
HAL Id: emse-00742567
https://hal-emse.ccsd.cnrs.fr/emse-00742567

Submitted on 22 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault Round Modification Analysis of the Advanced
Encryption Standard

Jean-Max Dutertre, Amir Pasha Mirbaha, David Naccache, Anne-Lise
Ribotta, Assia Tria, Thierry Vaschalde

To cite this version:
Jean-Max Dutertre, Amir Pasha Mirbaha, David Naccache, Anne-Lise Ribotta, Assia Tria, et
al.. Fault Round Modification Analysis of the Advanced Encryption Standard. Hardware-
Oriented Security and Trust (HOST), 2012, Jun 2012, San Francisco, United States. pp.140–145,
�10.1109/HST.2012.6224334�. �emse-00742567�

https://hal-emse.ccsd.cnrs.fr/emse-00742567
https://hal.archives-ouvertes.fr

Fault Round Modification Analysis
of the Advanced Encryption Standard

Jean-Max Dutertre⇤, Amir-Pasha Mirbaha⇤, David Naccache†, Anne-Lise Ribotta⇤, Assia Tria‡ and Thierry Vaschalde⇤
⇤‡Département Systèmes et Architectures Sécurisées (SAS)

⇤École Nationale Supérieure des Mines de Saint-Étienne (ENSMSE), ‡CEA-LETI, Gardanne, France
{dutertre, mirbaha, ribotta, vaschalde}@emse.fr assia.tria@cea.fr

†Équipe de cryptographie, École normale supérieure (ENS), Paris, France
david.naccache@ens.fr

Abstract—This paper describes a new physical analysis tech-
nique based on changing the number of the AES rounds. It is
an extension of the already known Round Reduction Analysis

techniques. Round Modification Analysis is a specific algorithm

modification attack. However, the cryptanalysis of the obtained
erroneous ciphertexts resorts to the differentiation techniques
used by Differential Fault Analysis. Faults were induced thanks
to a laser in a software AES, either on the round counter itself or
on the reference of its total round number, to obtain an increase
or a decrease in the number of rounds. We report here successful
attacks and their corresponding cryptanalysis.

I. INTRODUCTION

Fault attacks consist in using hardware malfunction to infer
secrets from the target’s faulty behaviour or outputs. [1] and
[2] reported in 1997 the possibility of secret leakage by
physical perturbations. [3] presented a differential analysis
method to exploit such faults. These active attacks can be
performed in different physical manners as reported by [4].
In such attacks, the internal operations of the target integrated
circuit (IC) are disturbed to modify behavior or to inject faults
into the computations of a cryptographic algorithm. Modifying
the behaviour of a device’s software refers to algorithm mod-
ification. This class of active attacks may consist in replacing
instructions executed by a microcontroller [5] to circumvent its
security features, or in weakening the strength of an encryption
algorithm by reducing to one or two the number of its rounds
[6]–[8] (i.e. Round Reduction Analysis or RRA). This paper
proposes an extension of the latter analysis to the advanced
encryption standard (AES): the Round Modification Analysis
(RMA). RMA is based on decreasing or increasing the number
of AES rounds or on altering them to retrieve information
on the secret key. Both cases were experimentally obtained
using laser fault injection. We present in this paper a few
instances with their corresponding cryptanalysis. Remarkably,
the cryptanalysis of the obtained erroneous ciphertexts resorts
to the differentiation techniques used by Differential Fault
Analysis.

This article is organized as follows. A review of the state-of-
the-art of RRA and some remainders on the AES are given in
section II. The experimental setup (i.e. the targeted IC that
embeds a software AES and the laser bench) is described

in section III. The principles of the RMA, three significant
examples and their corresponding cryptanalysis are reported
in section IV. Finally, our findings are summarized in the
concluding section V with some perspectives.

II. ROUND REDUCTION ANALYSIS

Many symmetric cryptographic algorithms are based on
the repeating of identical sequences of transformations, called
rounds. A significant part of these algorithms’ strength against
cryptanalysis is based on their repeated rounds. Any decrease
in the number of rounds is likely to reduce their security level.
For instance, suppose an attack that induces a jump to the end
of the algorithm after the execution of only a few instructions
(or after the first round). As a result, much of the encryption
process is skipped and the final ciphertext is the product of
few algorithm processes that may easily reveal the key.

Round Reduction Analysis is based on decreasing the num-
ber of rounds in an algorithm to ease subsequent cryptanalysis.
This method was first presented in [6]: where the authors
described a RR analysis on AES reducing the total round
number from ten to one.

In the following, we first remind the AES’ basics before
going deeper into the state-of-the-art of Round Reduction
Analysis.

A. The Advanced Encryption Standard
AES is a Substitution-Permutation Network (SPN) block

cipher [9]. It processes a 128-bit plaintext and a key of 128,
192 or 256 bits long to produce a 128-bit ciphertext. For
the sake of simplicity, we will consider hereafter only the
128-bit AES version: denoted AES or AES-128. The algorithm
has two separated processes: One for the KeyScheduling

to derive round keys from the secret key and another one
for the DataEncryption. AES-128 performs encryption
in 10 rounds, after a short initial round. A round key is
used during the computations of every round. Hereafter, we
use the “K” prefix plus the round number to refer to a
round key (e.g. “K9” for the 9th round key). Figure 1 shows
the different transformations of the AES algorithm. As the
KeyScheduling process is of no relevance for this paper,
it is not described here.

dutertre jean-max
Hardware-Oriented Security and Trust (HOST), 2012 IEEE International Symposium on

dutertre jean-max
http://dx.doi.org/10.1109/HST.2012.6224334

Plaintext

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Ciphertext

RoundKey 0

Round 0

Round i (1 to 9)

Round 10

RoundKey i

RoundKey 10

Fig. 1. The AES-128 - General Outline.

To encrypt a plaintext, namely M , the encryption process
considers its 16 bytes as a matrix of 4⇥ 4 bytes. Each round
of the algorithm, except the initial and the last ones, includes
4 transformations: First, the value of each matrix element, i.e.
one byte value, is exchanged with the corresponding value in
a substitution table (SubBytes or SB). Second, a rotational
operation on the matrix rows is executed (ShiftRows or
SR). Third, the algorithm applies a linear transformation to
each element and combines it with other values of the same
column with a different coefficient of 1, 2 or 3 for each
element (MixColumns or MC) in GF(28). Forth, a bitwise
xor operation is performed between the value of each element
and the corresponding byte of the round key (AddRoundKey
or ARK). Before the first round, an ARK is applied to M and
K (i.e. Round 0). The MC transformation is omitted in the
last round.

Notation: In the following, we use the “R” prefix plus the
round number to refer to the transformations involved in an
AES round. Hence, R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10,
or shortly R0. . .R10, represents the rounds of a complete (i.e.
unmodified) AES. “M

i

” represents the AES intermediate state
at the beginning of round i. We use R

m=j

to express that,
due to a fault, a round composed of the ARK � MC � SR � SB
transformations (where

m

stands for middle round) is using
an incorrect round key of index j. Note that j may be higher
than the number of rounds. R

f=j

has the same meaning for a
round without the MC transformation (

f

stands for final round).

B. Round Reduction Analysis: State-of-the-art

Round Reduction Analysis was first noticed by H. Choukri
and M. Tunstall in 2005 [6]. Their work shows a round
reduction attack using faults on an AES. There are very
few other works exploiting round reduction attacks, the most
notable being two other attacks that we present briefly here.

1) Choukri and Tunstall’s attack: [6] shows that a transient
glitch on the power supply of a microcontroller may change
the round counter value of an iterative cipher. If the opponent

changes the round counter (hereafter RC) of an AES program
at the beginning of algorithm execution to its final value, the
ciphertext will be the product of a single round (plus the
initial round): R0-R

m

(according to the notation introduced
in II-A). Its complexity does not corresponds anymore to the
cryptanalysis of a correct execution of the 10 AES rounds.
Moreover, they introduced a cryptanalysis technique that make
it possible to retrieve the secret key. [6] obtained eq. 1 by
xoring two faulty outputs: Da and Db (Ma and M b being the
corresponding plaintexts):

MC�1(Da �Db) = SB(Ma �K)� SB(M b �K) (1)

For every key byte, eq. 1 yields two different hypotheses.
Finally, an exhaustive search over the 216 possible keys is
made to retrieve the secret key. Note that this cryptanalysis
does not require the knowledge of the correct encryptions of
Ma and M b.

2) Monnet et al.’s attack: Y. Monnet et al. report in [7]
another round reduction attack on two asynchronous crypto-
processors running DES encryption. The attack was done by
laser fault injection. Between the two DES asynchronous cryp-
toprocessors, the model with countermeasures was found more
resistant against attacks during the experiments. However, the
attack succeeded on both circuits.

3) Park et al.’s attack: The attack of Park et al. reported
in [8] is a laser fault attack on an embedded AES on an
Atmega128 microcontroller. The AES implementation is com-
pliant with the algorithm structure proposed in [9].

[8] reported a successful attack that consists in jumping
from R1 to R10. The faulty execution path being R0 �R1 �
R10. Therefore, an additional round is executed in comparison
to [6] that includes only R0 �R

m

.

The associated cryptanalysis requires data from ten differ-
ent reduced encryptions. Calculations involve four steps of
exhaustive search of 240, 232, 224, and 232 steps respectively.
This takes approximately ten hours on a PC.

III. EXPERIMENTAL SET UP

A. Software AES

For our experiments, we used a device communicating with
smart card standards built in our laboratory. The board is
composed of an 8-bit 0.35 µm RISC microcontroller with an
integrated 128 KB flash program memory, 4KB EEPROM and
4KB SRAM. The device runs the Simple Operating System
for Smartcard Education [10] for simulating the smart card
environment.

A software AES has been added to this OS. In our im-
plementation, the AES secret key is embedded in the code.
After each circuit reset, the AES’ round keys are derived and
stored in the microcontroller’s SRAM. The encryption process
is written in C code. Its structure is given in algorithm 1:

Fig. 2. View of the microcontroller and of its SRAM area.

Algorithm 1 Software AES: algorithm
C M
C C �K
RC = 1
while (RC < R

max

) do
C SB(C)
C SR(C)
C MC(C)
C C �K

RC

RC RC + 1
end while
C SB(C)
C SR(C)
C C �K

RC

Where C is an intermediate variable used to memorize
the AES state throughout the encryption process. The round
counter RC is used as an index to select the round key
processed during every ARK transformation. Moreover, it is
compared to the total round number reference, R

max

, to end
the iterative loop preceding the final round. Note that R

max

is
not a constant number to permit the use of different values (10,
12, or 14 rounds). RC and R

max

are stored in the circuit SRAM.
That’s the entry point we used to modify the AES behaviour
using a laser. Figure 2 highlights the chip’s SRAM area.

B. Laser Fault Injection
The use of a laser to inject faults into the calculations of a

secure circuit was introduced by S. Skorobogatov and R. An-
derson in 2002 [11]. Laser faults arise from the photoelectric
effect caused by a laser beam passing through silicon provided
that its photon energy is greater than the silicon bandgap
[12]. This effect generates electron-hole pairs in silicon. These
charges may create a transient current when exposed to the
strong electric fields found in the PN junctions of CMOS
transistors. Then, this transient current turns into a voltage
transient that may travel through the circuit’s logic. It may
affect the computations of the target circuit or some of its
memory elements. Hence, SRAM are subject to bit-flip when

Fig. 3. The target circuit, installed on the laser bench for front side injection.

exposed to a laser beam [4], [11], [13]. We have reported
in [14] experiments showing our ability to inject single byte
and even single bit faults in the SRAM of the same device. We
took advantage of the knowledge acquired during this previous
work to realize the experiments reported in section IV.

Our experiments were conducted with green (532nm) or
infrared (1064nm) wavelengths, respectively through the front
and rear sides of the chip (obviously after a proper decapsula-
tion). The laser beam was about ?4µm for a ' 10pJ energy
per shot (before the lens’ attenuation). Figure 3 shows the
circuit installed on the laser bench.

A synchronization card provides a jitter of 10ns at the
instant of injection. Hence, given the clock period of the
device, 280ns, a very precise timing is achieved.

IV. ROUND MODIFICATION ANALYSIS

Previous round reduction attacks were based on the crypt-
analysis of an AES reduced to one or two rounds. In our
experiments, we surveyed about all the feasible attacks by
reducing or increasing the number of executed rounds on our
implementation.

Considering the implementation of our AES, several pos-
sibilities for single-bit or single-byte laser fault injection are
conceivable. To that end, we refer the reader to the results of
our previous experiments reported in [14].

As already mentioned in III-A, the round counter is used for
counting only the middle rounds (R

m

), i.e. the rounds between
R1 and R9. The initial round (R0) and the final round (R10)
are implemented separately as shown in algorithm 1. Hence,
even with complete removal of middle rounds, the initial and
the final rounds will be still executed.

However, the index of the round key used by the ARK

transformation at any round, even at the final round, is given by
the round counter value. So, when 1 RC 10, the algorithm
xors the temporary ciphertext and K

RC

. But if RC takes a
value greater than 10, the algorithm searches the 16 stored
bytes in memory that correspond to an address calculated by
the same formula for K

RC

. So, the value of this 16 bytes block
will be used, although it does not match any valid key value.
We recall that any round key with an index greater than 10

cannot exist logically for AES-128. Therefore, the temporary
ciphertext is xored with a bloc of unknown values.

A. Attack Scenarios
Two scenarios are addressed for changing the number of

total rounds in our AES implementation by fault injection. The
targets are the round counter value and the total round number
reference.

1) Attacks on the round counter value: This attack scenario
changes the round counter during AES execution. Therefore it
changes the index of the current executing round. Depending
on the moment of fault injection, various changes can occur
during algorithm execution. We assume in this paper a bit-
flip fault model, where the injected fault, e, is xored with RC.
Any change in the RC value often leads to a change in the
total number of executed rounds, by adding, suppressing or
even repetitively executing several rounds:

• If RC�e < RC) Round addition or repetitive execution
of several rounds. For instance: if RC=7 and e=2 then
RC�e=5 and the AES execution will be:

R0. . . R5-R6-R5-R6-R7. . . R10

The rounds 5 and 6 will be executed twice and the total
number of executed rounds will be incremented to 12.

• If RC�e > RC with RC < R
max

�1) Round reduction.
For example: if RC=4 and e=2 then RC�e=6 and the
faulty AES execution will be:

R0. . . R3-R6. . . R10

Therefore the rounds 4 and 5 will be skipped and the
total number of executed rounds will be reduced to 8.

• If RC�e > RC with RC = R
max

� 1) Round
alteration: no change in the total number of rounds, but
effects on AddRoundKey of the final round and maybe
the penultimate round. For instance: if RC=9 and e=2
then RC�e=11 and AES execution will be:

R0. . . R8-R
m=11-R

f=12

Consequently, the total number of executed rounds will
remain 10, but the penultimate round and the final round
will use invalid round keys values (K11 and K12) during
their ARK transformations.

2) Attacks on the round number reference: The second
attack scenario targets the reference number of the rounds,
R

max

, during the execution of AES. This reference number is
accessed only once per round at the beginning of the while
loop. Faulting R

max

may induce an increase or a decrease
in the total round number. Its alteration can never prevent
the execution of the final round. However, depending on the
resulting R

max

� e value, the final round might not use the
10th round key in its ARK transformation.

In the following, we illustrate three significant attacks of
both scenarios with their associated lightweight cryptanalysis
(we did not develop the cryptanalysis for the more complex
cases, e.g. R0. . . R6-R5. . . R10).

B. Realizations

Among various modifications of the AES algorithm obtained
thanks to laser fault injection, we have chosen to report three
of the most significant: based on a decrease and an increase of
the AES round number (exp. 1 and 3 respectively), and on an
alteration of the round keys indexes (exp. 2). Remarkably, as
opposed to [6] and [8], we found ourselves almost unable to
reduce the AES to only one or two rounds. However, we don’t
claim that it is a general fact. This result is strongly linked
to our experimetal bench and to our choice to target RC and
R

max

.

The main difficulty regarding actual realization of RMA is
to find out the kind of round modification induced by the laser
shot. It was achieved by precisely measuring the time elapsed
between the end of the encryption command (sent by our
communication interface) and the beginning of the card status
answered by the test chip. Thus, we were able to discover any
increase or decrease in the round number by comparison with
an unfaulted encryption. We also monitored the chip’s power
consumption for checkout purposes.

1) Experiment 1 using Scenario 1: In this experiment, the
RC was targeted in order to induce a decrease in the round
number from 10 to 9. The fault was induced at the end of the
8th round just before the increment of RC from 8 to 9. This
was achieved with a single bit fault, e=1: RC�e = 8�1 = 9.
Therefore, the RC was incremented to 10 at the end of 8th

round. As a result the sequence of rounds was: R0-R1. . .R8-
R10.

The cryptanalysis of this attack scheme requires at least
two pairs of correct and faulty ciphertexts (Ca,Da), (Cb,Db).
Where:

Ca = SR � SB[MC � SR � SB(Ma

8)�K9]�K10 (2)

Da = SR � SB(Ma

8)�K10 (3)

Combining eq. 2 and 3 we get:

SB�1 � SR�1(Ca �K10) = MC[Da �K10]�K9 (4)

Then by expressing the relation between Cb and Db in a
similar way and by xoring it to eq. 4 we obtain eq. 5 where
K9 has been removed from:

SB�1 � SR�1(Ca �K10)� SB�1 � SR�1(Cb �K10) =

MC(Da �Db)
(5)

Ca, Cb, Da and Db being known values.

Eq. 5 is quite similar to eq. 1 found by Choukri et al. We
refer the reader to their paper [6] where the full cryptanalysis
is described. Note that, they have suggested the possibility of
this attack scheme in their concluding remarks.

2) Experiment 2 using Scenario 1: In this experiment, the
RC was targeted in order to induce an error on the index
of the round keys used during the penultimate and final
rounds. The fault was induced during the 9th round before
the ARK transformation. This was achieved with a bytewise
fault (different from {01, 08, 09, 0A, 0B, 0C, 0D,

0E, 0F}). As a result the sequence of rounds was: R0-
R1. . .R8-R

m

-R
f

.
This attack changes the index of searched round key during

the penultimate and final rounds to invalid values. Therefore,
the AES is executed in its original sequence, but the two last
ARK transformations are done with incorrect round keys. The
obtained faulty ciphertext is equivalent to an encryption with
fully faulted K9 and K10.

Considering a plaintext Ma, the corresponding correct and
faulty ciphertexts are given by eq. 6 and 7 respectively:

Ca = SR � SB(Ma

9)�K10 =

SR � SB[MC � SR � SB(Ma

8)�K9]�K10
(6)

Da = SR � SB[MC � SR � SB(Ma

8)�K 0
x

]�K 0
y

(7)

K 0
x

and K 0
y

are unknown constant values corresponding to
invalid round keys. For the sake of clarity, we express K 0

x

as the xoring between K9 and a 16 bytes error matrix E9:
K 0

x

= K9 � E9.
Note that, K 0

x

and K 0
y

are kept constant for any encryption
with other plaintexts provided that the experimental setup
ensures the injection of the same fault in the AES calculations.
It was the case with our settings.

Hence, eq. 7 is rewritten in eq. 8:

Da = SR � SB[(Ma

9)� E9]�K 0
y

(8)

The cryptanalysis of this attack scheme requires three pairs
(labelled a, b, and c) of correct and faulty ciphertexts obtained
from three different plaintexts. Eq. 9 and 10 are obtained by
respectively xoring two faulty and two correct ciphertexts:

Da �Db = SR � SB[(Ma

9)� E9]� SR � SB[(M b

9)� E9] (9)

Ca � Cb = SR � SB(Ma

9)� SR � SB(M b

9) (10)

Eq. 10 is rewritten to express M b

9 :

M b

9 = SB�1(SR�1(Ca � Cb)� SB(Ma

9)) (11)

Then these expression of M b

9 is replaced in 9 to obtain eq.
12:

SR�1(Da �Db) = SB[(Ma

9)� E9]�
SB[SB�1(SR�1(Ca � Cb)� SB(Ma

9))� E9]
(12)

A second similar equation (eq. 13) is obtained similarly
from (Ca,Da) and (Cc,Dc):

SR�1(Da �Dc) = SB[(Ma

9)� E9]�
SB[SB�1(SR�1(Ca � Cc)� SB(Ma

9))� E9]
(13)

Hence, eq. 12 and 13 form a system of equations where
Ca, Cb, Cc, Da, Db, and Dc are known values.

Finally, we perform an exhaustive search over 28 possible
values for each Ma

9 byte and over 28 possible values for each
corresponding E9 byte. This exhaustive search leads often to
an unique value for each Ma

9 byte and another unique value
for the corresponding E9 byte. Then, by using these Ma

9

byte values and using equation 14, we find K10 byte value.
Equation 14 is calculated from the first correct ciphertext
equation 6:

K10 = SR � SB(Ma

9)� Ca (14)

3) Experiment 3 using Scenario 2: In this experiment, the
total round number R

max

was targeted in order to induce an
increase in the round number from 10 to 11. The fault was
injected before the last comparison of the 9th round. This was
achieved with a single bit fault, e=1: R

max

�e = 10�1 = 11.
As a result the sequence of rounds was: R0. . .R9-R

m=10-
R

f=11.
Considering Ma

9 the AES state at the beginning of the 9th

round obtained from a plaintext Ma, the corresponding correct
and faulty ciphertexts are given by eq. 15 and 16 respectively:

Ca = SR � SB(Ma

9)�K10 (15)

Da = SR � SB[MC � SR � SB(Ma

9)�K10]�K 0
f=11 (16)

Xoring a second faulty ciphertext Db (obtained from a
faulted encryption with another plaintext M b) with eq. 16
gives eq. 17:

Da �Db = SR � SB[MC � SR � SB(Ma

9)�K10]�
SR � SB[MC � SR � SB(M b

9)�K10]
(17)

We reverse ShiftRows operations in eq. 17, replace cor-
responding values of Ca and Cb and use the MixColumns’
distributivity law to get equation 18:

SR�1(Da �Db) = SB[MC(Ca)� MC(K10)�K10]�
SB[MC(Cb)� MC(K10)�K10]

(18)

A second similar equation (eq. 19) obtained from a third
pair of correct and faulty ciphertexts (Cc and Dc) is required
to ease the cryptanalysis process:

SR�1(Da �Dc) = SB[MC(Ca)� MC(K10)�K10]�
SB[MC(Cc)� MC(K10)�K10]

(19)

Ca, Cb, Cc, Da, Db and Dc being known values.
We replace Ca, Cb, Cc, Da, Db and Dc by their corre-

sponding values in equations 18 and 19. Then, we examine

TABLE I
COMPARISON BETWEEN PREVIOUS WORKS AND OUR MOST SIGNIFICANT EXPERIMENTS.

Attack Type Execution Text # required for cryptanalysis Key search average runtime
Choukri et al. [6] Round Reduction R0-Rm 2 ' 1 second

Park et al. [8] Round Reduction R0-R1-R10 10 ' 10 hours
Experiment 1 RMA: Round Reduction R0. . .R8-R10 2 ' 1 second
Experiment 2 RMA: Round Alteration R0. . .R8-Rm-Rf 3 ' 1 second
Experiment 3 RMA: Round Addition R0. . .R9-Rm=10-Rf=11 3 ' 1 hour and 30 minutes

all the possible K10 values and MixColumns(K10) on any
single column by an exhaustive search in equations 18 and 19.

This exhaustive search through (28)4 values for each col-
umn of K10 leads to a set of 28 hypotheses. Repeating these
operations for the three other columns creates three further sets
of 28 column values hypotheses for the subsequent columns.

Then, a second exhaustive search between column hypothe-
ses reveals a unique value for K10. It requires a procedure
for verifying of all the column hypotheses on K10. For
each combination of 4 columns hypothesis on K10, all the
previous round keys must be calculated by inversion of the
KeyScheduling process. Then, we must encrypt one of
the plaintexts M to examine the validity of the current key
hypothesis. As soon as we find C as the result of encryption,
the key is revealed and exhaustive search is interrupted.

Consequently, an exhaustive search of 234 values (followed
by a second search of 231 on average) is required to discover
the secret key. In our experiment, both searches take in average
less than 90 minutes using a PC running with an Intel Core
i5-2410M microprocessor at 2.30GHz.

V. CONCLUSION AND PERSPECTIVES

In this paper we introduced a new analysis technique
based on changing the number of the AES rounds using fault
injection: the Round Modification Analysis. Round Reduction
Analysis techniques based on reducing the AES round number
to 1 or 2 were previously proposed. However, it may be
a difficult task for an attacker to successfully induce faults
that make possible RRA by jumping directly to the AES end
from its very beginning. This may lead secure designers to
underestimate the risk of such an algorithm modification attack
or to set up incomplete countermeasures. We intend in this
article to issue a warning by reporting the following three cases
(among several that we have observed): increase and decrease
of the total round number as well as alteration of the round
keys indexes. Many cryptanalysis techniques exist (sometimes
relatively easy to set up) which makes it possible to retrieve
the AES key from erroneous outputs of a modified execution.
Table I shows a comparison between previous works and our
most significant experiments reported in this paper.

It should be noted that most of the results we have obtained
depend on the AES implementation we used: Key Expansion
performed once prior to the encryptions (in order to save
both computation time and power consumption). However,

even if some of the scenarios we have presented may become
impracticable, similar cryptanalysis may be derived for an
AES implementation using on-the-fly Key Scheduling (to save
memory consumption). Besides, if a fully unrolled AES (i.e.
without any loop) is immune to RMA through RC or R

max

modification, RMA should still be performed by faulting the
program counter of the microcontroller.

Moreover, in our opinion, RMA may be extended to
other iterative algorithms like DES (see [7]). Besides, the
KeyScheduling process is also a potential target. Further
work has to be done based on these findings in order to propose
countermeasures against RMA.

REFERENCES

[1] D. Boneh, R. DeMillo, and R. Lipton, “New threat model breaks crypto
codes,” Bellcore Press Release, 1996.

[2] D. Boneh, R. A. Demillo, and R. J. Lipton, “On the importance of check-
ing cryptographic protocols for faults,” EUROCRYPT’97, vol. 1233,
pp. 37–51, 1997.

[3] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Lecture Notes in Computer Science, vol. 1294,
pp. 513–525, 1997.

[4] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” Proceedings of the IEEE,
vol. Proceedings of the IEEE 94, no. 2, pp. 370–382, 2006.

[5] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An in-depth and black-
box characterization of the effects of clock glitches on 8-bit mcus,”
in Fault Diagnosis and Tolerance in Cryptography (FDTC), 2011
Workshop on, pp. 105 –114, sept. 2011.

[6] H. Choukri and M. Tunstall, “Round reduction using faults,” Fault
Diagnosis an Tolerance in Cryptography FDTC 2005, pp. 13–24, 2005.

[7] Y. Monnet, M. Renaudin, R. Leveugle, C. Clavier, and P. Moitrel, “Case
study of a fault attack on asynchronous des crypto-processors,” in Fault
Diagnosis and Tolerance in Cryptography (FDTC), vol. 4236, pp. 88–
97, Springer Berlin / Heidelberg, 2006.

[8] J. Park, S. Moon, D. Choi, Y. Kang, and J. Ha, “Differential fault analysis
for round-reduced aes by fault injection,” in ETRI Journal, vol. 33,
pp. 434–442, 2011.

[9] NIST, “Announcing the Advanced Encryption Standard (AES).” Federal
Information Processing Standards Publication, n. 197, Nov. 26, 2001.

[10] M. Bruestle, “sosse - simple operating system for smartcard education,”
http://www.mbsks.franken.de/sosse/index.html, 2002.

[11] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,”
4th International Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2002, vol. 2523, pp. 2–12, 2002.

[12] D. H. Habing, “The use of lasers to simulate radiation-induced transients
in semiconductor devices and circuits,” in Nuclear Science, IEEE
Transactions on, vol. 12, pp. 91 –100, 1965.

[13] F. Darracq, T. Beauchene, V. Pouget, H. Lapuyade, D. Lewis, P. Fouillat,
and A. Touboul, “Single-event sensitivity of a single sram cell,” in
Radiation and Its Effects on Components and Systems, 2001. 6th
European Conference on, pp. 387 – 391, sept. 2001.

[14] M. Agoyan, J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A.-L. Ribotta,
and A. Tria, “How to flip a bit?,” in On-Line Testing Symposium (IOLTS),
2010 IEEE 16th International, pp. 235 –239, 2010.

