since 

the fundamental equation describing the equilibrium condition is ββ µµ −− ∆=∆ H
w

L
w , it follows 

that H H
w cyst w eq( ) ( )β βµ µ− −∆ − ∆  is also different from zero, and hence, it is found that 

 ( ) ( )
cav cav

, , , eq1 1
i i

x j i j x j i j
i S i S

C x C x
ν ν

∈ ∈

+ ≠ +∏ ∏  (41) 

 , eqj jx x≠  (42) 

Even for gas hydrate formed in a system containing a single guest component Aj ≡ , the 

hydrate which crystallizes from the liquid solution is in kinetic equilibrium with a liquid layer 

the composition of which (jx ) is not identical with the equilibrium composition , eqjx . 



 

Figure 2 Double procedure of convergence to calculate the gas hydrate growing rate G, and 

the gas composition , intjx  around the growing hydrate. 



5 Discussion 

The approach which has been developed here needs to be compared to the pioneering works 

of Englezos et al. [13,14]. In contrast to our model, Englezos et al  have postulated that the 

integration of any of the hydrate forming guest species is independent from the integration of 

all the other guest species. He assumed a global intrinsic reaction rate R defined according to: 

 ( )
g

, eqj j j
j S

R K f f∗

∈
= −∑  (43) 

where 

 
1 1 1

j j jK k D∗ ∗= +  (44) 

with jK ∗

 
and jD  being, respectively, the intrinsic kinetic constant and the diffusion constant 

of component j  around the growing crystals, respectively. The difference , eqj jf f−  is the 

driving force, conventionally taken as the difference between the fugacity in the vicinity of 

the growing crystals and the fugacity of the hydrate at equilibrium. One of the important 

assumptions of the model of Englezos et al. [14] is that the equilibrium fugacities are 

calculated independently, although the authors do not give a clear instruction of how they are 

exactly to be calculated. 

For a single gas hydrate, this equation has the advantage to simplify to a popular model in 

crystallization, known under the acronym of BCF model (from Burton, Cabrera and Frank 

[15]). In this model, the linear dependence of the growth rate to the driving force corresponds 

to the growth of a rough surface. It can be further assumed that the overall mechanism of the 

coupled processes of integration and diffusion exhibits a first order dependence on the 

fugacity. Moreover, for a single gas, there is no competition between the different 

components to occupy the cavities up to the adequate filling level which stabilizes the 

structure physically and chemically. 



For gas mixtures, the model of Englezos et al. [13,14] considers that the molar flux of 

molecules is the sum of independent individual fluxes. However, the model does not describe 

the local hydrate stability during crystallization as a consequence of the crystallization itself, 

which instead needs to be assumed independently. Neither the papers of Englezos et al. 

[13,14] are clear on that point, nor more recent work [16] that has inherited features from the 

model of Englezos et al. [13,14]. The authors [16] state that the hydrate composition is 

calculated by using a particular software (MEGHA software) without giving a detailed 

description of the vector of mole fractions of the guest molecules 
g

T
1( , , )Nx x x=r K  which is 

being used in calculating the occupancy factors of the cavities, as for example in Eq. (8) and 

(9) with xζ ≡ . 

In the approach defended here, the local hydrate stability is coupled with the crystallization 

itself. The competition between gas molecules, firstly at the diffusion layer scale and secondly 

at the integration layer scale, is considered as the fundamental rule to describe the growth rate 

under non-equilibrium conditions. The hydrate stability, i.e., the mole fraction at equilibrium 

jx , becomes intrinsically dependent on the crystallisation mechanisms and kinetic rates. As a 

result, both the hydrate composition and the growth rate become dependent on the intrinsic 

kinetic constants (Figure 2). 

6 Numerical application 

We have tested the model against CO2-N2 hydrate. The underlying gas mixture is an example 

for a mixture as it is typically encountered in the separation of flue gases emitted in 

combustion processes. CO2 is highly soluble in comparison to N2. The solubilities are 

calculated by means of a Henry’s law approach as described in the monograph of Sloan 

(1998), p. 250ff [4], using the parameters of the corresponding correlation equation for CO2 

and N2 as given in the same literature source on p. 253, [4]. The respective diffusion constants 



of the two gases in water, 
2COD  and 

2ND , at the temperature of 1 °C have been calculated 

from the correlation of Wilke and Chang (1995) [9], using as initial values the corresponding 

coefficients at ambient temperature, 
2

5 2 1
CO ( 298.15 K) 2.00 10 cm sD T − −= = ×  [9] and 

2

5 2 1
N ( 298.15 K) 1.9 10 cm sD T − −= = ×  [17]. The crystallization is supposed to be performed in 

a reactor containing 1 dm3 of water which is agitated by means of a four blades vertical stirrer 

of 0.058 m diameter. The temperature is assumed to be set to 1°C. Under such conditions we 

have observed [18] that methane hydrate particles have a mean diameter in the range of 

10 µm (at a stirring rate of 400 rpm) and 24 µm (at a stirring rate of 800 rpm). For the 

simulation, a stirring rate of 400 rpm and a value of 10 µm for the particle diameter have been 

retained. Using this set of numerical values for the quantities appearing in Eqs. (31)-(34), the 

values 
2

2 1
CO ( 274.15 K) 47.87 molm sd T − −= =  and 

2

2 1
N ( 274.15 K) 45.73 molm sd T − −= =  are 

derived. At this stage, the knowledge of these constants allows for performing the numerical 

calculations with Eq. (34), corresponding to the first loop of convergence in Figure 2. This 

loop of convergence expresses the mass balance between the species migrating across the 

diffusion layer around the particles due to diffusive transport and the species being 

incorporated into the particle. 

The second loop of convergence imposes the restriction that the hydrate particle is at local 

equilibrium with its surrounding integration layer. Therefore a thermodynamic calculation 

needs to be performed in which the equality of the chemical potential of water in the hydrate 

and the liquid phase, using the expressions given in Eqs. (36) and (37), is verified. The 

numerical values of the thermodynamic constants are taken from [11]. 

Figure 3 concerns the crystallisation of structure I gas hydrates formed from a liquid solution 

in equilibrium with a gas phase composed of an equimolar mixture of CO2-N2. In this 

example, a temperature of 1°C is assumed. The equilibrium pressure of the mixture is 

2.584 MPa and the composition of the hydrate at equilibrium is 85.6% CO2. The equilibrium 



pressure for pure CO2 hydrate is 1.407 MPa, while for pure N2 hydrate a value of 17.438 MPa 

is obtained. That means that a pure CO2 or pure N2 gas hydrate can form from the equimolar 

gas mixture only if the partial pressure is respectively superior to twice 1.407 MPa or twice 

17.438 MPa. 

The simulation is performed at a pressure of 4 MPa. Figure 3 plots the composition of the 

hydrate as a function of the kinetic constants 
2COk and 

2Nk as defined in Eq. (28). In Figure 4 

the growth rate G is plotted. 

At high values of 
2Nk  and 

2COk  the growth rate attains a maximum value of 10.64µm s−  

which remains constant over an extended interval of 
2Nk  and 

2COk  and which is limited by the 

diffusion around the particles. In such a case, we observe that the composition of the hydrate 

remains constant, close to a value of 85.5% CO2. This value is extremely closed to the value 

corresponding to the crystallisation of gas hydrate at equilibrium (1°C, 2.584 MPa) in which 

the composition is 85.6% CO2. 

Decreasing the kinetic rate of integration of nitrogen or carbon dioxide in the hydrate phase 

(
2Nk  or

 2COk ) is equivalent to diminish the consumption of one of the gases. It results in an 

enrichment of the hydrate in the other gas. At a pressure of 4 MPa and equimolar gas 

composition, the pure CO2 hydrate is stable. So, the deactivation of the nitrogen integration 

results in the formation of a pure CO2 hydrate. But, at this pressure, the pure nitrogen hydrate 

is not stable and the deactivation of CO2 integration can not lead to the formation of a pure N2 

hydrate. At a pressure of 4 MPa, the hydrate containing the lowest relative amount of CO2 

which can be formed contains 80% of CO2. The deactivation of CO2 needs to be compensated 

on the N2 side. This is achieved from both a decrease of the diffusion and growth rate, 

respectively, as a consequence of Eq. (34). 
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Figure 3 Molar composition of the hydrate phase as a function of the intrinsic growth rates. 
The liquid phase is supposed to be in equilibrium with a gas phase composed of 
an equimolar CO2-N2 mixture, at a pressure of 4 MPa and temperature of 1 °C 
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Figure 4 Growth rate of the hydrate phase as a function of the intrinsic growth rate. The 
liquid phase is assumed to be in equilibrium with a gas phase composed of an 
equimolar CO2-N2 mixture at a temperature of 1 °C and a pressure of 4 MPa 

So, it is clear that both the composition of the hydrate and the growth rate is widely dependent 

on the values of the intrinsic growth rate constants, except if their values are high. 

 

If the intrinsic growth rate constants are high, the composition of the hydrate remains close to 

the value at equilibrium. In such a case, the rate of gas consumption at the particle level can 

be evaluated only from a diffusion limiting rate in the diffusion layer around the hydrate 

particle. The growth rate becomes only dependent on the diffusion coefficient in water, and 

the concentrations of the solute species in the bulk.  

Remark: The calculation has been carried out here in consideration of the equilibrium 

between the gas species being dissolved in the liquid phase at a concentration in with the gas 



phase following the Henry’s law approach described earlier [4]. In practise, the solute 

concentration in the bulk, during a crystallisation process, is dependent on both, the gas 

consumption rate at the hydrate particle level and on the gas diffusion rate at the gas/liquid 

interface.  

Such a complete modelling has not been the subject of this work, because it implies to couple 

this approach with a complete crystallisation model and to validate against experimental 

results. The different approaches including in particular the one we have developed for a 

single gas and pure water [18, 19] or with inhibitors [20] are reported in [2]. 

7 Conclusions and Remarks 

A Langmuir kind of approach has been established at the origin of the thermodynamic 

modelling of the hydrate phases [1]. The derivation results in a non-equilibrium approach. 

Both the growth rate and the hydrate composition become dependent on the competition 

between the different molecules to get enclathrated in the structure under formation. In 

addition, they turn out to become dependent on the gas diffusion around the hydrate crystals. 

The procedure results in the definition of a non-equilibrium hydrate composition with a new 

analytical expression of the composition (Table 2) in which the composition and growth rate 

become dependent on intrinsic kinetic constants. Composition and growth rate turn out to be 

variables that are not independent of each other. Hence, an iterative solution method is 

required to solve the coupled equations of hydrate stability and mass balance (Table 2) The 

approach presented in this work has been successfully implemented in the general algorithm 

presented in a previous study by Herri et al. [11]. It was initially devoted to the calculation of 

Langmuir constants j iC  and has been modified here by means of the procedure described in 

this work and summarised in Table 2 to calculate the growth rate G  and the hydrate 

composition ( j iθ  from Table 2). Intrinsic kinetic constants jk  are acting as input parameters. 



Once the local state conditions of temperature T , pressure p  and composition , bulkjx  in the 

bulk phase are known, the composition of the hydrate can be computed. 
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List of symbols 

a  Activity, dimensionless, or Kihara parameter, or the hard core radius [ ] nma =  

A  A particular type of guest molecule 

sA  Surface area of hydrate crystal, 2
s[ ] mA =  

c  Molar volume concentration, here in particular used to express the concentration of 

cavities of a given type per unit of volume, 3[ ] moldmc −=  

C  Langmuir constant of a guest molecule in a given cavity, [ ]C  depends on 

corresponding concentration/concentration dependent variable in relation to which it is 

defined, for example 1[ ] PafC −= , whereas [ ]xC  is dimensionless 

d  Molar transfer coefficient, appearing in Eq. (34), 2 1[ ] mol m sd − −=  

D  Diffusivity of gas in solvent, 2 1[ ] m sD −=  

f  Fugacity, [ ] Paf =  

F  Flow rate per mole of cavities, 1[ ] sF −=  

G  growth rate, 1[ ] msG −=  



H  Enthalpy, [ ] JH =  

k  Rate (kinetic) constant, [ ]k  can depend the choice for the generalised concnentration 

variable ζ . With xζ = , 1[ ] sk −=  

Bk  Boltzmann constant, 23 1
B (1.3806504 0.0000024)10 J Kk − −= ±   

Hk ∞  Henry’s constant at saturation pressure of the pure solvent, i.e., at infinite dilution of 

the dissolved species, H[ ] Pak ∞ =  

K  Ratio of the intrinsic kinetic constant and the Grow rate, 1[ ] mK −=  

M  Molar mass, 1[ ] kg molM −=  

cavN  Number of different types of cavities, dimensionless 

gN  Number of different types of guest species, dimensionless 

p  Pressure, [ ] Pap =  

r  a) Rate of the enclathration or declathration, 1[ ] mol sr −=  or 1[ ] sr −=  and b) distance 

between the centre of the cavity and the guest molecule [ ] nmr =  

R  Universal gas constant, 1 1(8.314472 0.000015)J K molR − −= ± , or radius of a cavity, 

assumed to be of spherical geometry, [ ] nmR =  

Re Reynolds’ number of the crystal particle, dimensionless 

Sc Schmidt’s number, dimensionless 

Sh Sherwood’s number of the crystal particle, dimensionless 

cavS  Set of indices counting the different types of cavities 

gS  Set of indices counting the guest molecules 



T  Absolute temperature, [ ] KT =  

V  Volume, 3[ ] mV =  

x  Mole fraction of a chemical species, dimensionless; here mainly used to designate the 

mole fraction of guest species dissolved in the liquid phase in the immediate vicinity of 

the hydrate surface 

z  Coordination number of a cavity, dimensionless 

Subscripts 

bulk  Referring to the bulk phase 

cryst During crystallisation 

d  Referring to declathration process, corresponding to the deconstruction of cages at the 

outer surface of the hydrate crystal under simultaneous liberation of guest species 

e Referring to enclathration process, corresponding to the formation of cages at the outer 

surface of the hydrate crystal under simultaneous inclusion of guest species 

eq Referring to a state of equilibrium 

f  Indicating reference fugacity used as concentration dependent quantity 

int  interface between the integration layer and the diffusion layer 

i  Index identifying a particular type of cavity 

j  Index denoting a guest species 

l  Diameter of spherically assumed crystal, [ ] ml =  

m  Referring to molar or partial molar quantity of a given extensive quantity 

p  Referring to a crystal particle, used in combination with the dimensionless parameters 

Re, Sc and Sh 



w  Water 

x  Indicating the reference to the mole fraction as composition variable 

ζ  Referring to generalised concentration variable in the definition of the respective 

quantity, [ ]ζ  depending on the particular choice of the composition variable and 

hence, it can not be generally assigned 

0  Corresponding to reference values for T  and/or p  

Superscripts 

o  Indicating pure component state 

∞  Referring to state of infinite dilution of a/all the solute species in the solution 

G  Gas/Vapour phase 

H  Hydrate phase 

L  Liquid phase 

β  Hypothetical reference phase for the hydrate phase corresponding to empty lattice 

β ϕ−  Referring to the difference between any phase and the reference phase b 

Greek letters 

∆  Difference 

ε  Kihara parameter, maximum attraction potential, [ ] Jε = , energy dissipation rate, 

3[ ] W mε −=  

Γ  Surface concentration, here particularly used for describing the number of moles, i.e., 

amount of substance, of active cavities of a given type per unit of surface area, 

2[ ] molmΓ −=  



µ  Chemical potential, 1[ ] J molµ −=  

ν  Number of cavities per molecules of water, dimensionless 

υ  Kinematic viscosity, 2 1[ ] m sυ −=  

[ ]( ) -14 4 -12 3 -10 2 -8 -60 100 3.27410 -9.13210 +9.898E 10 -5.52010 +1.77810Cυ Θ Θ Θ Θ Θ∈ − ° =
 

η  Dynamic viscosity [ ] .Pa sη =  

[ ]( ) 11 4 9 3 7 2 5 33.24510 -9.06110 9.84510 - 5.5210 1 10 1.77810 00 Cη Θ Θ Θ Θ Θ− − − − −∈ − ° = + +
 

ρ  (Mass) density, 3[ ] kg mρ −=  

Θ  Celsius temperature [ ] CΘ = °  

θ  Occupation rate of a gas in a particular cavity or overall occupation rate of a given 

cavity, dimensionless 

σ  Kihara parameter, distance between the molecules and the cavity wall, at null 

potential, [ ] nmσ =  

ω  Intermolecular interaction potential, [ ] Jω =  

ζ  Generalised concentration variable, [ ]ζ  depending on the particular choice of the 

composition variable and hence, it can not be generally assigned 
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