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Presentation of the data

→ The images                                           are noisy
→ The 50 time steps correspond to one cardiac cycle. 1 px ~ 0.1mm 

50 images of a carotid artery obtained by PC-MRI : 

......
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I (x , t) , x∈ℜ
2 , t∈ℜ



  

Talk outline

Goal : smooth a sequence (time) of images (space)
Approach : statistical (Gaussian processes and POD)

In order to reduce the complexity of the space and time 
statistical description of our data (artery), two steps 

1. Spatial smoothing
2. Time smoothing

and

3. Conclusions



  

Spatial smoothing (1/6)

A basic approch is to smooth the data with a Gaussian Smoother
 → local average at each pixel

The nature of the data is not respected :
The smoother has to be adapted

Contour lines of w a 
Gaussian smoother 
@ px (25,25)

IF(x ,t)=∑
x ' , t '

w x(x ' , t ') I (x ' , t ')



  

Related work

● Local filters : the standard procedure.

● PDE – based filters : Lysaker et al., 2003.

● Non local filters : Buades et al. (2005), Manjon et al. (2008).

● Bayesian + Rician noise + Markov random field : Awake and 
Whitaker  (2007)

● Contribution of this work :
● Non local filter
● Based on Gaussian processes + space-time decomposition : 

may be not the most physical, but computationally and 
mathematically simple with a clear probabilistic interpretation.



  

Spatial smoothing (2/6)

The basic idea is to adapt the neighbourhood of each pixel to the 
problem at hand
→ we consider neighborhoods based on the empirical covariance matrix

Correlation between the pixel 
(43,25) – black dot – and the other 
pixels

This covariance matrix catches the physical partition of the space. 

The intensity at each pixel is seen as a random variable and each 
time step gives us a realization of this RV.

C =
1
N ∑i=1

N

( I (. , t i)− Ī (.)) ( I (. , t i)− Ī (.))
T



  

Spatial smoothing (3/6)

The first three eigenvectors seem meaningful.
From the 4th on, we consider that they represent noise.

To denoise, we study the diagonalization C=P D P t



  

Spatial smoothing (4/6)

We thus split the covariance matrix in two groups 

 

C = (P1 … Pp) (
λ1

⋱
λ p

) (P1 … P p)
T

= P(Ds+Dn)P
T

= C s+Cn

And we look at the neighborhood given by C s

The use of covariance for smoothing is 
called kriging (in statistics).

Here, as the covariance structure is 
learnt empirically, kriging is equivalent 
to Proper Orthogonal Decomposition 
(POD). 



  

Spatial smoothing (5/6)

The smoothed image at t is given by the kriging average (statistical 
model) :

 

I (x , t) = I s(x , t)+I n(x , t) (signal + noise , all Gaussian processes
with Cov. C s  and Cn  )

Filtered I  : IF (. , t ) = E [ I s(. , t) | I (. , t )] = C s (C s+Cn )
−1 I (. , t )

I s(t) = C s (C s+Cn )
−1 I (t ) = (P Ds P

T ) (P D−1 PT ) I (t ) = P Ds D
−1 PT I (t )

= P(
1

1
1

0
⋱

)PT I (t)

Kriging (stat model) and POD (projection on C eigenvectors) are 
equivalent here : 



  

Spatial smoothing (6/6)

Result with effect on contour (right)



  

Time smoothing

→ The curves are much less noisy
→ The periodicity is not guaranteed (observed here because 
data is periodic but closely look at B)

Effect of spatial smoothing (previous slides) on time response :

A B C



  

Time smoothing

→ The artery movements are periodic: we apply a time smoothing 
(covariance in time) which is periodic.

A B C

Both smoothings are krigings since they are based on covariance.

C x (t1, t2) = Cov( I (x ,t1), I (x , t2)) = exp(−λ sin2(π t1−t2

50 ))
Note : any periodical Cov function does not provide a valid covariance. 
Here, it is the restriction of a classical Gaussian kernel to the circle.



  

Final results

...

The sequence (space then time) allows to reduce the complexity
  Space smoothing:  inversion of a 3721 x 3721 matrix
  Time smoothing: inversion of a 50 x 50 matrix
  Time and space: inversion of a 186050 x 186050  matrix !!



  

Conclusions : summary

● We have proposed an approach for denoising MRI signals based 
on Gaussian processes.

● Space and time have been handled in the following way

1. Space treatment, time taken as a random event
2. Time treatment, independently at each point in space
⇨ never construct the complete time-space covariance matrix 
(1860502 here).

● Some physical features are accounted for : spatial 
neighborhoods based on data and a priori that time 
neighborhoods are periodical.



  

Conclusions : perspectives

● Advantage over regression-based filtering : thanks to covariance 
learning, possibility to sample I

 
or

 
I
s
(x,t)  with very little functional 

assumptions (infinite number of basis functions in the RKHS). But there 
are assumptions in the covariance structure (i.e., the RKHS).

x , t

I

● Perspective 1 : such probabilistic 
framework is well-adapted to noisy 
data. Use it to describe the 
uncertainties associated to the 
measures (e.g., confidence 
interval on I

s
(x,t) ).

● Perspective 2 : use the 
decomposed I(x,t) to segment 
images with associated 
uncertainties.
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