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Abstract

We present two recently released R packages, DiceKriging and DiceOptim, for the ap-
proximation and the optimization of expensive-to-evaluate deterministic functions. Fol-
lowing a self-contained mini tutorial on Kriging-based approximation and optimization,
the functionalities of both packages are detailed and demonstrated in two distinct sections.
In particular, the versatility of DiceKriging with respect to trend and noise specifications,
covariance parameter estimation, as well as conditional and unconditional simulations are
illustrated on the basis of several reproducible numerical experiments. We then put to
the fore the implementation of sequential and parallel optimization strategies relying on
the expected improvement criterion on the occasion of DiceOptim’s presentation. An
appendix is dedicated to complementary mathematical and computational details.

Keywords: computer experiments, Gaussian processes, global optimization.

1. Introduction

Numerical simulation has become a standard tool in natural sciences and engineering. Used as
cheaper and faster complement to physical experiments, simulations sometimes are a necessary
substitute to them, e.g., for investigating the long term behavior of mechanical structures, or
the extreme risks associated with geological storage (e.g., CO2 sequestration or nuclear waste
deposit). A first step to such quantitative investigations is to proceed to a fine mathematical
modeling of the phenomenon under study, and to express the function of interest as solution
to a set of equations (generally partial differential equations). Modern simulation techniques
such as finite-elements solvers and Monte-carlo methods can then be used to derive approxi-
mate solutions to the latter equations. The price to pay in order to derive accurate simulation
results is computation time. Conception studies based on an exhaustive exploration of the
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input space (say on a fine grid) are thus generally impossible under realistic industrial time
constraints. Parsimonious evaluation strategies are hence required, all the more crucially
that the computation times and the dimensionality of inputs are high. Mathematical ap-
proximations of the input/output relation – also called surrogate models or metamodels – are
increasingly used as a tool to guide simulator evaluations more efficiently. Once a class of
surrogate models has been chosen according to some prior knowledge, they can be built upon
available observations, and evolve when new data is assimilated. Typical classes of surrogate
models for computer experiments include linear regression, splines, neural nets, and Kriging.
Here we essentially focus on several variants of the Kriging metamodel, and on their use in
prediction and optimization of costly computer experiments.

Originally coming from geosciences (Krige 1951) and having become the starting point of geo-
statistics (Matheron 1963), Kriging is basically a spatial interpolation method. Assuming that
an unknown function y : D ⊂ Rd −→ R is one sample of a real-valued random field (Y (x))x∈D
with given or partially estimated probability distribution, Kriging consists in making predic-
tions of unknown y(x(0)) values (x(0) ∈ D) based on the conditional distribution of Y (x(0))
knowing observations of Y at a design of experiments X = {x(1), . . . ,x(n)} (n ∈ N). Note
that in such a framework, the uncertainty does not refer to an actual random phenomenon,
but to a partially observed deterministic phenomenon. One often refers to the latter kind of
uncertainty as epistemic, whereas the former one is called aleatory (see for instance Math-
eron 1989, for a rich discussion on the subject). Coming back to Kriging, let us mention the
remarkable fact that the Kriging predictor is interpolating the observations, provided that
they are assumed noise-free. It is undoubtedly one of the reasons why this metamodel has
been imported from its geostatistical cradle (d = 2 or 3) to the high-dimensional framework
of computer experiments (d ∈ N). Indeed, following the impulse given by the seminal paper
of Sacks, Welch, Mitchell, and Wynn (1989), many works dedicated to Kriging as a surrogate
to computer experiments have been published including Welch, Buck, Sacks, Wynn, Mitchell,
and Morris (1992) about screening, Koehler and Owen (1996) with an emphasis on experi-
mental design, or O’Hagan (2006) and numerous achievements in uncertainty assessment by
the same author since the early nineties. To get a global overview of state-of-the-art results
and developments in Kriging for computer experiments, we refer to contemporary books of
reference such as Santner, Williams, and Notz (2003), Fang, Li, and Sudjianto (2006), and
Rasmussen and Williams (2006a).

Since the goal of computer experiments is often to tune some control variables in order to
optimize a given output, it is obviously tempting to replace a costly simulator by a Kriging
metamodel in order to speed-up optimization procedures. Numerical experiments presented
in Jones (2001) show that directly optimizing the Kriging predictor is however generally not
efficient, and is potentially leading to artifactual basins of optimum in case of iterated opti-
mizations with metamodel update. Fortunately, efficient criteria like the expected improve-
ment (EI) have been proposed for sequential Kriging-based optimization, as discussed and
compared with other criteria in Schonlau (1997) and Sasena, Papalambros, and Goovaerts
(2002). Already proposed in previous works (e.g., Mockus 1988), EI has become an in-
creasingly popular criterion since the publication of the efficient global optimization (EGO)
algorithm in Jones, Schonlau, and Welch (1998). Recent advances concern the extension of
EI to a multipoints criterion as well as Kriging-based parallel optimization strategies, such
as proposed in Ginsbourger, Le Riche, and Carraro (2010). More detail and some additional
perspectives can be found in the recent tutorial by Brochu, Cora, and de Freitas (2009).
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Back to the implementation of Kriging, let us give a short overview of existing codes, and
motivate the emergence of new open source packages for Computer Experiments. Statistical
software dedicated to Kriging has flourished since the 1990’s, first in the framework of low-
dimensional spatial statistics, and later on in computer experiments and optimization.

Several R (R Development Core Team 2012) packages like spatial (Venables and Ripley 2002),
geoR (Ribeiro and Diggle 2001), gstat (Pebesma 2004), and RandomFields (Schlather 2001)
propose indeed a wide choice of functionalities related to classical 2- and 3-dimensional geo-
statistics. These packages are unfortunately not suitable for applications in higher dimensions,
for which similar Kriging equations but specific parameter estimation techniques have to be
used. Alternatively, MATLAB toolboxes emanating from the computer experiments commu-
nity have become popular among practitioners, like MPerK (Santner et al. 2003) and DACE

(Lophaven, Nielsen, and Sondergaard 2002), or GPML (Rasmussen and Nickisch, 2011; Ras-
mussen and Williams, 2006b) in the context of Gaussian process regression and classification
for machine learning. Several R programs in this vein have also emerged, like the bundle
BACCO (Hankin 2005) and the packages mlegp (Dancik 2011) and tgp (Gramacy 2007; Gra-
macy and Taddy 2010). BACCO contains the packages calibrator and approximator, which
offer an implementation of the calibration and multi-objective models introduced by Kennedy
and O’Hagan (2000, 2001), as well as a first R package implementing universal Kriging (UK)
in a Bayesian framework, emulator. This package considers one choice of priors that provide
analytical results, and is limited to the Gaussian correlation function. Furthermore, it espe-
cially concerns prediction and parameter estimation, which is performed in a basic way. In
mlegp, more efforts have been paid to parameter estimation and the scope is extended to the
applications of Kriging for sensitivity analysis and for stochastic filtering. However, it is re-
stricted to Kriging with Gaussian correlation function and first degree polynomial trend, and
does not offer any Kriging-based optimization algorithm. In other respects, tgp focuses on
treed Gaussian process (TGP) models, with a Bayesian treatment of covariance parameters,
and includes a variant of EGO relying on TGP models. Such highly sophisticated metamodels,
relying on Markov chain Monte Carlo techniques, are quite calculation intensive.

Here we consider regular UK metamodels, and aim at providing the user with the maximum of
potentialities and user-friendliness. Compared to the existing R packages, we propose several
covariance kernels, corresponding to different levels of smoothness for the underlying random
field models. We also implemented the trend structure with the convenient formula syntax,
and pushed the limit of applicability of UK in higher dimensions thanks to a careful implemen-
tation of likelihood maximization routines, relying on the analytical gradient. Furthermore,
we have used the object-oriented S4 formalism, for more user-friendliness and genericity. In
particular, the effort paid to code in an object-oriented way is meant to facilitate the forth-
coming implementation of novel kinds of covariance kernels, and to continue using the same
syntax for calling methods such as predict, plot, show, etc. in the next versions. Finally,
we specifically aim at providing efficient Kriging-based optimizers in the spirit of EGO, with
optional features for parallel computing.

DiceKriging and DiceOptim have been produced in the frame of the DICE (standing for
Deep Inside Computer Experiments) consortium. DICE joined major french companies and
public institutions having a high research and development interest in computer experiments
with academic participants during the years 2006–2009. The main aim was to put in common
industrial problems and academic know-how in order to foster research and transfer in the field
of design and analysis of computer experiments. Four R packages summarizing a substantial
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part of the conducted research have been released on the Comphrehensive R Archive Network
(CRAN, http://CRAN.R-project.org/) at the end of the consortium. The four packages
DiceDesign (Franco, Dupuy, and Roustant 2011), DiceKriging, DiceEval (Dupuy and Helbert
2011), and DiceOptim should be seen as a small software suite, tailored for different but
complementary needs of computer experimenters. For instance, DiceDesign might be a good
option to generate some original space-filling designs at an initial stage of metamodel fitting
with DiceKriging, while DiceEval might be used to assess the coherence and the fidelity of the
obtained metamodel to the observed data. DiceOptim is more a complement of DiceKriging

dedicated to expected improvement functions, offering sequential and parallel Kriging-based
optimization routines. DiceDesign and DiceEval will be presented by their authors in a
forthcoming paper (Dupuy, Helbert, and Franco 2010). They will not be used nor detailed
here.

The main aim of this article is to give a practical introduction to DiceKriging and DiceOptim,
together with an overview of the underlying statistical and mathematical background. In order
to produce a self-contained document, we chose to recall basic assumptions in the body of
the document. This is precisely the aim of Section 2. Section 3 then gives an overview of the
main functionalities of the two packages. Sections 4 and 5 provide illustrative examples with
code chunks of DiceKriging and DiceOptim, respectively. Finally, the four appendices focus
on different aspects of the implementation. In particular we give a table of computational
cost and memory size of the main procedures (Appendix C.3), some comments about speed
(Appendix C.4), and two tests of trustworthiness for the covariance estimation algorithms
(Appendix D).

2. Statistical background

Prior to presenting the DiceKriging and DiceOptim packages from a user perspective, let us
recall some statistical basics of Kriging metamodeling and Kriging-based optimization.

2.1. From simple to universal Kriging for deterministic simulators

In this section, the simulator response y is assumed to be a deterministic real-valued function
of the d-dimensional variable x = (x1, . . . , xd) ∈ D ⊂ Rd. y is assumed to be one realization
of a square-integrable random field (Yx)x∈D with first and second moments known up to some
parameters.

Let us recall that X = {x(1), . . . ,x(n)} denote the points where y has already been evaluated,
and denote by y = (y(x(1)), . . . , y(x(n)))⊤ the corresponding outputs. For any x ∈ D, the
aim of Kriging will be to optimally predict Yx by a linear combination of the observations y.
Simple Kriging and universal Kriging constitute the best linear predictors in two particular
cases concerning the field (or “process”) Y and what is known about it.

Simple Kriging: From spatial linear interpolation to Gaussian process conditioning

In simple Kriging (SK), Y is assumed to be the sum of a known deterministic trend function
µ : x ∈ D −→ µ(x) ∈ R and of a centered square-integrable process Z:

Y (x) = µ(x) + Z(x), (1)

http://CRAN.R-project.org/
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where Z’s covariance kernel C : (u,v) ∈ D2 −→ C(u,v) ∈ R is known. Most of the time,
Z is assumed second order stationary, so that C(u,v) = σ2R(u − v;ψ) where the so-called
correlation function R is a function of positive type with parameters ψ, and σ2 is a scale
parameter called the process variance. More detail concerning these parameters can be found
in a forthcoming subsection. Concerning Y ’s trend, note that it is very easy to come back to
the centered process Y (x)− µ(x) since µ is known. Without loss of generality, we will hence
first assume that Y is centered. Now, let us recall that the best linear unbiased predictor of
Y (x) based on the observations Y (X) is obtained by finding λ∗(x) ∈ Rn minimizing the mean

squared error MSE(x) := E

[(
Y (x)− λ(x)⊤Y (X)

)2]
. If C is invertible, the strict convexity

of MSE ensures both the existence and the uniqueness of λ∗(x), and the SK weights are given
by: λ∗(x) = C−1c(x), where C = (C(x(i),x(j)))1≤i,j≤n is the covariance matrix of Y (X), and
c(x) = (C(x,x(i)))1≤i≤n is the vector of covariances between Y (x) and Y (X). Substituting
both the random vector Y (X) by its realization y and λ(x) by λ∗(x) in the expression
λ(x)⊤Y (X), we get the so-called SK mean prediction at x: mSK(x) := c(x)⊤C−1y. Similarly,
by plugging in the optimal λ∗(x) in the expression of the MSE, one gets the so-called SK
variance at x: s2SK(x) := C(x,x)−c(x)⊤C−1c(x). Generalizing to the case of a non-centered
process Y with known trend function µ(·), we get the SK equations:

mSK(x) = µ(x) + c(x)⊤C−1(y − µ) (2)

s2SK(x) = C(x,x)− c(x)⊤C−1c(x), (3)

where µ = µ(X) is the vector of trend values at the experimental design points. Classical
properties include the fact thatmSK interpolates the data (X,y), and that s2SK is non-negative
and zero at the experimental design points. Furthermore, the SK variance is independent
of y (homoscedasticity in the observations). Note that these properties hold whatever the
chosen kernel C, without any condition of compatibility with the data. In addition, let
us remark that in the typical case of a stationary kernel C(x,x′) = σ2R(x − x′;ψ), the
simple Kriging equations simplify to mSK(x) = µ(x) + r(x)⊤R−1(y − µ) and s2SK(x) =
σ2

(
1− r(x)⊤R−1r(x)

)
, where r(x) and R respectively stand for the analogues of c(x) and

C in terms of correlation. In particular, mSK is hence not depending on σ2, while s2SK is
proportional to it.

One major fact concerning the SK equations is that they coincide with classical conditioning
results in the case where the process Z is assumed Gaussian. Indeed, the orthogonality of
Y (x) − λ∗(x)⊤Y (X) and Y (X) ensures independence in the latter case, so that mSK(x) =
E[Yx|Y (X) = y]. Similarly, s2SK then coincide with the conditional variance VAR[Yx|Y (X) =
y], so that the conditional law of Yx can finally be written in terms of SK quantities:

Yx|Y (X) = y ∼ N (mSK(x), s
2
SK(x)) (4)

More generally, the law of the whole random process Y conditional on Y (X) = y is Gaussian
with trend mSK, and with a conditional covariance structure which can be analytically derived
in the same fashion as s2SK (see e.g., Ginsbourger et al. 2010, for details). The latter is the key
to conditional simulations of Y knowing the observations, as we will illustrate in Section 4.
We now turn to the case where the trend µ is known up to a set of linear trend coefficients.

When some linear trend coefficients are unknown: Ordinary and universal Kriging

Let us focus on the case where the trend is of the form µ(x) =
∑p

j=1 βjfj(x) (p ∈ N− {0}),
where the fj ’s are fixed basis functions, and the βj ’s are unknown real coefficients. Universal
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Kriging (UK) consists in deriving best linear predictions of Y based on the observations Y (X)
while estimating the vector β := (β1, . . . , βp)

⊤ on the fly. Note that in the specific case where
the basis functions reduce to a unique constant function, UK is referred to as ordinary Kriging
(OK). The UK equations are given by:

mUK(x) = f(x)⊤β̂ + c(x)⊤C−1(y − Fβ̂) (5)

s2UK(x) = s2SK(x) + (f(x)⊤ − c(x)⊤C−1F)⊤(F⊤C−1F)−1(f(x)⊤ − c(x)⊤C−1F) (6)

where f(x) is the vector of trend functions values at x, F = (f(x(1)), . . . , f(x(n)))⊤ is the n×p
so-called experimental matrix, and the best linear estimator of β under correlated residual
is given by the usual formula β̂ := (F⊤C−1F)−1F⊤C−1y. Basic properties of UK include
similar interpolating behavior as SK, with a variance vanishing at the design of experiments.
Furthermore, mUK(x) tends to the best linear fit f(x)⊤β̂ whenever the covariances c(x)
vanish, which may typically happen when x is far away from the design X for some norm ‖.‖,
in the case of a stationary covariance kernel decreasing with ‖u− v‖. Note also the inflation
of the Kriging variance term, which reflects the additional uncertainty due to the estimation
of β.

As in the case of SK, it is possible to interpret UK in terms of random process conditioning,
at the price of some specific assumptions. Indeed, working in a Bayesian framework with
an improper uniform prior over Rp for β (see Helbert, Dupuy, and Carraro 2009) leads to
a Gaussian posterior distribution for the process Y conditional on the observations. Again,
mUK(x) and s2UK(x) appear respectively as conditional mean and variance, and the analyt-
ically tractable conditional covariance kernel enables the use of conditional simulations at
any set of new design points. This model is a first step towards Bayesian Kriging, where
more general prior distributions can be chosen, not only for β but also for all kernel param-
eters such as σ2 or ψ. We will not develop this approach any further here since a generic
version of Bayesian Kriging is not proposed in the present version of DiceKriging, but send
the interested reader to the seminal article Omre (1987) and the works of O’Hagan (see
http://www.tonyohagan.co.uk/academic/pub.html).

2.2. Filtering heterogeneously noisy observations with Kriging

In many practical situations, it is not possible to get exact evaluations of the deterministic
function y at the design of experiments, but rather pointwise noisy measurements. This is
the case for instance for partial differential equation solvers relying on Monte Carlo methods
(e.g., in nuclear safety), or in partially converged simulations based on finite elements (e.g.,
in fluid dynamics). In such cases, for a given x ∈ D, the user does not have access to y(x),
but to an approximate response y(x) + ǫ. When it is reasonable to assume that ǫ is one
realization of a “noise” random variable ε, it is still possible to derive Kriging approximations.
Here we assume that the probability distribution of ε may depend on x and other variables,
and that its realizations may differ for different measurements of y at the same x. So instead
of referring to the measurements of y in terms of x’s, we will denote by ỹi = y(x(i)) + ǫi the
sequence of noisy measurements, where the x(i)’s are not necessarily all distinct, and by τ2i
the corresponding noise variances. Following the convenient particular case of Monte Carlo
simulations, we finally make the assumption that εi ∼ N (0, τ2i ) (1 ≤ i ≤ n) independently.
Note that although not explicitly addressed in this paper, the case of multi-Gaussian vector
of εi’s with prescribed covariance matrix is a straightforward generalization of the model

http://www.tonyohagan.co.uk/academic/pub.html
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considered here. We now recall the Kriging equations for heterogeneously noisy observations,
in the Gaussian process framework.

If we suppose that y is a realisation of a Gaussian process following the simple Kriging assump-
tions above, the ỹi’s can now be seen as realizations of the random variables Ỹi := Y (x(i))+εi,
so that Kriging amounts to conditioning Y on the heterogeneously noisy observations Ỹi
(1 ≤ i ≤ n). Indeed, provided that the process Y and the Gaussian measurement errors
εi are stochastically independent, the process Y is still Gaussian conditionally on the noisy
observations Ỹi, and its conditional mean and variance functions are given by the following
slightly modified Kriging equations:

mSK(x) = µ(x) + c(x)⊤(C+∆)−1(ỹ − µ) (7)

s2SK(x) = C(x,x)− c(x)⊤(C+∆)−1c(x), (8)

where ỹ = (ỹ1, . . . , ỹn)
⊤, and ∆ is the diagonal matrix of diagonal terms τ21 , . . . , τ

2
n. The only

difference compared to noiseless SK equations is the replacement of C by C + ∆ at every
occurrence. Specific properties of this variant of the SK metamodel include the fact that
mSK(·) is not interpolating the noisy observations (i.e., where no observation has been done
with τ = 0), that s2SK(·) does not vanish at those points, and is globally inflated compared
to the noiseless case. Note that although s2SK(·) now depends on both the design X and the
noise variances τ 2 := {τ21 , . . . , τ

2
n}, it still does not depend on the observations, similarly as

in the noiseless case. Note finally that the same filtering effect applies in the case of universal
Kriging, where the equations are similarly obtained by replacing C−1 by (C+∆)−1.

2.3. Covariance kernels and related parameter estimation

The choice of the covariance kernel C has crucial consequences on the obtained Kriging
metamodel, all the more so when the trend is known or assumed constant. In order to be
admissible, C has to be chosen in the set of positive definite kernels. Checking that positive-
definiteness holds for a given C is however not an easy task, and non-parametric estimation of
it seems unrealistic. So what one typically does in Kriging is to select beforehand a parametric
family of kernels known to be positive definite, and to estimate the corresponding parameters
based on available data, for instance by maximizing a likelihood function or minimizing the
average cross-validation error. A usual restriction is to consider kernels depending only on the
increment u − v, called stationary kernels. Admissible stationary kernels coincide with the
functions of positive type, which are characterized by Bochner’s theorem (see e.g., Rasmussen
and Williams 2006a) as Fourier transforms of positive measures. Some of the most popular 1-
dimensional stationary kernels include the Gaussian kernel, Fourier transform of the Gaussian
density, as well as the Matérn kernel, Fourier transform of the Student density (Stein 1999).
One convenient way of getting admissible covariance kernels in higher dimensions is to take
tensor products of 1-d admissible kernels. Such kernels, called separable, are the most widely
used in computer experiments literature. The covariance kernels available in the current
version of DiceKriging are built upon this model, up to a multiplicative constant σ2 > 0:

c(h) := C(u,v) = σ2
d∏

j=1

g(hj ;θj), (9)

where h = (h1, . . . , hd) := u − v, and g is a 1-dimensional covariance kernel. Although this
could make sense in some contexts, the package does not allow mixing different covariance
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Gaussian: g(h) = exp
(
− h2

2θ2

)
.

Matérn ν = 5/2 : g(h) =
(
1 +

√
5|h|
θ + 5h2

3θ2

)
exp

(
−

√
5|h|
θ

)
.

Matérn ν = 3/2 : g(h) =
(
1 +

√
3|h|
θ

)
exp

(
−

√
3|h|
θ

)
.

Exponential: g(h) = exp
(
− |h|

θ

)
.

Power-Exponential: g(h) = exp
(
−
(
|h|
θ

)p)
.

Table 1: The covariance kernels implemented in DiceKriging.

kernels by dimensions. The parameters θj are chosen to be physically interpretable in the
same unit as the corresponding variables. They are called characteristic length-scales by
Rasmussen and Williams (2006a). The analytic formula for g are taken from this book, and
are given in Table 1, where θ > 0 and 0 < p ≤ 2.

The above covariances will result in different level of smoothness for the associated random
processes. With Gaussian covariance, the sample paths of the associated centered Gaussian
process have derivatives at all orders and are thus very smooth (they are even analytical).
With Matérn covariance with parameter ν, the process is (mean square) differentiable at
order k if and only if ν > k. Thus with ν = 5/2, the process is twice differentiable; with
ν = 3/2 only once. With ν = 1/2, equivalent to the exponential covariance, the process is
only continuous. This is also the case for the power-exponential covariance when the power
parameter p is strictly less than 2. The general Matérn covariance depends on the modified
Bessel function, and has not been implemented yet. However, when ν = k+1/2 where k is a
non-negative integer, the covariance expression is given by an analytical expression. The two
provided cases correspond to commonly needed levels of smoothness (ν = 3/2 and ν = 5/2).

Despite the offered flexibility in terms of differentiability level, all the covariance kernels above
correspond to Gaussian processes with continuous paths. Now, in applications, the assump-
tion of continuity is sometimes untenable for simulator outputs, although deterministic, due
in particular to numerical instabilities. Hence, even if several evaluations at the same point
deliver the same response, a slight change in the input vector may sometimes result in a jump
in the response. Such discontinuities are classically handled in geostatistics using a so-called
nugget effect, consisting in adding a constant term τ2 (similar to what is called a jitter in
machine learning and often used for numerical purposes) to c(0):

c(h) := σ2
d∏

j=1

g(hj ;θj) + τ2δ0(h) (10)

The consequences of such a modification of the covariance kernel on Kriging are fairly similar
to the case of noisy observations. Up to a rescaling of the Kriging variance due to the
fact that the process variance changes from σ2 to σ2 + τ2, predicting with nugget or noisy
observations coincide when considering points outside of the design of experiments: A diagonal
with constant term is added to the covariance matrix of observations, smoothing out the
noiseless Kriging interpolator and inflating the variance. A major difference, however, is that
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Kriging with nugget effect conserves the interpolation property: Since τ2 appears this time
in the covariance vector too, the Kriging mean predictor systematically delivers the original
observation in virtue of the covariance vector being a column of the covariance matrix, as in
the deterministic case without nugget and contrarily to the noisy case.

In DiceKriging, the covariance parameters can be either given by the user or estimated. The
first situation is useful for academic research or for Bayesian computations. The second one is
needed for non-Bayesian approaches, and for Kriging-based optimization. At the present time,
two estimation methods are proposed: maximum likelihood estimation (MLE) or penalized
MLE (PMLE). The latter is based on the smoothly clipped absolute deviation (SCAD) penalty
defined in Fan (1997) but is still in beta version. In Appendix A, we give the expressions of
the likelihoods, concentrated likelihoods and analytical derivatives involved. We also refer to
Section 3.3 for details on the optimization algorithms used.

2.4. Kriging-based optimization: Expected improvement and EGO

Optimization (say minimization) when the objective function is evaluated through costly sim-
ulations creates a need for specific strategies. In most cases indeed, the non-availability of
derivatives prevents one from using gradient-based techniques. Similarly, the use of meta-
heuristics (e.g., genetic algorithms) is compromised by severely limited evaluation budgets.

Kriging metamodels has been successfully used for the global optimization of costly determin-
istic functions since the nineties (Jones et al. 1998). A detailed review of global optimization
methods relying on metamodels can be found in Jones (2001). The latter illustrates why
directly minimizing a deterministic metamodel (like a spline, a polynomial, or the Kriging
mean) is not efficient. Kriging-based sequential optimization strategies address the issue of
converging to non optimal points by taking the Kriging variance term into account, hence
leading the algorithms to be more explorative. Such algorithms produce one point at each
iteration that maximizes a figure of merit based upon the law of Y (x)|Y (X) = y. Several infill
sampling criteria are available, that balance Kriging mean prediction and uncertainty. The
expected improvement criterion has become one of the most popular such criteria, probably
thanks to both its well-suited properties and its analytical tractability.

The expected improvement criterion

The basic idea underlying EI is that sampling at a new point x will bring an improvement
of min(y(X)) − y(x) if y(x) is below the current minimum, and 0 otherwise. Of course, this
quantity cannot be known in advance since y(x) is unknown. However, the Gaussian process
model and the available information Y (X) = y make it possible to define and derive:

EI(x) : = E
[
(min(Y (X))− Y (x))+ |Y (X) = y

]

= E
[
(min(y)− Y (x))+ |Y (X) = y

]
,

(11)

for which an integration by parts yields the analytical expression (see Jones et al. 1998):

EI(x) := (min(y)−m(x)) Φ

(
min(y)−m(x)

s(x)

)
+ s(x)φ

(
min(y)−m(x)

s(x)

)
, (12)

where Φ and φ are respectively the cdf and the pdf of the standard Gaussian distribution. The
latter analytical expression is very convenient since it allows fast evaluations of EI, and even
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analytical calculation of its gradient and higher order derivatives. This used in particular in
DiceOptim for speeding up EI maximization (see Appendix C.1). This criterion has important
properties for sequential exploration: It is null at the already visited sites, and non-negative
everywhere else with a magnitude that is increasing with s(·) and decreasing with m(·).

The “efficient global optimization” algorithm

EGO (see Jones et al. 1998) relies on the EI criterion. Starting with an initial Design X

(typically a Latin hypercube), EGO sequentially visits a current global maximizer of EI and
updates the Kriging metamodel at each iteration, including hyperparameters re-estimation:

1. Evaluate y at X, set y = y(X), and estimate covariance parameters of Y by ML.

2. While stopping criterion not met:

(a) Compute xnew = argmaxx∈DEI(x) and set X = X ∪ {xnew}.

(b) Evaluate y(xnew) and set y = y ∪ {y(xnew)}.

(c) Re-estimate covariance parameters by MLE and update Kriging metamodel.

EGO and related EI algorithm have become commonplace in computer experiments, and
are nowadays considered as reference global optimization methods in dimension d ≤ 10 in
cases where the number of objective function evaluations is drastically limited (see e.g., Jones
2001 or Brochu et al. 2009). One major drawback of EGO is that it does not allow parallel
evaluations of y, which is desirable for costly simulators (e.g., a crash-test simulation run
typically lasts 24 hours). This was already pointed out in Schonlau (1997), where the multi-
points EI was defined but not further developed. This work was continued in Ginsbourger
et al. (2010) by expliciting the latter multi-points EI (q-EI), and by proposing two classes
of heuristics strategies meant to approximately optimize the q-EI, and hence simultaneously
deliver an arbitrary number of points without intermediate evaluations of y.

2.5. Adaptations of EI and EGO for synchronous parallel optimization

Considering q ≥ 2 candidate design points Xnew := {xn+1), . . . ,x(n+q)}, the q-points EI is
defined as conditional expectation of the joint improvement brought by the new points:

EI(x(n+1), ...,x(n+q)) = E

[(
min(y)−min

(
Y(x(n+1)), ...,Y(x(n+q))

))+ ∣∣Y(X) = y

]
(13)

Unlike in the 1-point situation, q-EI is not known in closed form (See Ginsbourger et al. 2010,
for a formula in the case q = 2). However, it is possible to estimate it by a standard Monte
Carlo technique relying on Gaussian vector simulation (see Table 2).

q-EI can potentially be used to deliver an additional design of experiments in one step through
the resolution of the optimization problem

(x(n+1),x(n+2), ...,x(n+q)) = argmaxXnew∈Dq [EI(Xnew)] (14)

However, the optimization problem defined by equation 14 is of dimension d × q, and with
a noisy and derivative-free objective function in the case where the criterion is estimated
by Monte Carlo. Pseudo-sequential greedy strategies have been proposed that approach the
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1: function q-EI(X, y, Xnew)
2: Ccond := VAR[Y (Xnew)|Y (X) = y]
3: for i← 1, . . . , nsim do

4: Mi ∼ N (m(Xnew),Ccond) ⊲ Simulating Y at Xnew conditional on Y (X) = y

5: Isim(i)=[min(y)−min(Mi)]
+ ⊲ Simulating the improvement at Xnew

6: end for

7: EIsim = 1
nsim

∑nsim

i=1 Isim(i) ⊲ Estimation of the q-points expected improvement
8: end function

Table 2: Approximate computation of q-EI by Monte Carlo simulation.

1: function CL(X, y, L, q)
2: for i← 1, . . . , q do

3: xn+i = argmaxx∈DEI(x)
4: X = X ∪ {xn+i}
5: y = y ∪ {L}
6: end for

7: end function

Table 3: The constant liar algorithm.

solution of 14 while avoiding its numerical cost, hence circumventing the curse of dimension-
ality. In particular, the constant liar (CL) is a sequential strategy in which the metamodel is
updated (still without hyperparameter re-estimation) at each iteration with a value L ∈ R ex-
ogenously fixed by the user, here called a “lie” (see Table 3). L should logically be determined
on the basis of the values taken by y at X. Three values, min{y}, mean{y}, and max{y} were
considered in Ginsbourger et al. (2010). In the present version of DiceOptim, the CL function
has a tunable L, whereas the parallel version of EGO relying on CL (called CL.nsteps) has
a lie L fixed to min{y}. More detail is given in Section 5, dedicated to numerical examples
produced with the main functions of DiceOptim.

3. Guidelines for users

3.1. The main functions

DiceKriging performs estimation, simulation, prediction and validation for various Kriging
models. The first step is to define a Kriging model, which is the goal of the km function. It
is suited either for SK and UK, noise-free and noisy observations, and allows some flexibility
in estimating all or only some parameters. Its functioning is detailed in Table 4. Simulation,
prediction, and validation are implemented as simulate, predict and plot methods, that
apply directly to km objects. For prediction, the kind of Kriging must be indicated in the
argument type ("SK" or "UK"). The plot method corresponds to leave-one-out validation. A
k-fold validation can be found in DiceEval.
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Kriging model description Arguments to be specified in km

Unknown trend and cov. kernel parameters (UK) (Default) Nothing to specify
Known trend and cov. kernel parameters (SK) coef.trend, coef.cov, coef.var
Known trend, unknown cov. kernel parameters coef.trend

Optional nugget effect
– Known nugget (homogeneous to a variance)
– Unknown nugget.estim = TRUE

Case of noisy observations noise.var (homogen. to a variance)
(incompatible with a nugget effect in this package)

Table 4: Possibilities of the function km for the definition of Kriging models. km estimates the
unknown parameters and creates the resulting km object. Default is universal Kriging (noise-
free observations, no nugget effect). The other Kriging models are obtained by specifying
arguments in km as indicated above.

R function Description

EI One-point noise-free EI criterion
qEI q-points noise-free EI criterion (estimated by Monte Carlo)
EGO.nsteps Sequential EI Algorithm – model updates including re-estimation of covari-

ance parameters – with a fixed number of iterations (nsteps)
max_EI One-point noise-free EI maximization. No call to the objective function
max_qEI.CL (sub-)maximization of the q-points EI, based on the constant liar heuristic.

No call to the objective function
CL.nsteps Parallel EI Algorithm – model updates including re-estimation of covariance

parameters – with a fixed number of iterations (nsteps)

Table 5: Main functions for deterministic Kriging-based optimization in DiceOptim.

DiceOptim performs sequential and parallel Kriging-based optimization, based on the 1-point
and multipoints EI criteria. The main functions are described in Table 5. Note that in the
version presented here, DiceOptim is limited to noise-free observations.

3.2. Trend definition and data frames

A convenient way to specify linear trends in R is to use the class formula that provides
compact symbolic descriptions. Among advantages of formulas, arbitrary functions of the
inputs can be considered, and updating models is very easy. For instance, the linear model
arguments of the functions lm or glm (package stats) are given as objects of class formula.
The same is possible in DiceKriging, through the km function, with some specificities that we
describe now.

First, the design X must be provided as a data.frame in the argument design of km, which
implies that all columns of X are named. Then the trend can be specified in the argument
formula, using these names. The formula mechanism mainly works as in the lm function
from the stats package, as shown in Table 6; In particular, notice that the inhibition function
I is sometimes required, especially for polynomial terms. Note however that the left hand
term is not needed (and will not be used if provided): This is because formula is only defining
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Trend formula in km

Constant (default model) ~ 1

Full 1st order polynomial ~ .

idem + 2nd order interactions ~ .^2

β0 + β5x
3
5 + β2,6x2x6 + β12x12 ~ I(x5^3) + I(x2*x6) + x12

β0 + β4 cos(x4) + β7 sin(x7) ~ cos(x4) + sin(x7)

idem, but without intercept ~ -1 + cos(x4) + sin(x7)

1st order polynomial without x3 ~ . - x3

1st order polynomial plus β8 exp(x8) ~ . + exp(x8)

Full 2nd order polynomial d = 3 ~ .^2 + I(x1^2) + I(x2^2) + I(x3^2)

Table 6: Examples of trend specification in km.

a trend (and not a transformation of the response y).

Once the trend is specified, one can estimate or build a km object (see last section). For
prediction (or simulation), the new location(s) Xnew have to be specified in the argument
newdata of the predict (or simulate) method. In practice, the user may not want to lose
time converting matrices to data.frames. Thus, Xnew can be provided simply as a matrix (or
even a vector in case of a single new data). However, with this practical syntax, no variable
name is stored for Xnew, and it is always assumed that the columns of Xnew are provided in
the same order as for X. For evident reasons, the user must not depart from this rule.

3.3. Comments about the optimization algorithms

Optimization algorithms are used on two different occasions: Likelihood maximization and
EI maximization. These problems are quite hard, due to the cost of objective functions,
numerical instabilities, multimodality and dimensionality issues (see e.g., Santner et al. 2003).
In DiceKriging and DiceOptim, we have addressed them by following four leading ideas. First,
rely on trustworthy state-of-the-art algorithms; Second, choose at least one algorithm capable
to overcome multimodality; Third, to improve speed and accuracy, supply the analytical
gradients; Fourth, enable tunability of key parameters by the user. For these reasons, we
have selected a quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (function
optim) and the hybrid algorithm genoud from package rgenoud (Mebane and Sekhon 2011),
taking advantage of both the global search provided by a genetic algorithm and the local
search based on gradients. Let us now turn to some specificities.

Likelihood maximization

The implementation is based on the efficient algorithm proposed by Park and Baek (2001),
and extended to the Kriging models addressed here (see the implementation details in the
Appendix A). On the one hand, the results obtained with BFGS are the quickest, but may
be variable. To reduce this variability, BFGS is run from the best point among an initial
population drawn at random. The size of this population can be tuned by changing pop.size
in the argument control. On the other hand, rgenoud usually gives more stable results, at
the cost of a higher computational time. Again, the most influential parameters can be tuned
by the user. Some results concerning the performance of the optimizers are given in the
examples section.
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EI maximization

The branch-and-bound algorithm proposed by Jones et al. (1998) was not chosen here, since
the boundaries depend on the covariance function and may be hard to find in general. Due to
the multimodal form of EI (which is equal to 0 at every visited point), the genoud algorithm
is used. The analytical gradient of EI is derived in Appendix B.

4. Examples with DiceKriging

4.1. An introductory 1D example with known parameters.

First, let use km to build a Kriging model with the following characteristics: second order
polynomial trend 11x+2x2, Matérn 5/2 covariance structure with σ = 5 and θ = 0.4. Recall
that the trend form is interpreted with an object of type formula, in the same way as for
linear models (see lm{stats}). As this formula is based on the variables names, the argument
design of km must be a data.frame. Thus in the following example, the vector inputs is
converted to a data.frame with name x, which must also be used in the argument formula.

R> inputs <- c(-1, -0.5, 0, 0.5, 1)

R> output <- c(-9, -5, -1, 9, 11)

R> theta <- 0.4

R> sigma <- 5

R> trend <- c(0, 11, 2)

R> model <- km(formula = ~x + I(x^2), design = data.frame(x = inputs),

+ response = output, covtype = "matern5_2", coef.trend = trend,

+ coef.cov = theta, coef.var = sigma^2)

Note that for polynomials, the operator I must be used in formula (see Section 3.2). The
argument covtype could have been omitted since "matern5_2" is the default case. For nice
printing, and checking purpose, just type:

R> model

Call:

km(formula = ~x + I(x^2), design = data.frame(x = inputs), response = output,

covtype = "matern5_2", coef.trend = trend, coef.cov = theta,

coef.var = sigma^2)

Trend coeff.:

(Intercept) 0.0000

x 11.0000

I(x^2) 2.0000

Covar. type : matern5_2

Covar. coeff.:
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theta(x) 0.4000

Variance: 25

Then use the predict method to predict at new data. As all parameters are assumed to be
known, the argument type is turned to "SK", standing for simple Kriging.

R> t <- seq(from = -2, to = 2, length = 200)

R> p <- predict(model, newdata = data.frame(x = t), type = "SK")

Note that the command:

R> p <- predict(model, newdata = t, type = "SK")

gives a warning: Since t is not named, there is no guarantee that the values contained in it
correspond to the same variable than x. Hence, newdata should be provided as a data.frame

with the same variable names as the design.

Finally plot the results: SK mean and 95% confidence intervals (see Figure 1).

R> plot(t, p$mean, type = "l", xlim = c(-2, 2), ylim = c(-30, 30),

+ xlab = "x", ylab = "y")

R> lines(t, p$lower95, col = "black", lty = 2)

R> lines(t, p$upper95, col = "black", lty = 2)

R> points(inputs, output, col = "red", pch = 19)

R> abline(h = 0)

Influence of the range parameters

The range parameters in DiceKriging (i.e., the θ’s) are length scales: A small value is anal-
ogous to a high frequency, and a large one to a low frequency. To illustrate this, we ran the
code above with three values of θ: 0.05, 0.4 and 1. The result is represented in Figure 2.

Influence of the trend

Let us visualize the influence of the trend, by comparing constant, affine and sine trends.
The sine trend is chosen instead of the quadratic trend, to show that the trends proposed in
DiceKriging are not limited to polynomials. The only modifications in the R code are in the
arguments formula and trend. For a constant trend, we used:

R> formula <- ~ 1

R> trend <- 0

For the affine trend:

R> formula <- ~ x

R> trend <- c(0, 10)
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Figure 1: A first 1-dimensional example of simple Kriging with second order polynomial trend
and Matérn covariance. All parameters are known here.
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Figure 2: Simple Kriging with known parameters, and three different range values: Small
(left), intermediate (middle) and large (right). The range parameters (i.e., the θ’s) are length
scales.

The first coefficient in trend is the intercept, and the second one the slope: Thus, mathe-
matically the affine trend is 10x. Note that in this case, another possible choice for formula
is:
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Figure 3: Simple Kriging with known parameters, and three different trends: Constant, affine
and sine.

R> formula <- ~ .

Finally, for the sine trend, we have used the function 1 + 15 sin(π4x):

R> formula <- ~ sin(pi/4 * x)

R> trend <- c(1, 15)

The corresponding results are shown in Figure 3. The main difference is with extrapolation
(here mainly outside [−1, 1]) where the Kriging mean reverts to the specified trend. For more
details, see Ginsbourger, Dupuy, Badea, Carraro, and Roustant (2009).

4.2. Simulations of Gaussian processes underlying Kriging models

Two kinds of simulations are used in the context of Kriging modeling: Unconditional simu-
lations, which consists in simulating sample paths of a Gaussian process with given (uncon-
ditional) mean and covariance functions, and conditional simulations, where the mean and
covariance functions are conditional on fixed values of the Gaussian process at some design
points. Conditional and unconditional simulations are implemented as the so-called simulate

method, applying to km objects. For instance, simulate can be applied to the object model
defined in the previous section (Section 4.1). By default, (unconditional) simulations are per-
formed at the design points. To simulate at new points, the new locations must be specified
in the argument newdata. The argument nsim specifies the number of simulations required.

R> t <- seq(from = -2, to = 2, length = 200)

R> y <- simulate(model, nsim = 5, newdata = data.frame(x = t))

Note that, as for the predict method, the command:
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Figure 4: Unconditional simulations of a trended 1-d Gaussian process with Matérn covari-
ance (ν = 5/2).

R> y <- simulate(model, nsim = 5, newdata = t)

gives a warning: Since t is not named, there is no guarantee that the values contained in it
correspond to the same variable than x. Hence, newdata should be provided as a data.frame

with the same column names as the design.

Formally, y is a matrix where each row contains one simulation. All simulations are repre-
sented in Figure 4. The trend is the second order polynomial previously considered.

R> trend <- c(0, 11, 2)

R> ytrend <- trend[1] + trend[2] * t + trend[3] * t^2

R> par(mfrow = c(1, 1))

R> plot(t, ytrend, type = "l", col = "black", ylab = "y", lty = "dashed",

+ ylim = c(min(ytrend) - 2 * sigma, max(ytrend) + 2 * sigma))

R> for(i in 1:5) lines(t, y[i, ], col = i)

Influence of covariance functions

The smoothness of stationary Gaussian processes sample functions depends on the properties
(at 0) of the covariance functions. To illustrate this, we redo the simulations above with
different covariance functions, namely: "gauss", "matern3_2" and "exp". As expected,
when chosen in this order, the corresponding simulated paths are more and more irregular, as
can be seen in Figures 5, 6 and 7. To sum up, the four covariance functions are represented in
Figure 8, with one simulated path for each (to save space, the code is not inserted here, but
can be found in the documentation of simulate.km.). Finally, the same kind of experiment
can be done with the power-exponential covariance function ("powexp"), as can be seen from
the results presented in a summarized form in Figure 9.

Conditional simulations

Still following the first example of Section 4.1, conditional simulations can be performed,
simply by turning the argument cond to TRUE:
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Figure 5: Unconditional simulations of a trended 1-d Gaussian process with Gaussian covari-
ance.
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Figure 6: Unconditional simulations of a trended 1-d Gaussian process with Matérn covariance
(ν = 3/2).
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Figure 7: Unconditional simulations of a trended 1-dimensional GP with exponential covari-
ance.
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Figure 8: Representation of several covariance functions (left), with corresponding simulated
paths (right).
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Figure 9: Left: Power-exponential covariance functions with parameters θ = 1 and p ∈
{1, 1.5, 2}. Right: Corresponding simulated paths.
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Figure 10: Conditional simulations of a trended 1-d Kriging model with Matérn covariance
(ν = 5/2).

R> y <- simulate(model, nsim = 5, newdata = data.frame(x = t), cond = TRUE)

The conditional simulations are represented in Figure 10. This procedure will be used to
do two trustworthiness tests. Firstly, the conditional simulations can be compared with the
simple Kriging mean and variance. Secondly, it will be used to evaluate the accuracy of the
maximum likelihood estimators of the Gaussian process covariance parameters. More details
are given in Appendix D.

R> plot(t, ytrend, type = "l", col = "black", ylab = "y", lty = "dashed",

+ ylim = c(min(ytrend) - 2 * sigma, max(ytrend) + 2 * sigma))

R> for(i in 1:5) lines(t, y[i, ], col = i)

R> points(inputs, output, col = "red", pch = 19)

4.3. Estimation and validation of Kriging models

A 2-dimensional case study

To illustrate the functionalities of DiceKriging on non-simulated data, we start with the
famous 2-dimensional Branin-Hoo function (Jones et al. 1998). This function is a usual case
study in global optimization with the particularity of having three global minimizers. Thus,
it will be used in several DiceOptim examples. For now, let us estimate a Kriging model. In
this first example, we consider a very naive design, which is a 4× 4 grid.

R> X <- expand.grid(x1 = seq(0, 1, length = 4), x2 = seq(0, 1, length = 4))

R> y <- apply(X, 1, branin)

For the trend, we use a first order polynomial, but this choice does not much influence the
results here. Finally, assuming a priori that the Branin-Hoo function is smooth, we use
a Gaussian covariance function. Then, the construction of the Kriging model (including
estimation of the trend and covariance parameters) is performed using km:
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R> m <- km(~ ., design = X, response = y, covtype = "gauss")

optimisation start

------------------

* optimisation method : BFGS

* analytical gradient : used

* trend model : ~x1 + x2

* covariance model :

- type : gauss

- nugget : NO

- parameters lower bounds : 1e-10 1e-10

- parameters upper bounds : 2 2

- best initial point among 20 : 0.9640805 1.805726

N = 2, M = 5 machine precision = 2.22045e-16

At X0, 0 variables are exactly at the bounds

At iterate 0 f= 75.782 |proj g|= 0.96408

At iterate 1 f = 75.586 |proj g|= 0.91329

At iterate 2 f = 74.8 |proj g|= 1.2034

At iterate 3 f = 74.769 |proj g|= 0.25605

At iterate 4 f = 74.768 |proj g|= 0.020569

At iterate 5 f = 74.768 |proj g|= 0.00034973

At iterate 6 f = 74.768 |proj g|= 0.00026438

iterations 6

function evaluations 9

segments explored during Cauchy searches 8

BFGS updates skipped 0

active bounds at final generalized Cauchy point 1

norm of the final projected gradient 0.000264377

final function value 74.7675

F = 74.7675

final value 74.767536

converged

Note that the verbosity can be removed by means of the control argument:

R> m <- km(~ ., design = X, response = y, covtype = "gauss",

+ control = list(trace = FALSE))

but there are several advantages to keep it, at least here, to see what is tunable in estimation.

Indeed, many default values are proposed by km: The maximization of the likelihood is per-
formed with the BFGS optimizer, using analytical gradient and an initial random search based
on 20 initial points. Also, the domain over which the parameters are estimated, depending
on the ranges of the design X in each direction. But in some cases, it can be wise to change
some of these default values. For instance, in order to limit the variability of the optimization
results, one may increase the size of the initial random search:
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R> m <- km(~ ., design = X, response = y, covtype = "gauss",

+ control = list(pop.size = 50, trace = FALSE))

or prefer to BFGS the genetic algorithm rgenoud, which is a global optimizer, at the cost of
a longer running time. This can be done by means of the argument optim.method:

R> m <- km(~., design = X, response = y, covtype = "gauss",

+ optim.method = "gen", control = list(trace = FALSE))

As for BFGS, the main optimization parameters such as the size of the initial population can
be tuned in control. More detail about estimation options can be found in the documentation
of km. Coming back to the default values, we now print the estimation results:

R> m

Call:

km(formula = ~., design = X, response = y, covtype = "gauss")

Trend coeff.:

Estimate

(Intercept) 1249.2166

x1 -672.2587

x2 -362.5707

Covar. type : gauss

Covar. coeff.:

Estimate

theta(x1) 0.8461

theta(x2) 2.0000

Variance estimate: 855146.7

We can see a clear anisotropy with a longer range in the x2 direction. The estimated value of
θ2 reached the boundary 2. Since it depends on the two ranges θ1 and θ2 only, the concentrated
likelihood can be plotted. In the following, we compute logLikFun over a 30× 30 grid:

R> n.grid <- 30

R> x.grid <- seq(0.01, 2, length = n.grid)

R> X.grid <- expand.grid(x.grid, x.grid)

R> logLik.grid <- apply(X.grid, 1, logLikFun, m)

The result can then be drawn, and the optimum added by extracting it from the km object m:

R> contour(x.grid, x.grid, matrix(logLik.grid, n.grid, n.grid), 40,

+ xlab = expression(theta[1]), ylab = expression(theta[2]))

R> opt <- m@covariance@range.val

R> points(opt[1], opt[2], pch = 19, col = "red")
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Figure 11: Level sets of the concentrated log-likelihood (represented over [0, 2]2) of the trended
Kriging model presented in Section 4.3. The filled circle corresponds to the optimum found
numerically by using km.

In Figure 11, we see that the optimum is found in a correct way by BFGS. This is because
the likelihood surface is pretty simple. Of course, this may not be always the case, especially
in higher dimensions. Turning the argument optim.method to "gen" may be useful.

Now, we can draw the Kriging mean and visualize the prediction accuracy.

R> n.grid <- 50

R> x.grid <- seq(0, 1, length = n.grid)

R> X.grid <- expand.grid(x1 = x.grid, x2 = x.grid)

R> y.grid <- apply(X.grid, 1, branin)

R> pred.m <- predict(m, X.grid, "UK")

R> par(mfrow = c(1, 3))

R> contour(x.grid, x.grid, matrix(y.grid, n.grid, n.grid), 50,

+ main = "Branin")

R> points(X[ , 1], X[ , 2], pch = 19, cex = 1.5, col = "red")

R> contour(x.grid, x.grid, matrix(pred.m$mean, n.grid, n.grid), 50,

+ main = "Kriging mean")

R> points(X[ , 1], X[ , 2], pch = 19, cex = 1.5, col = "red")

R> contour(x.grid, x.grid, matrix(pred.m$sd^2, n.grid, n.grid), 15,

+ main = "Kriging variance")

R> points(X[ , 1], X[ , 2], pch = 19, cex = 1.5, col = "red")

The Kriging variance is also represented in Figure 12. We observe that the prediction is
satisfactory. The anisotropy appears clearly on the graph of the Kriging variance.

Finally, a leave-one-out validation is implemented as a plot method (see results in Figure 13):
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Figure 12: Level sets of the Branin-Hoo function (left) and of its Ordinary Kriging metamodel
(mean in the middle, variance on the right) based on a grid design of size 16 (red filled points).
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Figure 13: Leave-one-out cross-validation for the previous Kriging metamodel of the Branin-
Hoo function.

R> plot(m)

A more complete validation procedure is available in package DiceEval (not presented here),
including k-fold cross validation.
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Figure 14: Leave-one-out validation for the 6-d Hartman function.

A 6-dimensional approximation example

Let us now consider the 6-dimensional, negative valued, Hartman function (see Jones et al.
1998). It is a standard test function in optimization, and is implemented in DiceKriging.
Following (Jones et al. 1998), the transformation − log(−(·)) is first applied to the response.
For estimation, a 80-point optimal Latin hypercube (LH) design is chosen, using the function
optimumLHS from package lhs (Carnell 2012). The leave-one-out diagnostic is represented in
Figure 14, and shows no strong departures from the model assumptions.

R> n <- 80

R> d <- 6

R> set.seed(0)

R> X <- optimumLHS(n, d)

R> X <- data.frame(X)

R> y <- apply(X, 1, hartman6)

R> mlog <- km(design = X, response = -log(-y))

R> plot(mlog)

To go further, since the 6-dimensional Hartman function is cheap-to-evaluate, we study the
performance of the model on a 250-point test LH sample generated at random. In practice,
of course, such a validation scheme would be intractable, and k-fold cross-validation would be
a sensible substitute for it. Coming back to out-of-sample validation, we draw the predicted
values versus the true ones (Figure 15). We have also added the results that would be obtained
with a trend (first order polynomial + interactions) or without the log transformation of the
response. In this case, it seems clear that the log transformation is improving prediction
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Figure 15: Out-of-sample validation for the 6-dimensional Hartman function on a 250-point
test sample, with log transformation of the response (constant trend (a), or polynomial trend
(b)) or without transformation (constant trend (c), polynomial trend (d)). The polynomial
trend is a first order polynomial plus all second order interactions. For displaying purposes,
(c) and (d) are represented in log scale, by applying the transformation − log(−(·)) to the
data, after removing the unrealistic positive predictions.

(while guaranteeing the correct sign of predicted outputs). On the other hand, adding a
trend does not result in obvious improvements.

R> n.test <- 250

R> set.seed(0)

R> X.test <- randomLHS(n.test, d)

R> colnames(X.test) <- names(X)

R> y.test <- apply(X.test, 1, hartman6)

R> ylog.pred <- predict(mlog, newdata = X.test, type = "UK")$mean

4.4. The case of noisy observations

In the case where the observations are assumed to be noisy, whether they stem from stochas-
tic simulation (Fernex, Heulers, Jacquet, Miss, and Richet 2005), from partially converged
deterministic simulations (Forrester, Bressloff, and Keane 2006), or from real experiments, it
is crucial to quantify the corresponding noise variance values and to take them into account
within Kriging metamodeling.

Here we rely on a basic one-dimensional example for all cases of Kriging with nugget effect,
Kriging with homogeneous noise, and Kriging with heterogeneous noise (in reverse order here).
Note that the results shown are directly generalizable i) to multivariate cases, ii) involving
simple as well as universal Kriging models.

R> fundet <- function(x)

+ return((sin(10 * x)/(1 + x) + 2*cos(5 * x) * x^3 + 0.841)/1.6)

R> theta <- 1/sqrt(30)
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Figure 16: Kriging with heterogeneously noisy observations. The noisy observations (stars)
are obtained from the true, unknown, function (dotted line) by adding an heterogeneous noise,
which amplitude is represented by the vertical bars corresponding to a 95% confidence level.
The Kriging mean (solid blue line) does not interpolate the noisy observations and the 95%
prediction intervals (filled area) do not vanish at the design points.

R> n <- 7

R> x <- seq(0, 1, length = n)

R> t <- seq(0, 1, by = 0.01)

R> t <- sort(c(t, x))

R> repart <- c(150, 30, 70, 100, 10, 300, 40)

R> noise.var <- 4/repart

R> z <- fundet(x)

R> y <- z + sqrt(noise.var) * rnorm(length(x))

R> model <- km(design = data.frame(x = x), response = y, coef.trend = 0,

+ coef.cov = theta, coef.var = 1, noise.var = noise.var)

R> p <- predict.km(model, newdata = data.frame(x = t), type = "SK")

The way the vectors repart and noise.var are coded correspond to the situation of a Monte-
Carlo simulator with a total budget of 700 samplings heterogeneously spread among the 7
points, with a distribution given by repart <- c(150, 30, 70, 100, 10, 300, 40) and
a unitary variance of 4. The results are shown in Figure 16, and Figure 17 illustrates the
case where the same total computational budget is homogeneously distributed between the 7
points (repart <- rep(100, 7)).

Finally, the same data is used in Figure 18 to illustrate what kind of Kriging model would
have been obtained with a nugget instead of a homogeneous noise variance.

R> model <- km(design = data.frame(x = x), response = y,

+ coef.trend = 0, coef.cov = theta, coef.var = 1, nugget = 4/100)

R> p <- predict.km(model, newdata = data.frame(x = sort(t)), type = "SK")

As announced in the Statistical Background section, the Kriging mean predictor with nugget
effect is quite similar to the one with homogeneously noisy observations, up to its behavior at
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Figure 17: Kriging with homogeneously noisy observations. This is a variant of Figure 16 in
the case where all observations have the same noise variance.
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Figure 18: Kriging with nugget effect. The colors and line types are the same as in Figure 16.
The Kriging mean is now interpolating the observations (stars), and the Kriging prediction
intervals (filled area) vanish at the design points.

the design points. Indeed, one can see that the Kriging predictor interpolates the observations.
As in the deterministic case, this goes with a zero Kriging variance at the corresponding
points. Outside of the design points, however, the Kriging variance has the same shape as in
the analogous Kriging model with homogeneous noise, but with values translated by a factor
of τ2. This is explained by the fact that the process Y does not have the same variance
whether τ2 stands for a nugget coefficient or for a noise variance.

4.5. Sensitivity analysis – Wrapper to package sensitivity

Sensitivity analysis (SA) is not implemented yet in this version of DiceKriging. However,
connecting DiceKriging to packages devoted to SA like sensitivity (Pujol 2008) is easy, and
we suggest an efficient way of doing this in the present section.
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Let us first recall the elements of SA that are useful for this section. SA aims at“studying how
uncertainty in the output of a model (numerical or otherwise) can be apportioned to different
sources of uncertainty in the model input” (Saltelli et al. 2008). It relies on the so-called
Sobol (or FANOVA decomposition). Let us assume that the input variables X1, . . . , Xd are
independent random variables, and denote by ν the probability measure of X = (X1, ..., Xd).
Then any function f ∈ L2(ν) can be decomposed in the following way:

f(X) = µ0 +
d∑

i=1

µi(Xi) +
∑

i<j

µij(Xi, Xj) + · · ·+ µ1,...,d(X1, . . . , Xd),

where for all subset I, the µI(XI)’s are centered and satisfy the condition E(µI(XI)|XJ) = 0
for all strict subset J ( I. With these assumptions, the decomposition is unique and its terms
are mutually orthogonal. In particular, the variance of the output is also decomposed as:

var(Y ) =
∑

var (µi(Xi)) +
∑

var (µi,j(Xi, Xj)) + ...+ var (µ1,...,d(X1, ..., Xd))

Therefore, the global influence of XI onto f(X) can be measured by the ratios, called Sobol
indices:

SI = var(µI(XI))/var(Y )

For a given input variable Xi, two Sobol indices are of special interest: The first order index
Si, that quantifies the influence of Xi solely, and the total effect ST

i =
∑

J ⊇{i} SJ , that takes
into account all the terms involving Xi. We refer to Sobol (1993) and Saltelli, Chan, and
Scott (2000) for more details.

Let us now illustrate a possible coupling bewteen DiceKriging and the package sensitivity.

A toy example

Before considering an example suited to SA, first consider the Branin function. To perform
SA with Branin, we first need to adapt its implementation to matrix-typed arguments.

R> branin.mat <- function(X) apply(X, 1, branin)

Then, assuming independent uniform distributions over [−1, 1] for the inputs, the Sobol in-
dices can be computed using the function fast99 (from sensitivity), by typing (see help file
of fast99 for other examples):

R> SA.branin <- fast99(model = branin.mat, factors = 2, n = 1000,

+ q = "qunif", q.arg = list(min = 0, max = 1))

Now, let us compute the SA of the Kriging metamodel estimated from few runs of the Branin
function again. After constructing the model (with a 16-point factorial design, as above),

R> m.branin <- km(design = X, response = y)

we create a connection function based on predict.km, that desactivates name checking (use-
less in this particular context) and returns only the Kriging mean:
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Figure 19: Sensitivity analysis for the Branin function (left) and a Kriging metamodel of it
(right). For each input variable Xi, the decomposition of the total index (first order index +
sum of the interactions with all other inputs) is visualized with a box split into two subboxes,
which respective heights give the index values.

R> kriging.mean <- function(Xnew, m)

+ predict.km(m, Xnew, "UK", se.compute = FALSE, checkNames = FALSE)$mean

to which we apply fast99:

R> SA.metamodel <- fast99(model = kriging.mean, factors = 2, n = 1000,

+ q = "qunif", q.arg = list(min = 0, max = 1), m = m.branin)

The results can be printed, or drawn with a plot method taken from the package sensitivity.
For the Branin function, the metamodel is precise, so the Sobol indices (main and total effects)
calculated with the metamodel are very close to the true ones (Figure 19).

R> par(mfrow = c(1, 2))

R> plot(SA.branin)

R> plot(SA.metamodel)

A standard SA 8-dimensional example

Let us now take the 8-dimensional Sobol function implemented in sensitivity. A Kriging
metamodel is estimated with a 80-point optimal LH (generated by optimumLHS from lhs).

R> n <- 80

R> d <- 8

R> set.seed(0)

R> X <- optimumLHS(n, d)

R> X <- data.frame(X)

R> y <- sobol.fun(X)

R> m.sobol <- km(design = X, response = y)

The SA are computed as above:
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Figure 20: Sensitivity analysis for the Sobol function (left) and a Kriging metamodel of it
(right).

R> SA.metamodel <- fast99(model = kriging.mean, factors = d, n = 1000,

+ q = "qunif", q.arg = list(min = 0, max = 1), m = m.sobol)

R> SA.sobol.fun <- fast99(model = sobol.fun, factors = d, n = 1000,

+ q = "qunif", q.arg = list(min = 0, max = 1))

Finally, the results are drawn on Figure 20. The main characteristics are visible with the
metamodel, but the Sobol indices relative to x3 and x4 are too small and may not be well
captured, depending on the initial design.

R> par(mfrow = c(1, 2))

R> plot(SA.sobol.fun)

R> plot(SA.metamodel)

4.6. Known problems and their solutions

Despite the care taken in implementation, some problems can be encountered. Some of them
are purely numerical, and can be solved easily, but others are intrinsic to Kriging and may
be due to an inappropriate choice of design points or covariance kernels.

Non invertibility of covariance matrices

Interpolation is sometimes hard to achieve numerically. Roughly speaking, this happens when
the design points are too close relatively to the spatial correlation length. This results in nearly
non invertible covariance matrices. The problem is more severe with the Gaussian covariance,
which adds a strong smoothness constraint on the sample paths. With our kernels, the worst
case with this respect is the Gaussian kernel, which implies the existence of derivatives at any
order. On the other hand, the Matérn kernel with ν = 5/2 (for which the derivatives exist up
to order 2) gives much better conditioned covariance matrices. Thus, the first recommendation
is to avoid using the Gaussian kernel and prefer the Matérn kernel with ν = 5/2. Such a
choice is strongly advocated by Stein (1999). This kernel is the default choice in DiceKriging.
Another possibility, that can be combined to the former one, is to add a nugget effect, or
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jitter. This method is sometimes referred to as diagonal inflation. However, the sample paths
are then discontinuous at the design points. Therefore, the nugget value should not be too
large in order to avoid abusive departure from continuity, but not too small to prevent from
numerical problems.

To illustrate these two solutions, let us consider again the example of the last section, but
increase the size of the design of experiments.

R> X <- expand.grid(x1 = seq(0, 1, length = 10), x2 = seq(0, 1, length = 10))

R> y <- branin(X)

R> t <- try(km(design = X, response = y, covtype = "gauss"))

R> cat(t)

Error in chol.default(R):

the leading minor of order 47 is not positive definite

An error message indicates that the covariance matrix could not be inverted. To overcome
this difficulty, one can choose the diagonal inflation method:

R> km(design = X, response = y, covtype = "gauss", nugget = 1e-8 * var(y))

or replace the Gaussian covariance kernel by the (default) Matérn kernel (ν = 5/2):

R> km(design = X, response = y)

Identifiability issues caused by large design interdistances

A dual difficulty is encountered when the design points are not close enough relatively to the
spatial correlation length. In such situations, estimation of Kriging models may give either
misleading results or flat predictions, corresponding to range parameters θ estimated to zero.
Analogous issues are faced in signal theory, where recovering a periodic signal is not possible if
the sampling frequency is too small. A solution is penalizing. For instance, Li and Sudjianto
(2005) have shown some promising results obtained by Penalized MLE with SCAD penalty
(Fan 1997). This method has been implemented in DiceKriging, but should be considered
as a beta version at this stage, since the estimation results for the tuning parameter are not
convincing. Another possibility is simply to add a constraint θ ≥ θmin in MLE. One then face
the analogous problem of choosing the lower threshold θmin.

To illustrate the potential virtues of penalizing, consider the sine function proposed by Li and
Sudjianto (2005), and compare the estimation results obtained with (only) 6 design points
by three procedures: MLE, PMLE with SCAD penalty function, and MLE constrained by
θ ≥ θmin (Figure 21). The Gaussian covariance kernel is used, with a small nugget effect.
The usual MLE gives an unrealistic value of θ, estimated to 0.15 approximately, which seems
much too small in comparison to the distances between design points. On the other hand,
both modified estimation procedures give realistic estimation results. However, a difficulty
still remains in proposing a general method for choosing either the tuning parameter λ in
PMLE or θmin. In the present case, λ has been estimated by cross validation, and θmin fixed
to the mean distance between design points.
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Figure 21: Comparison of three estimation methods for Kriging approximation of the sine
function, with 6 design points: MLE (left), PMLE with SCAD penalty (middle), MLE con-
strained by θ ≥ 10/5 (right). The bullets represent the design points, the solid line the Kriging
mean and the dotted line the sine function.

5. Examples with DiceOptim

5.1. Expected improvement: 1D and 2D illustrations

As recalled in Section 3, the EI criterion is at the heart of all Kriging-Based optimization
approaches considered in DiceOptim. Let us illustrate it on a first 1-dimensional toy example
adapted from qEI’s help file. 5 points and corresponding observations are arbitrarily chosen,
and a Kriging metamodel with linear trend and Gaussian covariance is fitted to them.

R> x <- c(0, 0.4, 0.6, 0.8, 1)

R> y <- 10 * c(-0.6, 0, -2, 0.5, 0.9)

R> theta <- 0.1

R> sigma <- 10

R> trend <- 5 * c(-2, 1)

R> model <- km(~x, design = data.frame(x = x), response = y,

+ coef.trend = trend, covtype = "gauss", coef.cov = theta,

+ coef.var = sigma^2)

The Kriging mean predictor, confidence intervals, and EI for x varying in [0, 1] are then
computed and represented using the predict and EI functions:

R> t <- seq(from = 0, to = 1, by = 0.005)

R> p <- predict(model, newdata = data.frame(x = t), type = "UK")

R> EI_values <- apply(as.matrix(t), 1, EI, model, type = "UK")
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Figure 22: The first 1-dimensional toy example described in this section (left), and its asso-
ciated EI (right).

We can observe on Figure 22 that EI behaves as described in the Statistical Background
section: it is multimodal, null at the already sampled locations, and positive everywhere
else with a magnitude increasing with both the decreasing Kriging mean and the increasing
Kriging variance. A call to EI at one of the design points results indeed in a null value:

R> EI(x[3], model, type = "UK")

[1] 0

The maximum of EI is reached here at a unique point between the two first design points,
where the uncertainty is the highest. A numerical maximization of the EI function can be
obtained by using the dedication function max.EI, with tunable rectangular search domain,
starting point, and selected control parameters for the underlying rgenoud algorithm:

R> x_star <- max_EI(model, lower = 0, upper = 1, parinit = 0.5,

+ control = list(pop.size = 10, max.generations = 10,

+ wait.generations = 5, BFGSburnin = 10))

max.EI returns the optimal candidate point and corresponding EI value:

R> print(x_star)

$par

x

[1,] 0.2068089

$value

EI

[1,] 1.352718

Let us now consider the 2-dimensional Branin function. This time, EI depends on a Kriging
model that needs to be estimated. In the sequel, the design is an optimal 15-point LH,
generated with the function optimumLHS of the lhs package. The Kriging model is obtained
with km, using the default values.
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Figure 23: Level sets of the EI associated with Kriging metamodels of the Branin function
obtained based on three LH designs (blue triangles): An optimal one (left) and two random
ones (middle, right).

R> d <- 2

R> n <- 15

R> set.seed(0)

R> design <- optimumLHS(n, d)

R> design <- data.frame(design)

R> names(design) <- c("x1", "x2")

R> response.branin <- apply(design, 1, branin)

R> fitted.model1 <- km(design = design, response = response.branin)

The corresponding EI is then computed over a grid:

R> x.grid <- y.grid <- seq(0, 1, length = n.grid <- 25)

R> design.grid <- expand.grid(x.grid, y.grid)

R> EI.grid <- apply(design.grid, 1, EI, fitted.model1)

The resulting EI is represented on Figure 23 for our optimum LH design, and also for two
additional random LH designs (obtained with seeds 0 and 100). In most cases, EI detects
interesting regions when starting from 15 points, but the nature of the result may deeply differ
depending on the initial design drawn. However, we will see in next section that the final
optimization results are not very sensitive to the initial design choice, provided that enough
points are sequentially added within the EGO algorithm.

Finally, like in the 1-dimensional example, we observe that EI is multimodal. Thus a genetic
algorithm is recommended for its optimization. To improve efficiency, the analytical gradient
is implemented for the standard case (constant trend). One example of gradient field is
represented in Figure 24, obtained with a 3× 3 factorial design (See help file of EI.grad).
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Figure 24: Gradient field of the EI associated to a Kriging metamodel of the Branin function.
The design points are represented by blue triangles, and the gradients by yellow arrows.

5.2. EGO illustrated on the Branin example

Now, let us apply the EGO algorithm to the Branin function. For the LH design used in last
section, we run 10 steps of EGO by means of the EGO.nsteps function.

R> nsteps <- 10

R> lower <- rep(0, d)

R> upper <- rep(1, d)

R> oEGO <- EGO.nsteps(model = fitted.model1, fun = branin, nsteps = nsteps,

+ lower, upper, control = list(pop.size = 20, BFGSburnin = 2))

The obtained sequence is shown on Figure 25 (left), as well as the EI contours corresponding
to the last model (right). We observe that the 3 basins of global optima have been explored.
Furthermore, the remaining EI after 10 steps is focused one these areas, showing that there
is not much interest to explore outside at this stage.

R> par(mfrow = c(1, 2))

R> response.grid <- apply(design.grid, 1, branin)

R> z.grid <- matrix(response.grid, n.grid, n.grid)

R> contour(x.grid, y.grid, z.grid, 40)

R> points(design[ , 1], design[ , 2], pch = 17, col = "blue")

R> points(oEGO$par, pch = 19, col = "red")

R> text(oEGO$par[ , 1], oEGO$par[ , 2], labels = 1:nsteps, pos = 3)

R> EI.grid <- apply(design.grid, 1, EI, oEGO$lastmodel)

R> z.grid <- matrix(EI.grid, n.grid, n.grid)

R> contour(x.grid, y.grid, z.grid, 20)

R> points(design[ , 1], design[ , 2], pch = 17, col = "blue")

R> points(oEGO$par, pch = 19, col = "red")

Now, as pointed out before, the whole EGO sequence depends on the initial LH design, and
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Figure 25: Sequence of visited points obtained by 10 iterations of EGO applied to the Branin
function (left), and EI contours corresponding to the last model (right). The blue triangles
represent the initial design, here an optimal LH design, and the filled circles stand for the
visited points. Each number indicates the order of evaluation of the corresponding point
within the sequence.

it is important to study the sensitivity of the results to the design choice. Thus, we have
performed 10 steps of EGO with 100 random LH designs of size 15. Figure 26 represents
the 3 points which are the closest to the 3 global optimizers of Branin function, for all 100
drawings. One may observe that the final result is nearly always satisfactory since all 3 regions
are visited, and the optimum found is close to the true one.

5.3. Applications of EGO to the 6-dimensional Hartman function

We now come back to the 6-dimensional Hartman function previously considered, and build
an optimization example upon it. Since it has been shown earlier that a logarithmic transfor-
mation of y was necessary to obtain a well-behaved Kriging metamodel, we choose to work
here at first with suitably transformed data. The initial design chosen here is a 50-point
design obtained by uniform sampling over [0, 1]6. For purpose of reproducibility, and since
the variability is here greater than in 2 dimensions, one simulated design has been saved as
mydata (the one of Ginsbourger 2009), and is used all over the section.

R> hartman6.log <- function(x) -log(-hartman6(x))

R> data("mydata")

R> X.total <- matrix(unlist(mydata), 50, 6)

R> nb <- 50

R> X <- X.total[1:nb, ]

R> y <- apply(X, 1, hartman6.log)

An Ordinary Kriging metamodel with Matérn covariance (ν = 5
2) is fitted to the transformed

data. Parameter estimation is performed by MLE, with the rgenoud optimizer. The control
parameters are set such that the obtained results have a good level of reliability, which occurs
with a slightly longer response time of km as with the default settings.
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Figure 26: Sensitivity to the initial design of the EGO optimization results. The best 3 points
of 100 EGO strategies of length 10 are represented, corresponding to 100 random LH initial
designs. The symbol chosen (circle, triangle, square) depends on the distance to the nearest
of the 3 global optimizers.

R> hartman6.mm <- km(design = data.frame(X), response = y,

+ control = list(pop.size = 50, max.generations = 20,

+ wait.generations = 5, BFGSburnin = 5), optim.method = "gen")

We now apply 50 iterations of the EGO algorithm to the Hartman function, starting from
the initial model above, based upon a 50-point design. The EGO.nsteps command is not run
to avoid long compilation times.

R> nsteps <- 50

R> res.nsteps <- EGO.nsteps(model = hartman6.mm, fun = hartman6.log,

+ nsteps = nsteps, lower = rep(0, 6), upper = rep(1, 6),

+ parinit = rep(0.5, 6), control = list(pop.size = 50,

+ max.generations = 20, wait.generations = 5, BFGSburnin = 5),

+ kmcontrol = NULL)

Starting from a 50-point design

As shown on Figure 27, EGO converges here to the actual global minimum (−3.32) of the
Hartman function in less than 20 iterations when using a 50-point initial design.

Starting from a 10-point design

One of the crucial questions when using metamodel-based optimization algorithms with a
severely restricted budget is the trade-off between initial design points and additional points
obtained during the algorithm itself. Answering this question in a general way is of course



40 DiceKriging, DiceOptim: Kriging-Based Metamodeling and Optimization in R

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

0 10 20 30 40 50

−
3

.0
−

2
.0

−
1

.0
0

.0

●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50

−
3

.0
−

2
.0

−
1

.0
0

.0

X1

0.0 0.4 0.8

●

●

●

● ●

● ●

●

●
●

●

●
● ●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

● ●

●

●
●

●

●
●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

0.0 0.4 0.8

●

●

●

● ●

● ●

●

●
●

●

●
●●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

● ●

●

●
●

●

●
●●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

0.0 0.4 0.8

0
.0

0
.4

0
.8

●

●

●

●●

●●

●

●
●

●

●
●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

0
.0

0
.4

0
.8

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●● ●

●

●

●●

●

●

X2
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

● ●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

● ●●

●●

●

●

●

●

● ●●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

● ●●

●●

●

●

●

●

●● ●

●

●●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

X3
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●●●

●●

●

●

●

●

● ●●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●●●

●●

●

●

●

●

●● ●

●

●● ●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0
.0

0
.4

0
.8

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●●●

● ●

●

●

●

●

● ●●

●

●●●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

0
.0

0
.4

0
.8

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

● ●
●

●

●

●

●
●● ●

●

●

●

●

●●●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

● ●
●

●

●

●

●
●●●

●

●

●

●

●● ●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●●●

●

●

●

●
●● ●

●

●

●

●

●●●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

X4
●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●●●

●

●

●

●
●● ●

●

●

●

●

● ●●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●●●

●

●

●

●
●●●

●

●

●

●

●●●
●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●
●
●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●● ●

●

●
● ●●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●
●

●
●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●● ●

●

●
●● ●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●● ●

●

●
●● ●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●● ●

●

●
●●●

●

●

●
●

●

X5

0
.0

0
.4

0
.8

●

●

● ●●
●

●

●

●

●

●
●

●
●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

● ●●

●

●
●● ●

●

●

●
●

●

0.0 0.4 0.8

0
.0

0
.4

0
.8

●

●

●

●●

●

●

●

●

●

●

●
●●●

● ●

● ●●

●

●

●

● ●● ●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●●

●●

● ●●

●

●

●

● ●●●

●

●

●

●●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

0.0 0.4 0.8

●

●

●

● ●

●

●

●

●

●

●

●
●●●

●●

●●●

●

●

●

● ●● ●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●● ●

●●

●●●

●

●

●

●●●●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

0.0 0.4 0.8

●

●

●

●●

●

●

●

●

●

●

●
●●●

●●

●●●

●

●

●

●●● ●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

X6

Figure 27: Optimization of the Hartman function with 50 initial points. Left: Minimum value
(top: current, bottom: cumulative). Right: Pair plot of visited points during EGO.
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Figure 28: Optimization of the Hartman function with 10 initial points. Left: Minimum value
(top: current, bottom: cumulative). Right: Pair plot of visited points during EGO.

out of scope here, but the following complementary experiment might contribute to motivate
and illustrate the potential computational benefits of addressing this trade-off well.

Figure 28 shows the slower convergence of EGO when starting with a 10-point design. It
is very interesting, however, to notice that the global expense in terms of total number of
points is about twice smaller in the second case. Investigating the right trade-off in a generic
framework seems a valuable research perspective.
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Figure 29: Optimization of the Hartman function without a transformation of y. Left: 50
initial points. Right: 10 initial points. Top: Objective function values versus iterations.
Bottom: Cumulated minimum of objective function values versus iterations.

Comparison to the results obtained without a transformation of y

To finish with examples concerning the regular EGO algorithm, let us try to apply the algo-
rithm to the Hartman function, without any transformation of y.

Figure 29 represents the results obtained with both previously considered initial designs.

Rather surprisingly, the obtained results are not worse than with an adapted transform, and
even a bit better in the case of the 10-point initial design. This illustrates the robustness of
EGO to some kinds of model misspecification, such as non-Gaussianity. To our knowledge,
however, such algorithms may be very sensitive to misspecifications of the covariance kernel,
in particular when it comes to correlation length parameters.

5.4. Parallelizations of EI and EGO

Distributing metamodel-based algorithms on several processors has become a contemporary
industrial challenge since taking advantage of existing parallel facilities is a key to increase
optimization performances when the time budget is severely restricted.

q-points EI

DiceOptim includes a qEI function dedicated to the Monte Carlo estimation of the multipoints
EI criterion. Here we come back to the first 1-dimensional example considered in the present
section, and give an illustration of both 1-point and 2-points EI criteria estimations.
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Figure 30: 1-point EI estimated by Monte Carlo (left) and comparison to the previous results
obtained with the analytical formula (right).

R> candidate.design <- seq(0, 1, length = 101)

R> res <- qEI(newdata = candidate.design, model = model, type = type,

+ MC.samples = 10000, return.I = TRUE)

R> EI_estimated <- colMeans(res$I)

R> EI_analytical <- apply(as.data.frame(candidate.design), 1, EI, model,

+ type = "UK")

R> two_points_EI <- matrix(0, ncol = length(candidate.design),

+ nrow=length(candidate.design))

R> for(i in 1:length(candidate.design)) {

+ for(j in i:length(candidate.design)) {

+ qI <- pmax(res$I[ , i], res$I[ , j])

+ two_points_EI[i, j] <- mean(qI)

+ two_points_EI[j, i] <- two_points_EI[i, j]

+ }

+ }

The results shown on Figure 30 illustrate the adequacy between the Monte Carlo estimation
of EI by means of qEI and the analytical formula implemented in EI.

The 2-points EI is represented on Figure 31, where it appears that sampling at the two highest
bumps is likely to offer the best joint performance, i.e., in terms of multipoints expected
improvement. More on the two-points EI criterion can be found in Ginsbourger et al. (2010).

Iterated constant liar test with Branin

Let us finish this section with an illustration of the constant liar algorithm, an approximate
multipoints EI maximizer, applied to the Branin function previously used in several examples.

R> nsteps <- 3

R> npoints <- 8

R> d <- 2

R> lower <- rep(0, d)

R> upper <- rep(1, d)

R> oEGOparallel1 <- CL.nsteps(model = fitted.model1, fun = branin,
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Figure 31: Level sets of the 2-points EI estimated by Monte Carlo.
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Figure 32: Parallelized EGO for the Branin function. 3 iterations of constant liar with 8
parallel searches (First iteration: Empty circle. Second iteration: Star. Third iteration:
Filled circle).

+ npoints = npoints, nsteps = nsteps, lower, upper,

+ control = list(pop.size = 20, BFGSburnin = 2))

Starting from the initial LH design drawn in the previous Branin example, 3 iterations of
constant liar with 8 points are applied sequentially by means of the CL.nsteps function (See
results on Figure 32). Basically, each iteration of CL.nsteps consists in the creation of a 8-
point design relying on the constant liar strategy, on the evaluation of the objective function
at these points, and on the update of the Kriging model with the latter actual values.

6. Conclusion

We have presented two packages, DiceKriging and DiceOptim, for Kriging-Based design and
analysis of computer experiments. Based on several worthwhile user feedbacks, the presently
available versions of DiceKriging (≤ 1.3) seem to be mainly appreciated for the versatility of
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covariance and trend specifications, for the fast and efficient estimation of trend and covariance
parameters relying on a global optimizer with gradient like the genoud algorithm of the
package rgenoud, and for the efforts done in order to recycle intermediate calculations as often
as possible and avoid calculating twice the same quantities. In forthcoming versions, we plan
to enable connecting the likelihood maximization routines of km virtually with any optimizer,
so that expert users can keep more control on the whole workflow, including the invested
computing time, the stopping criteria, and more ambitiously the way the computations may
be distributed over clusters or clouds.

Future improvements of DiceKriging include the development of new covariance classes, for
which the preparation work done in terms of S4 programming will greatly facilitate the in-
tegration in the existing code (as was already done for the isotropic option). Covariance
classes currently in preparation range from various classes of kernels with input space defor-
mation (a first version with separable transformations in the spirit of Xiong, Chen, Apley,
and Ding 2007, is already available in version 1.3), kernels taking algebraic invariances into
account such as in Ginsbourger, Bay, Roustant, and Carraro (2012), additive kernels as pro-
posed in Durrande, Ginsbourger, and Roustant (2012), and other kinds of graph-structured
kernels for high-dimensional modeling as in Muehlenstaedt, Roustant, Carraro, and Kuhnt
(2012).

The DiceOptim package is a complement to DiceKriging, dedicated to Kriging-Based global
optimization criteria and algorithms. Similar performances as for the likelihood maximiza-
tion are available for the EI maximization, also relying on the global optimizer with gradient
genoud. In the current (1.2) version of DiceOptim, a partial freedom is left to the user con-
cerning the parametrization of the EI optimizer (through the control argument, allowing
to tune selected parameters of genoud or optim). This trade-off is certainly convenient for
a typical user, who would like to have some influence on the algorithm without being over-
whelmed by a too large number of parameters. However, it might be frustrating for the expert
user not to control everything nor use its own routines for some particular tasks. We will
try improving the modularity of our codes in the next versions, while keeping the basic usage
reasonably simple for non-expert users. This may take the form of a set of very modular
functions completed by easier user-oriented interfaces.

Future improvements of DiceOptim include Kriging-Based algorithms for “noisy” simulators
(Picheny, Wagner, and Ginsbourger 2012), as well as constrained optimization algorithms in
the vein of EGO. Further parallel strategies may be investigated in all cases (noiseless, noisy,
constrained), in both synchronous and asynchronous frameworks. To conclude with, let us
remark that a new born package dedicated to Kriging-Based Inversion, KrigInv (Chevalier,
Picheny, and Ginsbourger 2012), was recently released on CRAN, and that the forthcoming
developments of DiceOptim and KrigInv will also strongly rely on the next functionalities
of DiceKriging, whether in terms of model update or of sequential parameter estimation
methods.
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Forthcoming, URL http://hal.inria.fr/hal-00446520/en.

Fan J (1997). “Comment on “Wavelets in Statistics: A Review by A. Antoniadis”.” Italian
Journal of Statistics, 6, 97–144.

Fang K, Li R, Sudjianto A (2006). Design and Modeling for Computer Experiments. Chapman
& Hall/CRC.

Fernex F, Heulers L, Jacquet O, Miss J, Richet Y (2005). “The MORET 4B Monte Carlo
Code – New Features to Treat Complex Criticality Systems.” In M&C International Con-
ference on Mathematics and Computation Supercomputing, Reactor Physics and Nuclear
and Biological Application, Avignon, France.

http://www.redice-project.org/
http://www.cs.ubc.ca/cgi-bin/tr/2009/TR-2009-23
http://CRAN.R-project.org/package=lhs
http://CRAN.R-project.org/package=lhs
http://CRAN.R-project.org/package=KrigInv
http://CRAN.R-project.org/package=KrigInv
http://CRAN.R-project.org/package=mlegp
http://CRAN.R-project.org/package=DiceEval
http://hal.inria.fr/hal-00446520/en


46 DiceKriging, DiceOptim: Kriging-Based Metamodeling and Optimization in R

Forrester AIJ, Bressloff NW, Keane AJ (2006). “Optimization Using Surrogate Models and
Partially Converged Computational Fluid Dynamics Simulations.” Proceedings of the Royal
Society A, 462, 2177–2204.

Franco J, Dupuy D, Roustant O (2011). DiceDesign: Designs of Computer Experiments.
R package version 1.1, URL http://CRAN.R-project.org/package=DiceDesign.
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A. Expressions of likelihoods and analytical gradients

The computations of likelihoods, concentrated likelihoods and analytical gradients are based
mostly on Park and Baek (2001). They have been adapted for the Kriging models dealing
with noisy observations. Beware that the formulas below must not be used directly for im-
plementation. For numerical stability and speed considerations, one should use the Cholesky
decomposition of the covariance matrix and more generally avoid directly inverting matrices.
In DiceKriging, we have used the efficient algorithm presented in Park and Baek (2001). See
also the implementations details given in Rasmussen and Williams (2006a).

The vector of observations y is normal with mean Fβ and covariance C. Thus, with notations
of the Statistical Background section, the likelihood is:

L =
1

(2π)n/2 |C|1/2
exp

(
−
1

2
(y − Fβ)⊤C−1(y − Fβ)

)
(15)

The matrix C depends at least on the covariance parameters θ, σ2.

A.1. Kriging model for noise-free observations

In this case we have C = σ2R, where R depends only on θ, and L = L(β, σ2,θ;y). Writing
the first order conditions results in analytical expressions for β and σ2 as functions of θ:

β̂ = (F⊤R−1F)−1F⊤R−1y σ̂2 =
1

n
(y − Fβ̂)⊤R−1(y − Fβ̂)

Therefore maximizing the likelihood (15) is equivalent to maximizing over θ only the ”con-
centrated” log-likelihood obtained by plugging in the expressions of β̂ and σ̂2:

−2 logL(β̂, σ̂2,θ;y) = n log(2π) + n log σ̂2 + log |R|+ n

The expression of the analytical gradient is the following:

−2
∂ logL(β̂, σ̂2,θ;y)

∂θk
= −(y − Fβ̂)⊤R−1 ∂R

∂θk
R−1(y − Fβ̂)/σ̂2 + tr

(
R−1 ∂R

∂θk

)

A.2. Kriging model for noisy observations (unknown homogeneous noise)

In this case we have C = σ2R + τ2In. The likelihood L = L(β, σ2,θ, τ2;y) also depends on
the new nugget parameter τ2, but it is possible to reduce the optimization dimensionality.
Indeed, define:

❼ v = σ2 + τ2: the total variance.

❼ α = σ2

σ2+τ2
: the proportion of variance explained by Z(·).

We can rewrite C = vRα with Rα = αR + (1 − α)In. Note that Rα is also symmetric
positive-definite since α ∈ [0, 1]. Then writing the first order conditions results in analytical
expressions for β and v as functions of θ and τ2:

β̂ = (F⊤R−1
α F)−1F⊤R−1

α y v̂ =
1

n
(y − Fβ̂)⊤R−1

α (y − Fβ̂)
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The concentrated log-likelihood depends only on θ and α:

−2 logL(β̂, v̂,θ,α;y) = n log(2π) + n log v̂ + log |Rα|+ n

The fact that α is bounded (α ∈ [0, 1]) is convenient for optimization. The derivatives with
respect to the θk’s and α are given by:

−2
∂ logL(β̂, v̂,θ,α;y)

∂•
= −(y − Fβ̂)⊤R−1

α

∂Rα

∂•
R−1

α (y − Fβ̂)/v̂ + tr

(
R−1

α

∂Rα

∂•

)

with ∂Rα

∂θk
= α ∂R

∂θk
and ∂Rα

∂α = R− In.

A.3. Kriging model for noisy observations (known noise)

The likelihood L(β, σ2,θ;y) takes the form above (15) but with C = σ2R+diag(τ21 , . . . , τ
2
n).

Writing the first order conditions results in analytical expression for β only:

β̂ = (F⊤C−1F)−1F⊤C−1y

The concentrated log-likelihood depends both on θ and σ2:

−2 logL(β̂, σ2,θ;y) = n log(2π) + log |C|+ (y − Fβ̂)⊤C−1(y − Fβ̂)

The derivatives with respect to the θk’s and σ2 are given by:

−2
∂ logL(β̂, σ2,θ;y)

∂•
= −(y − Fβ̂)⊤C−1∂C

∂•
C−1(y − Fβ̂) + tr

(
C−1∂C

∂•

)

with ∂C
∂θk

= σ2 ∂R
∂θk

and ∂C
∂σ2 = R.

A.4. Case of known trend

When the vector β of trend parameters is known, one can check that all the aforementioned
formula for (concentrated) likelihoods and derivatives still stand by replacing β̂ by β.

B. Analytical gradient of expected improvement

The aim of this section is to present the efficient algorithm developed for package DiceOptim

to compute the analytical gradient of expected improvement (EI) in the most common case:
noise-free observations with constant mean (Ordinary Kriging). The method adapts for a
general linear trend but requires the implementation of the derivatives of all trend basis
functions fk. First recall the EI expression:

EI(x) = (a−m(x))× Φ(z(x)) + s(x)× φ(z(x))

where a is the current function minimum value, m(x) = mUK(x) and s2(x) = s2UK(x) are the
prediction mean and variance for universal Kriging, and z(x) = (a −m(x))/s(x). By using
the relations Φ′ = φ and φ′(t) = −tφ(t), the gradient of EI(x) reduces to:

∇EI(x) = −∇m(x)× Φ(z(x)) +∇s(x)× φ(z(x)) (16)



Journal of Statistical Software 51

Denote µ̂ = ✶
⊤C−1y

✶⊤C−1✶
. Then for a constant trend we have:

m(x) = µ̂+ c(x)⊤C−1(y − ✶µ̂) s2(x) = σ̂2 − c(x)⊤C−1c(x) +
(1− ✶

⊤C−1c(x))2

✶⊤C−1✶

From which, using that ∇s2(x) = 2s(x)∇s(x), we deduce:

∇m(x) = ∇c(x)⊤C−1(y − ✶µ̂)

∇s(x) = −
1

s(x)

(
∇c(x)⊤C−1c(x) +

(1− ✶
⊤C−1c(x))∇c(x)⊤C−1

✶

✶⊤C−1✶

)

To compute these expressions efficiently, we use the Cholesky decomposition of the covariance
matrix and the resulting auxiliary variables z,M,u defined in appendix C.1. As F = ✶, M
is a n× 1 vector, and is renamed u in this section. In the same way, we introduce the n× d
matrix W = (T⊤)−1(∇c(x)⊤)⊤. Then we can rewrite ∇m(x) and ∇s(x) in the concise form

∇m(x) = W⊤z ∇s(x) = −
1

s(x)

(
W⊤v +

(1− v⊤u)(W⊤u)
u⊤u

)

and ∇EI(x) is obtained with formula (16).

Computational cost

We now indicate the order of the marginal computational cost, knowing the results of past
computations. In particular we assume that a km object was first created, and thus the
auxiliary variables T, z,u have already been computed. In addition, ∇EI(x) is supposed
to be computed after that EI(x) was evaluated, as it is the case during the optimization
procedure. Finally we ignore the terms of order n (assuming that n≫ d and n≫ p). Then the
complexity of EI(x) is given by the Kriging mean computation step, equal to n2 (see appendix
C.2). During this step, s(x),Φ(z(x)) and φ(z(x)) are stored. Therefore, the complexity for
∇EI(x) is due to the computation of W, which is done by solving d upper triangular systems
of linear equations, and to some linear algebra. This requires dn2 operations.

C. Implementation notes

C.1. Auxiliary variables

To prevent from numerical instabilities and avoid re-computations, four auxiliary variables
are used in DiceKriging and DiceOptim, three of them were proposed by Park and Baek
(2001) and the fourth was added for prediction:

❼ T: The n × n upper triangular matrix obtained in the Cholesky decomposition of the
(positive definite) covariance matrix. Thus we have: C = T⊤T.

❼ z: The n× 1 vector (T⊤)−1(y − Fβ).

❼ M: The n× p matrix (T⊤)−1F.
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❼ v: The n× 1 vector (T⊤)−1c(x).

In the case where parameters are estimated, the expressions for z and v are modified by
replacing the true parameters by their ML estimate: ẑ = (T̂⊤)−1(y−Fβ̂), v̂ = (T̂⊤)−1ĉ(x).
Actually for the sake of simplicity, no distinction is made.

C.2. Formulas for prediction

In this paragraph, we give the formulas used in DiceKriging to implement the Kriging mean
and variance for simple and universal Kriging. Some computation economy and numerical
stability can be obtained by re-writing the formulas with the auxiliary variables already
computed (except v) in creating a km object. Firstly, with notations of Section C.1, the
formulas of simple Kriging become:

mSK(x) = f(x)⊤β + v⊤z s2SK(x) = C(x,x)− ‖v‖2

where ‖.‖ denotes the Euclidian distance. For universal Kriging, expressions are similar but
require the Cholesky decomposition of F⊤C−1F = M⊤M. Denote TM the corresponding
p× p upper triangular matrix s.t. TM

⊤TM = M. Then we have:

mUK(x) = f(x)⊤β̂ + v⊤z s2UK(x) = C(x,x)− ‖v‖2 + ‖(TM
⊤)−1(f(x)−M⊤v)‖2

In the last expression, (TM
⊤)−1(f(x) −M⊤v) is obtained by solving an upper triangular

system of size p× p.

Computational cost

Ignoring terms of order n (assuming that n≫ d and n≫ p), the complexity for Kriging mean
is given by the backsolving of T⊤v = c(x) to get v, which is equal to n2. The complexity

for Kriging variance is smaller: 2n for SK, 2n(p+1)+
(
p3

3 + p2
)
for UK [the additional non-

negligible operations decompose as follows: 2np for M⊤v, 1
3p

3 for Cholesky decomposition of

M, and p2 to compute the matrix product (TM
⊤)−1(f(x)−M⊤v)].

C.3. Table of computational cost and memory size

In Table 7 below, we give an estimate of the computational cost and memory size required
for the most important procedures implemented in DiceKriging and DiceOptim. The com-
putational cost is for a single procedure, and assumes that some stored variables need not be
re-computed. For instance when running the predict method, a km object was first created,
and the auxiliary variables of Section C.1 are already stored. In addition, we assume that
n≫ d and n≫ p. The memory size represents here the order of magnitude of the quantity of
numbers to be stored at the same time when running the procedure. For prediction, results
are given as a function of m, the number of new data at which we want to predict, since this
number is usually large. As for n, we assume that m≫ d and m≫ p.
This table can be useful to guess the difficulties linked to the increasing of the design size. For
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Procedure Complexity Memory Limiting step

Log-likelihood 1
3n

3 +
(
d+p
2 + 2

)
n2 n2 Cholesky dec. of C

Log-likelihood gradient 1
3n

3 + (6d+ 1)n2 n2 Inverting C from T

Kriging mean (SK, UK) mn2 (n+m)n (T⊤)−1c(x)
Kriging variance (SK) 2mn (n+m)n

Kriging variance (UK) 2m(p+ 1)n+m
(
p3

3 + p2
)

(n+m)n

EI n2 n2 Kriging mean
EI gradient dn2 n2 (T⊤)−1(∇c(x)⊤)⊤

Table 7: Computational cost (complexity) and memory size of the most important procedures
implemented in DiceKriging and DiceOptim. Recall that n is the number of design points, d
the problem dimension, p the number of trend basis functions and m the number of new data
where to predict.

instance the log-likelihood complexity is approximately 1
3n

3: Multiplying by 2 the number
of experiments results in multiplying by 8 the computational time, and by 4 the size of the
covariance matrix involved.

Comments

1. The complexity related to log-likelihoods is from Park and Baek (2001); The factors(
d+p
2 + 2

)
n2 and (6d+ 1)n2 are for Gaussian covariance: It can be larger for more complex

covariances but will not modify the order of magnitude. For other procedures, see Appendices
B and C.2. 2. The memory size is no less than n2, which corresponds to the storage of the
n × n covariance matrix. When computing gradients, only the final derivatives are stored,
and not the auxiliary matrix derivatives. The memory size for computing the Kriging mean
and variance can be large: This is because we have vectorized the computation of formulas
described in Appendix C.2, to improve speed.

C.4. Speed

Some functions have been implemented in the C language. There was no need to do so with
linear algebra R routines, since they do themselves call Fortran or C routines. On the other
hand, the computation of covariance matrices seems to be very slow in R, due to the presence
of triple loops. They have been implemented in C (functions covMatrix, covMat1Mat2).

D. Trustworthiness

Producing a trustworthy result is the main concern – or“prime directive”, as named by Cham-
bers (2008) – of software providers. To investigate the trustworthiness of our packages, we
have implemented several tests. The first one is a consistency test between the prediction
formulas of simple Kriging and simulation results. In limit cases, prediction with universal
Kriging is also successfully compared to the linear regression confidence bounds computed
with the function lm from package stats. It is included in the help page of simulate.km.
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Figure 33: Empirical distribution of the parameter estimates: 3-dimensional case. Starting
from known values (horizontal lines), the parameters are estimated for 100 simulated paths
evaluated at the points of a fixed 45-point maximin LH design. Their empirical distribution
is represented by the vertical boxplots.
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Figure 34: Empirical distribution of the parameter estimates: 10-dimensional case. Starting
from known values (horizontal lines), the parameters are estimated for 100 simulated paths
evaluated at the points of a fixed 150-point maximin LH design. Their empirical distribution
is represented by the vertical boxplots.

Now, we detail the second one, which code can be found in the help page of km. It is a perfor-
mance study of maximum likelihood estimators, achieved by monitoring Kriging parameters
estimates based on simulated paths of a Gaussian process which law is actually known. The
idea is to simulate Gaussian Process paths corresponding to a Kriging model with known pa-
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rameters and, for observations of the sampled paths at a given design, to estimate the model
parameters by using km. Based on the obtained results (say, for 100 cycles of simulation
and estimation per Kriging model), we can then analyze the empirical distribution of these
estimates and make comparisons to the true values (especially in terms of bias and variance).

In this paragraph, we show the results obtained in 3-dimensions and 10-dimensions. Following
Loeppky, Sacks, and Welch (2009), we fix the number of runs n proportionally to the problem
dimension d. However, we have chosen n = 15d, instead of the informal rule “n = 10d”,
since - without any penalization of the likelihood - this seems to give more stable results in
estimation. Then, we have used a maximin LH design, obtained with package lhs. Note that
with a LH design with such a few runs, only large enough values of the θ′s can be estimated.
Thus the θ′s are chosen equally spaced from 0.3 to 0.7 in the 3-dimensional case, and equally
spaced from 0.5 to 1.5 in the 10-dimensional one (in both cases, the domain is [0, 1]d). The
arguments of km are the default values, except in 10-dimensions where the upper bound was
fixed to 3. In particular, the optimization method is BFGS. Better results can be obtained
with the genetic algorithm, but will depend on its parameters, and thus are not shown here.
The results are shown in Figures 33 and 34.
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