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Discovering Correlated Parameters in
Semiconductor Manufacturing Processes:
A Data Mining Approach

Alain Casali and Christian Ernst

Abstract—Data mining tools are nowadays becoming more and that are useful and intelligible for the end-user. Nowadays,
more popular in the semiconductor manufacturing industry, and  databases or data warehouses of signiPcant size implicitly con-
especially in yield-oriented enhancement techniques. This is be- iy 5 1arge amount of relevant information. Their extraction

cause conventional approaches fail to extract hidden relationships . . . d . h keti
between numerous complex process control parameters. In order PFESENtS an interest in various domains such as marketing,

to highlight correlations between such parameters, we propose in design, medical research [2], telecommunication networks [3],
this paper a complete knowledge discovery in databases (KDD) dynamic restructuring of websites [3], manufacturing sciences
model. The mining heart of the model uses a new method [4] and so on.

derived fr.om association ru_Ies programmlng,_and is based on two Data mining models can be categorized into four types
concepts: decision correlation rules and contingency vectors. The __ - . - . . L

rst concept results from a cross fertilization between correlation [1]- classiPcation, clustering, prediction, and association rules.
and decision rules. It enables relevant links to be highlighted Such approaches have been widely carried out in manufac-
between sets of values of a relation and the values of sets ofturing areas [4]. Data mining extracts knowledge to identify
targets belonging to the same relation. Decision correlation rules higden patterns in the parameters that control manufacturing
are built on the twofold basis of the chi-squared measure and of processes or to determine and to improve product quality.

the support of the extracted values. Due to the very nature of Unf v th . dard labl del f
the problem, levelwise algorithms only allow extraction of results JNfortunately, there is no standard scalable model for man-

with long execution times and huge memory occupation. To offset ufacturing applications. The models used are a collection of
these two problems, we propose an algorithm based both on the Oimplementation specibcO data mining algorithms. Associated

lectic order and contingency vectors, an alternate representation gpplications can be roughly divided into six categories.
of contingency tables. This algorithm is the basis of our KDD

model software, calledMineCor. An overall presentation of its 1) Customer relationships: the objective is to develop the
other functions, of some signi cant experimental results, and of relationship with the customers in order to maximize
associated performances are provided and discussed. probts
Index Terms—Chi? correlation statistic, data mining, decision 2) Engineering design: based on historical data, the goal
rule, semiconductor man-ufacturlng. o is to optimize design specibcation by matching the
. Introduction and Motivation temporal data of a new product with the knowledge base.

N THIS SECTION, we brst introduce why and how data 3) Manufacturing systems: in such environments, the need

mining techniques are useful to enhance semiconductor and importance of data is ever present for statistical pro-
fabrication capabilities. Discussion is set on how to detect cess control (SPC) purposes; SPC consists in effective
the main parameters which have an impact on y|e|d loss statistical methods for monitoring a process through the
rather than on how to improve Pnal yield. Then we present Use of control charts, by enabling the use of objective
our approach that determines the main correlated production ~criteria for distinguishing background variation from

parameters impacting the yield. events of signibcance.
. . . ] 4) (Equipment) maintenance: since databases contain in-
A. Data Mining Techniques in the Manufacturing Industry formation to improve processes, they also contain the

Data mining [1] allows us to extract data in terms of models  reasons for machine failures.
which may be rules, concepts, patterns, anomalies, or trend$) Fault detection and quality improvement: examining

Manuscript received September 2, 2010; revised March 21, 2011; accepted what happened in the past Is useq to better_ understand
July 31, 2011. This work was initially supported by Research Project ORousset  the process, and therefore to predict and to improve the
2003D2008,0 bnanced by the Commundut Pays dOAix, Conseilef®ral future systemf)s performance. Virtual metrology [5] is
des Bouches du Rime, and Conseil &gional Provence Alpesdie dOAzur.

A. Casali is with the Laboratoire dOInformatique Fondamentale de Marseille, herg Qne of the most novel tools. . )
Aix Marseille University, IUT (Technical Institute) of Aix-en-Provence, Aix- 6) Decision support systems: the goal is to determine
en-Provence 13625, France (e-mail: alain.casali@lif.univ-mrs.fr). links between control parameters and product quamy’

C. Ernst is with the Ecole des Mines de Saint-Etienne, Gardanne 13541, . . .

France (e-mail: ernst@emse.fr). essentially in the form of (decision) rules.
o ot i el oo e Poures n this paper are avalableyye focus hereafter on the last two points, which deal with

Digital Object Identiber 10.1109/TSM.2011.2171375 quality, and thus implicitly with product yield. Moreover, we
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concentrate on a particular application area, semiconductme well-known SPC techniques, while control charts aim at
wafer manufacturing. Yield is here debned as the ratio pfonitoring processes in order to detect abnormal drifts but
nondefective chips in a Pnished wafer to the number o&nnot point out which parameters impact them.

input products. However, we do not directly focus on yield When studying data mining techniques in semiconductor
enhancement, but on front-end issues, as shown in the nilirication, the most widely used method is classibcation, even

paragraph. if it generally focuses on very specibc process stages, such as
) o ) cleaning [8], or photolithography [9]. The aim of classibcation
B. Enabling Quality in Semiconductor Fabs is to build a classiber by induction from a set of pre-classibed

In semiconductor manufacturing facilities, the volume anidstances (the sensor measures). The classiber is then used
the complexity of the collected data are generally much mote categorize OunlabeledO instances. Decision tree induction is
consequent than in other manufacturing Pelds due to the véimg most representative approach in the peld [10].
nature of the domain. Fabrication processes include severaClustering methods correspond to a particular classibcation
hundred steps with regard to the produced Ochip.O Eachfofalues into clusters. Among the relevant hierarchical algo-
these steps uses various chemico-physical recipes, divided iritoms that search to minimize a formal objective function,
four main phase units (photolithography, etch, implant, arile most widely used is K-means clustering [11]. K-means
chemical mechanical polishing). remains also the simplest and most commonly used nonhier-

Two approaches are used to improve the yield: real-time aarthical algorithm employing a squared error criterion [12].
post hoc The brst approach monitors on-line measurementsPrediction systems search to perform automatic discovery
of specibc process steps, and undertakes corrective actibnsignibcant parameters having an impact on the vyield.
to ensure that the parameter being measured remains witBienetic programming [13] or neural networks [8] are therefore
the desired limits. Theost hocapproach compares the endemployed. Input data are Prst grouped into categorical classes.
result of the whole process with the desired specibcatiofdeld engineers can then build the relationship between the low
analyzing the root causes of low yield for adjusting thgield lots and the in-line measurements at specibc stages and,
process parameters to ensure future quality. Advanced prodegshe way, use these measurements to predict the future line
control (APC), an extension of SPC, considers both aspegtsid.
by highlighting correlations between production parameters inFinally, only association rules are not often used to try to
order to rectify possible shifts of the associated process(esgnhance yield. In [14], the authors used a modikegkiori

This can be done for specibc equipment and process stafgorithm in LCD panel manufacturing to locate machines
in real-time: fault detection and classibcation (FDC) toolsyith low yield after completion of processes, and thus to
and run to run (R2R) feedback and feedforward regulatiomprove the yield rate. In [15], correlations are also analyzed
loops are most representative APC techniques. FDC detdatsween combinations of used tools and defective products.
monitored key parameters which tend to drift. After identifyingther relevant approaches do not directly deal with the semi-
an abnormal status of a tool or a process running on it, the gesahductor area [16].
is to classify the detected failure. Associated data are bnall
checked by conventional SPC tools such as univariate or mu
variate statistical methods, or by knowledge based proceduresiVe present hereafter a whole KDD model based on specibc
R2R is an increasingly used process control method whegsociation rules. Within this framework, and in collabora-
process recipes are modibed during the fabrication chainti@n with STMicroelectronics (STM) and ATMEL (ATM),
diminish process drifts. The recipe contains all the equipmethis paper is focused on the detection of the main control
parameters required for a given process. A R2R control loopfigrameters impacting the yield. The goal is not to directly
able to center a process on a given value, by acting on depgaiance the yield, but to propose indicators to which special
parameters to reduce the process variability. attention should be paid in further production cycles through,

Correlations can also be discovengdst hog i.e., after the for example, the construction of yield enhancement models.
whole fabrication process has been completed. This is theOur post hocanalysis is based on comma-separated values
framework of our paper. (CSV) bles of real valued measurements associated with

Both approaches try to identify the parameters causifigoduction lots. These data have themselves been extracted
particular yield excursion. By automatically deriving correlain a previous step from very large manufacturer databases,
tions between variability in process parameters including yielepvering the four fabrication units mentioned at the beginning
model-based analysis can then reduce the time requiredofdSection I-B. The main characteristic of the CSV ples is the
determine the vyield loss causes. Let us emphasize that thigge number of columns (nature of the measurements) with
second nontrivial problematic is excluded from the scope t#gard to the number of rows (measures). We want to highlight
this paper. correlations between the values of some columns and those of

However, in manufacturing plants, conventional methodstarget column: a particular column of the ble, the yield. To
are inaccurate to improve yield, because they fail to extra@gtect these correlations, we introduce the concept of decision
underlying features from complex data [6], [7]. These methog9rrelation rules, a restriction of correlation rules containing a
include SPC and derived techniques such as FDC, designvafue of one target column. In order to compute these rules:
experiments, or spatial mapping analysis. Component specid) We use the lectic order [17] to browse the powerset
pcation changes, mean process shift and variance reduction lattice (the search space).

. Our Approach
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TABLE | rules, the authors still use the support-conbdence platform by

Relation Example r redePning the support of a literal: the number of transactions
Tid ltemSet Target qf the binary. relgtion including and containing no 1-item
1 BCF t (item of cardinality 1) ofY.
2 BCE 51 Example 2:With the relation example, the literalsetBC
i %CcF t_z has a support equal to 2. As a consequence, the association
5 BD ty rule B C has a conbdence equal to 1/3. This means that
6 B - one third of the transactions containing patt&ndoes not
g /}CCF t_l include patterrC.
9 AE t Brin et al. [18] proposed the extraction of correlation rules.
10 F t2 The platform is no longer based on the support nor the

conbdence of the rules, but on the chi-squared statistical

2) We propose the concept of contingency vector: a neweasure, written 2, The use of ? is well-suited for several
approach to contingency tables. reasons: 1) it is a more signibcant measure in a statistical way

3) We show how to build the contingency vector of d&han an association rule; 2) the measure takes into account
pattern with a cardinality with the contingency vector not only the presence but also the absence of the items; and
of one of its subsets with a cardinalitys 1 (which is 3) the measure is nondirectional, and can thus highlight more
impossible with contingency tables). complex existing links than asftinpleD implication.

4) We take advantage of the lectic order, the contingencyThe crucial problem, when computing correlation rules, is
vectors and the recursing mechanisms of constructiontfee memory usage required by levelwise algorithms. For a pat-
propose theLHS-Chi2 algorithm. tern X, the computation of the? function is based on a table

This paper is organized as follows. In Section II, théncluding 2! cells. Thus, at level, C;, candidates (where is

bases of association and correlation rules, and of the lecdft¢ number of values af) have to be generated and stored, in
order are recalled. Section Il describes the concepts udBg worst case scenario, as well as the associated contingency
for mining decisional correlation rules and our algorithm. I#gbles. With cells encoded over 2 Bytes, corresponding storage
Section 1V, we expose the other functions of the softwarefiPace requires 2.5 GB of memory at the third level, and 1.3 TB
called MineCorldeveloped for mining decisional correlationat the fourth level. This is why Briet al. [18] computed only
rules. Experiments are detailed in Section V. As a conclusidiPrelations between two values of a binary relation. Using an

we summarize our contributions and outline some resear@Rd-user thresholdlinCor, Grahneet al. [22] showed that
perspectives. the O%(X) MinCor O constraint is monotone. Consequently,

the resulting set of rules is a convex space [23], which can be
represented by its minimal border [24], notiedIn this paper,
IIl. Related Work the author proposed a levelwise algorithm to computend
In this section, we recall the dePnitions of association rulessed an approximation to compute thevalue of any pattern
correlation rules [18], and lectic order [17]. Then, we introdudeelonging to that convex space.
the Ls algorithm [19]. It allows the browsing of the search .
space according to the lectic order. B. Correlation Rules
Letr be a binary relation (a transaction database) over a set
A. Statement of the Problem of itemsR =1 T. In our approach| represents the values
An association rule is an approximate implicatign Y (the items) of the binary relation used as analysis criteria,
between two sets of item$ andY. Two measures are used toand T is a target attribute. For a given transaction, the target
extract such rules: 1) support: the proportion of transactioattribute does not necessarily have a value. The computation
(rows) containingX and Y, and 2) conbdence: the ratioof the value for the 2 function for an itemX R is based
between the support of and the support oK (the degree on its contingency table. In order to simplify the notation, we
of truth of the implication). Prst introduce the lattice of the literalsets associated with a
Example 1:The relation example of Table | illustrates the patternX R. This set contains all the literalsets that can be
introduced concepts. ThBC pattern has a support equal tduilt up givenX, and with a cardinalityX]|.
4, and the ruleB C has a conbdence equal to 2/3. This Debnition 1 (Literalset Lattice)Let X R be a pattern.
means that two thirds of the transactions including paternWe denote byP(X) the literalset lattice associated with
also contain patterc. X: P(X) = {YZsuchthaK =Y ZandY Z =} =
Agrawal et al. [20] introduced levelwise algorithms for the{YZ such thatY X andZ = X\Y}.
computation of association rules in reasonable response time€Example 3:The literalset lattice associated with
Because the underlying semantics of an association rule Xre = {A,B,C} contains the following elements:
fairly poor, Wuet al. [21] introduced literal sets and proposedABC, AB C,ACB,BCA,ABC,BAC, CAB, ABC}.
the computation of positive and/or negative association rulesDepPnition 2 (Contingency Table}:or a given patterix, its
such as=X Y. contingency table, note@T(X), contains exactly 3! cells.
A literal is a patternXY in which X is also called the Each cell stores the support of a literald& belonging to
positive part andY the negative part. To compute suchhe literalset lattice associated wik
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TABLE Il
Contingency Table of Pattern BC

B E row
C| 4| 2 6
cC| 2|2 4
column 6 4 10

Example 4:With the relation example given in Table I,
Table Il shows the contingency table of patt&@G. Fig.
For each cellYZ of CT(X), we compute its expectation

value: the theoretical frequency in case of independence o ebnition 4 (Lectic Orde)Let| be a set of 'tems totally
the 1-items included ivZ [see (1)] ordered and therefore comparable two by two via an order

denoted by . If X andY |, then we haveX < Y
B max (X\(X Y)) max (Y\(X Y)).
Supp(y) Supp(2) (1)  Example 7:Let us consider the sét = {A,B,C}, totally
gy Il .z ordered according to the lexicographic order. The enumeration

. of the subsets of , according to the lectic order, produces
Formula (2) bnally computes the value of thé function the following result: <jec A <jec B <jec AB < jec C <iec

1. Execution tree ofs for | ={A,B,C}.

E(YZ) =|r|

for a patternX AC < oc BC <oc ABC.
In order to enumerate all the subsetsl ofccording to the
) (Supp(YZ) S E(YZ))? lectic order, the lectic subset algorithm, notesl [19], [27],
X)= E(YZ) ' () is used. Itis a simplibed version of Algorithm 2 (limited to
YZ P(X) lines 1D7, 12). The associated execution tree is a balanced tree,

Brin et al. [18] showed that there is a single degree drased on a do.uble recursive call. Being given a node of the
freedom between the items. A table giving the centile valu&i€€ (representing a patterq 1), the left subtree generates
with regard to the 2 value for X can be used in order to subpatterns oK not containingmax (X), whereas the right

obtain the correlation rate fof [25]. subtree leads to subpatternsofcontainingmax (X).
Example 5:Continuing our example, 2(BC) 0.28, Exgmple 8:Fig. 1 shows the execution tree of tHes
which corresponds to a correlation rate of about 45%. Algorithm for | = {A,B,C}.

Unlike association rules, a correlation rule is not represented”TOPOSItion 1 expresses the fact that the lectic order is
by an implication but by the patterns for which the value grompatible with the antimonotone constraints. Consequently,

the 2 function is larger than a threshold. we can modify thelLs algorithm to take into account a
Debnition 3 (Correlation Rule)Let MinCor be a thresh- conjunction of antimonotone constraints.
old ( 0), andX R a pattern. If the value for the?2 Proposition 1:Let be X, Y | two itemsets. IfX Y,

function for X is larger than or equal tMinCor, then this thenX <iec Y [17].
pattern represents a valid correlation rule.
Many authors have proposed additional constraints to eval- . .
uate whether a correlation rule is semantically valid [26]. Il LHS-Chi2 Algorithm
Generally, the Cochran criteria are used: 1) all literalsets of aln this section, we introduce the contingency vectors: an-
contingency table must have an expectation value not equabtber representation of the contingency tables. We show that
zero (which never happens in our context), and 2) 80% of theior a given patterrk A (X R,A R\X), the computation
must have a support larger than 5% of the whole populatioof. its contingency vector is possible using the contingency
This last criterion has been generalized by Beihal. [18] vector of X and the list of the row identibers of the relation
as follows: MinPerc of the literalsets of a contingency tablecontainingA. Then, we present the concept of the decision
must have a support larger th&inSup, whereMinPerc and correlation rule: a restriction of correlation rules, in such a way
MinSup are also thresholds. that only the rules containing a value of the target attribute are
Example 6:Let MinCor = 0.25, then the correlation rule kept. Finally, in order to compute these rules, we describe the
materialized by theBC pattern is valid (?(BC) 0.28). LHS-Chi2 Algorithm.
However, the correlation rule represented by Bie pattern

is not valid ( 2(Bt;)  0.1). A. Contingency Vectors

) A literal YZ, belonging to the literalset lattice associated
C. Lectic Order with a patternX, is represented in a computer with vectors of
The lectic order, noted |, enumerates all the subsets ofX| bits. For a 1-itemx X, the value of the bit vector has a
an itemset . This order allows the closed lattice of a binarywalue of 1 ifx Y (the 1-item belongs to the positive part of
relation to be computed [17], or to serve as a basis for thiee literal), and O otherwise. Thus, comparing two liteM& |
computation of the partition cube [19]: a lossless reduction ahd Y,Z, belonging to the literalset lattice associated with
the data cube. patternX, consists in comparing each integer corresponding
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to the binary value of the associated bit vector. The compariso@orithm 1 CREATEsCV Algorithm
is equivalent to extending the debnition of the lectic order {Bput: CV(X) contingency vector oK, Tid(A)

the Iij[eralset one. i ) Output: contingency vector oK A sorted according to the
This order allows the total ordering of the whole literalset |octic order

lattice associated with pattepx. 1 CV(Z2):={}
Depnition 5 (Lectic Order for a LiteralsettetX R be . for g Equivalence classe¥F] P(X) according to the
a pattern,Y:Z; andY,Z, two elements of the literalset lattice lectic orderdo
associated with th¥ pattern. The debnitiongfthe Iectiiorder 3 CV(Z):=CV(Z) (YZ] (Tid(r\(Tid(A)) (YZ]
is extended over the literalsets as follow§Z 1 <|ec Y2Z> if Tid(A))
and only if Y1 <jec Ya. 2: end for
Example 9:The literalset lattice associated with the patters. retyrn  Cv/(2)
X ={A,B,C} according to the lectic order is the following:
m <lec AE <lec BE <lec ABC <lec Cﬁ <lec

ACB <ec BCA < oc ABC. _ .  {{5,6,9,10}, {1, 2, 3,4, 7, 8}}. By applying Theorem 1, the
Debpnition 6 (Equivalence Class Associated with a Literagpntingency vector ofBC is the following: CV(BC) =

Let YZ be a literal. Let us denote byYF] the 9 10 {5 6},{7, 8}, {1 2 3, 4}}. Thus, we retrieve the result
equivalence class associated with the litetdZ. This ¢ Example 11.

class contains the set of transaction identibers of theAIgorithm 1 is used, given th€V of a patternX and the
relation including Y and containing no value oZ (i.e., set of the transaction identipers containing a 1-ifento build
[YZ]={i Tid(r)suchtha¥ Tid(i)andZ Tid(i)=1}).  theCV oftheX A pattern sorted according to the lectic order

Example 10:With our relation example (see Table 1), Wegyer the literalset lattic®(X  A). Line 3 is an adaptation of
have BC] = {5, 6}. Theorem 1 to our context.

Proposition 2:Let X R be a pattern. The union of the The computation of &V needs one database scan, and
equivalence classesy¥] of the literalset lattice associatedipe following transition to the associaté®dT another one
with X is a partition [28] of the identibPers of relatian In (overheads are ignored). This leads to a complexity ofr2
other words or O(|r|), whatever the number of cells in ti&T. A classical

_ computation of &CT at leveli also needs one database scan;
[YZ] = Tid(r). but here, in the worst case, each of & cells is involved
YZ P(X) in one operation, which globally forces 2| r| operations.

Debnition 7 (Contingency Vector):et X R be a pat- Because 2is generally much smaller in comparison fid,
tern. The contingency vector of, denotedCV(X), groups the complexity is also oD(|r|). But when going into detail,
the set of the literalset equivalence classes belongir(x) the difference between the two methods'is'2 r| operations.
ordered according to the lectic order.

Proposition 2 ensures that each transaction identiPer beloggs pecision Correlation Rules
only to one single equivalence class. Consequently, for a giverbebnition 8 (Decision Correlation Rulesyet X R be

patternX, its CV is an exact representation of its contingenc ) . :
table. To derive the contingency table from a contingen pattern, andlinCor a given thresholdX represents a valid
: é’ecision correlation rule if and only if:

vector, it is sufpcient to compute the cardinality of each of i
equivalence classes. If the literalsets, related to the equivalencd) X contains a value of the target attribuke
classes of &CV, are ordered according to the lectic order, 2) *(X) MinCor.
it is possible to know the literal relative to a positiorof a Example 13:With our relation example (see Table I), if
contingency vectori( [0;|X|S 1]). This is because the literal MinCor = 0.25, the decision correlation rule materialized by
and the integer have the same binary coding. the BCt; pattern is a valid rule because:

Example 11:With our sample relation (see Table 1), 1) ¢, T andt; BCt;
the contingency vector associated with t&C pattern ) 2Bct) 0.28 (- MinCor).

is the following: CV(BC) = {[BC], [BC], [CB], [BC]} = The lectic hybrid subset-Chi2 algorithm, drHS-Chi2,

o, 101 {5, 6}‘.{7’ 8.{1, .2’ 3,41} ermits to extract the whole set of decision correlation rules
Theorem 1 is the main result of our paper. It shows how . o "
. or a relationr satisfying the threshold constraiktinCor for
compute theCV of the X A pattern given theCV of X and 2 . . . . )
: . . L the < function. This algorithm is an adaptation of the
the set of identibers of the relation containing pattarn . L :
Algorithm to our context, by taking into account contingency

Theorem 1:Let X R be a pattern andh R\X a .
. . vectors. Moreover, we added several monotone and antimono-
1-item. The contingency vector of A can be computed VR
tone constraints in order to prune the search space [22].

given the contingency vectors &f andA as follows: _ ]
1) A value of the target attribute must be present in the
CV(X A)=(CV(X) [A]) (CV(X) [A]. ©) extracteg pattern (monotone const.ralnt). .
_ _ 2) Asthe < computation has no signibcance for a 1-item,
Example 12:With the relation example (see Table I), we e only examine patterns of cardinality larger than or
have CV(B) = {{7,8,9,10},{1,2,3,4,5,6}} and CV(C) = equal to two (monotone constraint).
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3) Since the 2 function is an increasing function, weAlgorithm 2 LHS-Chi2 Algorithm
impose a maximum cardinality, notédaxCard, on the |nput: X andY two patterns
number of 1-items belonging to the patterns to examir@utput; {itemset Z X such that 2(Z) MinCor}

(antimonotone constraint). 1if Y= and|X| 2and ¢ C:c Xand 2(X)
4) All literalsets of aCT must have an expectation value  MinCor then
not equal to zero (antimonotone constraint). 2. Output X, 2(X)

5) Because the obtained rules must have a semantics @n end if
the relation, at leasMinPerc of the cells of aCT 4: A = max(Y)
must have a support larger than or equalMmSup. 5 Y := Y{A}
This constraint is expressed in our algorithm by theg: |LHS-Chi2(X, Y)
CtPerc predicate, which parameters are the contin-z. 7 :=X { A}
gency vector,MinPerc and MinSup (antimonotone g if z Z W BD*:{Z\zZ} W then
constraint). _ o 9:  VC(Z) := CREATE_CV(CV(X), Tid(A))
Laporte et al. [19] modiPed theLs Algorithm in order .. |Z| MaxCard and
to compute OicebergO data cubes. The authors included an CtPerdCV(Z), MinPerc, MinSup ) then
antimonotone constraint threshold, evaluated before the secqnd BD* := max (BD* Z)
recursive call of theLs Algorithm; they used a pruning step ;.. LHS-Chi2(Z, Y)
with th‘e negativr:: border [29] in order to only examine the .. end if
most nteresting cuboids (patterns in our context). In the,. onq if
same spirit, we modifyLs in order to take into account the

Pve constraints above, and to compute theThe result is an TABLE Il

algorithm requiring, in the worst casf® | +MaxCard+1 CVs Results of the LHS-Chi2 Algorithm Over Table |
in memory. We needR| CVs for the 1-items, the height of

our tree is bounded bilaxCard, and we need an additional Decision Correlation Rule 2 Value

CV for the current node computation. This value has to be gt&l 8:32
compared to the number of contingency tables to be computed BFt; 0.28

at each level using a levelwise algorithm (see the end of

Section 1I-A).

. _— . . _ . Mi e
Proposition 1 justibPes the inclusion of these constraints into IV. MineCor Softwar

our algorithm. However, we do not carry out pruning using We developed a global KDD model including the LHS-
the negative border. Instead, we use the positive border [£9)i2 algorithm. The software, calleMineCor (Miner for
relating to predicateCtPerc The use of the positive borderCorrelations), is developed in C language. To carry out pre-
is justiped on the basis of the experiments carried out Byocessing and transformation in the form of a transaction
Flouvat et al. [30]. The authors showed that the positivélatabase of the CSV Ples given by our manufacturer partners
border is of highly reduced cardinality in comparison with thésee the end of Section I), we have prst performed column
negative one. As a consequence, the satisbability tests of @ligiination and discretization stages [1], [31]. These steps,
antimonotone constraints are faster when the positive bord@own as data cleaning or cleansing in the literature, are
is used. In our context, we make sure that thepattern, summarized in Sections IV-A and IV-B. The output of the
used as a parameter within the second recursive call of f¢ steps is placed into a feature database, which serves as
algorithm, has all its direct subsets included in one of the source for the data mining phase. Finally, after the mining
elements of the positive border (line 8). Let us emphasize ti§éep, the results are interpreted, what is resumed in Section
this test is carried out in th&prioriGen function [20] during [V-C.
the generation of the candidates of leiel using the frequent
i-itemsets. If patterrZ is a candidate, then we compute ité\- Preprocessing Stage
contingency vector by making sure that the literalsets relatingThe Prst step of data cleaning is the preprocessing stage.
to the classes of equivalence are sorted according to the leGiita has to be prepared for two reasons: 1) if each value of
order (line 9) by calling Algorithm 1. If the pattern satisPegach column is considered as a single item, the search space
the antimonotone constraints (line 10), we update the positiggplodes combinatorially, and results cannot be provided in a
border (line 11), and carry out the second recursive call of theasonable amount of time, and 2) we cannot expect this task
algorithm (line 12). The monotone constraints are evaluatesibe performed by an expert, because manual cleaning of data
on the leaves of the execution tree (line 1). By convention, vi® laborious and subject to errors.
haveCV( ) = {Tid(R), }. The positive border is initialized Preprocessing consists in the reduction of the data structure
with {} . The pseudo code otHS-Chi2 is provided in [32] by eliminating columns (and rows) of low signibPcance.
Algorithm 2. The brst recursive call toHS-Chi2 is carried Such situations can result, for example, from the dysfunction
outwithX = and Y =R. of one or more sensors, or from the occurrence of a mainte-
Example 14:The results olLHS-Chi2 with MinSup = 0.2, nance step. As a consequence, corresponding columns contain
MinPerc = 0.25, andMinCor = 0.25 for our relation example many null or default values, and must be deleted from the
(see Table I) are shown in Table Ill. source ble. Moreover, sometimes, several sensors measure the
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same information, resulting in identical columns in the source [Target Attribute [chi2
ble. In this case, we keep only a single column. Anothewm) [Cotmn2 (C) jn
classical technique is the elimination of columns having smalf; 1000, 2.2000]0.600 [[2.8000, 4.6000] [0.600][2.7000, 7.4500] |g_500’;
standard deviation. Since all values are almost the SERIEE ) [Column3 @) I
we consider that they do not have a signiPcant impact Of; 4000, 2 2000] [0.600 f2.8000, 154000} 0.400 127000, 7.4500] |0_500’;

the result; but their inclusion pollutes the search space and
reduces the response time bfineCor. Attention is Pnally Fig. 2. output produced bilineCor.
paid to missing or inconsistent values, such as OoutliersO and

noisy columns. Elimination is performed through thresholds . . . o o
specibed by the end-user. not important while the obtained time gain is. This is why the

EFD method is also referred to, in the next sections of this
paper, as the FisherbJenksO method.

Example 15:Let S = {1.8, 1.9, 2.1, 2.2, 1.3, 2.0, 0.5, 0.6,
Discrete values deal with value intervals, which are mo®5, NULL} be the set to discretize. If we specify two output
concise to represent knowledge, so that they are easier to gig@ses, the proposed methods produce the following results.
and comprehend than continuous values. 1) EWD: sinceM&sSMins = 1 35 this method computes

Many discretization algorithms have been proposed over the the classes [6, 1.23]' [1.8,2.2]. As a consequence, the

years in order to classify data into intervals, also called bins. In setS is encoded by the vectdB, B, B, B, A, B, A
this section, we only summarize these methods. Discretization A, A -} in the output of the discretization step (O-O

can be performed [33]: 1) in a supervised or unsupervised symbolizes the NULL value).

manner, depending on whether class information is at oneC EFD: the FisherDJenks® method produces ten class
disposal; 2) in a dynamic or static way: with a static discretiza- generation possibilities. The one which maximizes the
tion approach, discretization is done before the classibcation squared sum is [6,0.6], [1.3,2.2]. The following

task; and_ 3) using splitting or merging Fechnlqu_es_. In the latter vector is produced to represent the :t{B, B, B,

case, using a bottom-up approach while examining the search B, B, B, A A A, -}. Let us underline that we retrieve

space. i L here partial results presented in Table I.
We represent continuous real valued columns by associating

each of their values with an interval code. The bins are created ]

either using equal-width or equal-frequency discretizatiofy: Interpretation Stage

which are nonsupervised, static, and splitting methods. In bothinterpretation essentially consists in decoding the discretiza-
approaches, ariti is the number of intervals to use. And thetion stage with regard to the results, and to produce an
different values associated with each Setre managed in the intelligible output for the end-useMineCor produces outputs
same way through initial normalization. in HTML and text formats.

1) Equal Width Discretization (EWD)Let S be the set of  Example 16:Fig. 2 provides an example of output pro-
values to be discretized, and respectiviélin s andMaxs the duced byMineCor, limited to some 3-patterns. Given a row,
smallest and the largest value $f Each interval has a lengththe last column is the computed value for the associated
of | = M&sSMins The computed classes are: [Mins, Mins+  decision correlation rule.

I[, cz:[Ming+I,Ming+2[,.... As mentioned in Section IV-B, and because EWD is the

2) Equal Frequency Discretization (EFD)The goal is to default method, the results shown are slightly different than
obtain classes having, if possible, the same number of contihese presented in Table lIl.
uous values. The JenksO natural breaks method minimizes the
in-class difference and maximizes the between-class difference
[34]. This can be measured by the goodness of variance bt V. Experimental Analysis
(GVF)

B. Discretization Stage

Some representative results of thdS-Chi2 algorithm are
presented below. The comparison is made with a standard
. !(=1 ![:Sli's'i”(si SW)Z levelwise (a completea priori) algorithm, hereafter called
GVF =15 Bls & 5 Levelwise , based on the same monotone and antimonotone
=1(S ) constraints as those used ItHS-Chi2 (see Section IlI).
where|[S;, S;]| is the cardinality of the interval], S;], and The main difference is that thieevelwise method does not
S is the mean of the sorted s8t JenksO method is the besise contingency vectors but uses standard computation of
from a statistical point of view because it creates homogeentingency tables.
neous groups. Its main drawback is the high computationalAs emphasized in Section I-C, the experiments were done
complexity of the class generation, which aﬁgi whered on different CSV bles of real value measures supplied by
represents the number of distinct values in the SefThus, STM and ATM. These bles have one or more target columns,
we use instead the FisherOs exact optimization method [@Sjulting from the concatenation of several measurement bles.
proposed for groupingn elements intok mutually exclusive The characteristics of the datasets used for experiments can
and exhaustive subsets having maximum homogeneity. T found in Table IV. All experiments were conducted on a
partition is guaranteed to be optimal, but not unique, which P Workstation (1.8 GHz processor with a 4 GB RAM).
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TABLE IV
Dataset Examples i b

®—e LEVEL WISE
©-© LHS-CHI2

Name Number of Columns| Number of Rows s "
STM File 1281 297 g
ATM File 749 213

03
150000 Min Perc (%)

Fig. 5. Execution time withMinSup = 0.24, MinCor = 6.9 (STM ble:
targetl).

50000 |

=—e LEVELWISE
& - LHS-CHI2

0,22 0.24 0.26 N
MinSup (%) 12000

0.20

Fig. 3. Execution time withiMinPerc = 0.34, MinCor = 1.6 (STM ble:
targetl).

soo

Number of Results

s o B I+ s
MinCor

Fig. 6. Results wittMinSup = 0.38, MinPerc = 0.24 (ATM ble: target3).

__________________

' C. Impact of theMinCor Parameter
Fig. 6 shows the number of extracted rules (identical in
) o o ) both methods) after mining whedinPerc and MinSup are
g?de‘:'z)_ExeC“"on time withMinPerc = 0.24, MinCor = 2.8 (ATM Ple: 1,04 with suitable values and whéfinCor varies. In that
particular case, execution times are identical whatever the
MinCor value, but are of the order of 2 min wittHS-Chi2,
Experimental results are presented on Figs. 3 to 8(c). THRJ about 17 min fotevelwise . This means that thilinCor

carried out in Sections V-A to V-C.

.35 0.40
MinSup (%)

A. Execution Times folLHS-Chi2 and Levelwise Algo-

) D. Impact of the Discretization Stage
rithms

) ) ) ) Figs. 7(a) and 8(a) show the number of items kept after
Figs. 3 and 4 show the evolution of the execution tim&pe preprocessing and discretization stages. This number only
for both methods for the two bles whéinSup varies and gepends on thMinSup threshold, while the number of bins is
MinPerc and MinCor are bxed. As the graphs point it outggnstant [4 in Fig. 7(a), and 6 in Fig. 8(a)]. In each example,
the response times of our method are between 30% and 7QfGtems with a support greater thaninSup are kept.
better thanLevelwise , even if they remain high when using  ag jllustrated in Figs. 7(a) and 8(a), the smaller the threshold
small thresholds. In each case, an increasing windowing of %Sup, the larger the number of items kept for the mining
results is provided for subsequent subintervald/aiSup. stage, whatever the discretization method. Figs. 7(b) and 8(b)
) show the number of rules generated in both cases. While the
B. Impact of theMinPerc Parameter number of partitions generated by the EFD method is larger
Fig. 5 shows the execution times for the STM Pble (usinipan the one generated by the EWD method, the number of
the same conbguration as the experiment in Fig. 3) whares is smaller. Moreover, the execution time is shorter by
MinSup andMinCor are constant, and wheMinPerc varies. a factor up to 2.5 [see Figs. 7(c) and 8(c)]. These results
The staircase curve thus explains. A CT associated with acome from the perspective thaflineCor tries to provide
pattern containing'Xells, specifying thamMinPerc of its cells rules of ObestO quality: 1) low in number; 2) signibcant; and
must have the support means that MinPerc cells must 3) computed quickly.
have it. So, for a 3-pattern, to debne a value ftinPerc Finally, let us emphasize that the experimental sets used in
varying between 0% and 12.49% means specifying that oRy. 7 produce decision correlation rules with a cardinality
single cell of the CT has to have the support, and so on. Tok4. This is the kind of information that is of interest for
scale is logarithmic, because response times for small valsesniconductor manufacturers, as well as different possible
of MinPerc are very high (more than 13 h ftuHS-Chi2, and crossings using other techniques (see Section I-B) between
about 69 h forLevelwise with MinPerc = 0.12). rules of cardinality 3 and 4.
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Fig. 7. Results with four intervalCtPerc = 0.34, MinCorr = 1.6 (STM Ple: targetl). (a) Number of items kept after discretization/preprocessing stages.
(b) Number of generated decision correlation rules. (c) Execution time.

Fig. 8. Results with six intervalgCtPerc = 0.3, MinCorr = 2.8 (ATM ble: target3). (a) Number of items kept after discretization/preprocessing stages.
(b) Number of generated decision correlation rules. (c) Execution time.

VI. Conclusion and Future Work Finally, let us emphasize that the preserpedt hocmethod

In this paper, we showed the different facets of MieeCor could also be applied in real-time, i.e., associated with specibc
software. CSV parameter measurement bles given by semicBFRC€SS steps, from the moment on the relevant conpguration
ductor manufacturers (STMicroelectronics and ATMEL) arBarameters are set up in an optimal way. Moreover, our
used as input, and produce as output values of paramet$RD model could be used in other domains than wafer
with most inRuence on the yield. To achieve this objectivdianufacturing.

we built a complete knowledge discovery in databases modelSCMe New issues to our work are: 1) to optimize memory
based on: management in order to increase the performancé -

Chi2; 2) to compare our approach with other mining methods;
1) decision correlation rules, i.e., a restriction of Correlatiog) to optimize the processing stages upstream of the a|gorithm
rules containing a target attribute value; (aggregation of attributes, merging of intervals) while safe-
2) contingency vectors, i.e., an alternative representatiglarding the context in order to obtain a larger number of rules
of contingency tables, which are more concise anghd more signiPcant results; and 4) to broaden the correlation

offer better performance related properties. We Pnallyje extraction problem on items to those on literalsets.
proposed an algorithm based on the lectic order to go

through the powerset lattice.
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Discovering Correlated Parameters in
Semiconductor Manufacturing Processes:
A Data Mining Approach

Alain Casali and Christian Ernst

Abstract—Data mining tools are nowadays becoming more and that are useful and intelligible for the end-user. Nowadays,
more popular in the semiconductor manufacturing industry, and  databases or data warehouses of signiPcant size implicitly con-
especially in yield-oriented enhancement techniques. This is be- iy 5 1arge amount of relevant information. Their extraction

cause conventional approaches fail to extract hidden relationships . . . d . h keti
between numerous complex process control parameters. In order PFESENtS an interest in various domains such as marketing,

to highlight correlations between such parameters, we propose in design, medical research [2], telecommunication networks [3],
this paper a complete knowledge discovery in databases (KDD) dynamic restructuring of websites [3], manufacturing sciences
model. The mining heart of the model uses a new method [4] and so on.

derived fr.om association ru_Ies programmlng,_and is based on two Data mining models can be categorized into four types
concepts: decision correlation rules and contingency vectors. The __ - . - . . L

rst concept results from a cross fertilization between correlation [1]- classiPcation, clustering, prediction, and association rules.
and decision rules. It enables relevant links to be highlighted Such approaches have been widely carried out in manufac-
between sets of values of a relation and the values of sets ofturing areas [4]. Data mining extracts knowledge to identify
targets belonging to the same relation. Decision correlation rules higden patterns in the parameters that control manufacturing
are built on the twofold basis of the chi-squared measure and of processes or to determine and to improve product quality.

the support of the extracted values. Due to the very nature of Unf v th . dard labl del f
the problem, levelwise algorithms only allow extraction of results JNfortunately, there is no standard scalable model for man-

with long execution times and huge memory occupation. To offset ufacturing applications. The models used are a collection of
these two problems, we propose an algorithm based both on the Oimplementation specibcO data mining algorithms. Associated

lectic order and contingency vectors, an alternate representation gpplications can be roughly divided into six categories.
of contingency tables. This algorithm is the basis of our KDD

model software, calledMineCor. An overall presentation of its 1) Customer relationships: the objective is to develop the
other functions, of some signi cant experimental results, and of relationship with the customers in order to maximize
associated performances are provided and discussed. probts
Index Terms—Chi? correlation statistic, data mining, decision 2) Engineering design: based on historical data, the goal
rule, semiconductor man-ufacturlng. o is to optimize design specibcation by matching the
. Introduction and Motivation temporal data of a new product with the knowledge base.

N THIS SECTION, we brst introduce why and how data 3) Manufacturing systems: in such environments, the need

mining techniques are useful to enhance semiconductor and importance of data is ever present for statistical pro-
fabrication capabilities. Discussion is set on how to detect cess control (SPC) purposes; SPC consists in effective
the main parameters which have an impact on y|e|d loss statistical methods for monitoring a process through the
rather than on how to improve Pnal yield. Then we present Use of control charts, by enabling the use of objective
our approach that determines the main correlated production ~criteria for distinguishing background variation from

parameters impacting the yield. events of signibcance.
. . . ] 4) (Equipment) maintenance: since databases contain in-
A. Data Mining Techniques in the Manufacturing Industry formation to improve processes, they also contain the

Data mining [1] allows us to extract data in terms of models  reasons for machine failures.
which may be rules, concepts, patterns, anomalies, or trend$) Fault detection and quality improvement: examining

Manuscript received September 2, 2010; revised March 21, 2011; accepted what happened in the past Is useq to better_ understand
July 31, 2011. This work was initially supported by Research Project ORousset  the process, and therefore to predict and to improve the
2003D2008,0 bnanced by the Commundut Pays dOAix, Conseilef®ral future systemf)s performance. Virtual metrology [5] is
des Bouches du Rime, and Conseil &gional Provence Alpesdie dOAzur.

A. Casali is with the Laboratoire dOInformatique Fondamentale de Marseille, herg Qne of the most novel tools. . )
Aix Marseille University, IUT (Technical Institute) of Aix-en-Provence, Aix- 6) Decision support systems: the goal is to determine
en-Provence 13625, France (e-mail: alain.casali@lif.univ-mrs.fr). links between control parameters and product quamy’

C. Ernst is with the Ecole des Mines de Saint-Etienne, Gardanne 13541, . . .

France (e-mail: ernst@emse.fr). essentially in the form of (decision) rules.
o ot i el oo e Poures n this paper are avalableyye focus hereafter on the last two points, which deal with

Digital Object Identiber 10.1109/TSM.2011.2171375 quality, and thus implicitly with product yield. Moreover, we
0894-6507/$26.00c 2011 |EEE
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concentrate on a particular application area, semiconductme well-known SPC techniques, while control charts aim at
wafer manufacturing. Yield is here debned as the ratio pfonitoring processes in order to detect abnormal drifts but
nondefective chips in a Pnished wafer to the number o&nnot point out which parameters impact them.

input products. However, we do not directly focus on yield When studying data mining techniques in semiconductor
enhancement, but on front-end issues, as shown in the nilirication, the most widely used method is classibcation, even

paragraph. if it generally focuses on very specibc process stages, such as
) o ) cleaning [8], or photolithography [9]. The aim of classibcation
B. Enabling Quality in Semiconductor Fabs is to build a classiber by induction from a set of pre-classibed

In semiconductor manufacturing facilities, the volume anidstances (the sensor measures). The classiber is then used
the complexity of the collected data are generally much mote categorize OunlabeledO instances. Decision tree induction is
consequent than in other manufacturing Pelds due to the véimg most representative approach in the peld [10].
nature of the domain. Fabrication processes include severaClustering methods correspond to a particular classibcation
hundred steps with regard to the produced Ochip.O Eachfofalues into clusters. Among the relevant hierarchical algo-
these steps uses various chemico-physical recipes, divided iritoms that search to minimize a formal objective function,
four main phase units (photolithography, etch, implant, arile most widely used is K-means clustering [11]. K-means
chemical mechanical polishing). remains also the simplest and most commonly used nonhier-

Two approaches are used to improve the yield: real-time aarthical algorithm employing a squared error criterion [12].
post hoc The brst approach monitors on-line measurementsPrediction systems search to perform automatic discovery
of specibc process steps, and undertakes corrective actibnsignibcant parameters having an impact on the vyield.
to ensure that the parameter being measured remains witBienetic programming [13] or neural networks [8] are therefore
the desired limits. Theost hocapproach compares the endemployed. Input data are Prst grouped into categorical classes.
result of the whole process with the desired specibcatiofdeld engineers can then build the relationship between the low
analyzing the root causes of low yield for adjusting thgield lots and the in-line measurements at specibc stages and,
process parameters to ensure future quality. Advanced prodegshe way, use these measurements to predict the future line
control (APC), an extension of SPC, considers both aspegtsid.
by highlighting correlations between production parameters inFinally, only association rules are not often used to try to
order to rectify possible shifts of the associated process(esgnhance yield. In [14], the authors used a modikegkiori

This can be done for specibc equipment and process stafgorithm in LCD panel manufacturing to locate machines
in real-time: fault detection and classibcation (FDC) toolsyith low yield after completion of processes, and thus to
and run to run (R2R) feedback and feedforward regulatiomprove the yield rate. In [15], correlations are also analyzed
loops are most representative APC techniques. FDC detdatsween combinations of used tools and defective products.
monitored key parameters which tend to drift. After identifyingther relevant approaches do not directly deal with the semi-
an abnormal status of a tool or a process running on it, the gesahductor area [16].
is to classify the detected failure. Associated data are bnall
checked by conventional SPC tools such as univariate or mu
variate statistical methods, or by knowledge based proceduresiVe present hereafter a whole KDD model based on specibc
R2R is an increasingly used process control method whegsociation rules. Within this framework, and in collabora-
process recipes are modibed during the fabrication chainti@n with STMicroelectronics (STM) and ATMEL (ATM),
diminish process drifts. The recipe contains all the equipmethis paper is focused on the detection of the main control
parameters required for a given process. A R2R control loopfigrameters impacting the yield. The goal is not to directly
able to center a process on a given value, by acting on depgaiance the yield, but to propose indicators to which special
parameters to reduce the process variability. attention should be paid in further production cycles through,

Correlations can also be discovengdst hog i.e., after the for example, the construction of yield enhancement models.
whole fabrication process has been completed. This is theOur post hocanalysis is based on comma-separated values
framework of our paper. (CSV) bles of real valued measurements associated with

Both approaches try to identify the parameters causifigoduction lots. These data have themselves been extracted
particular yield excursion. By automatically deriving correlain a previous step from very large manufacturer databases,
tions between variability in process parameters including yielepvering the four fabrication units mentioned at the beginning
model-based analysis can then reduce the time requiredofdSection I-B. The main characteristic of the CSV ples is the
determine the vyield loss causes. Let us emphasize that thigge number of columns (nature of the measurements) with
second nontrivial problematic is excluded from the scope t#gard to the number of rows (measures). We want to highlight
this paper. correlations between the values of some columns and those of

However, in manufacturing plants, conventional methodstarget column: a particular column of the ble, the yield. To
are inaccurate to improve yield, because they fail to extra@gtect these correlations, we introduce the concept of decision
underlying features from complex data [6], [7]. These methog9rrelation rules, a restriction of correlation rules containing a
include SPC and derived techniques such as FDC, designvafue of one target column. In order to compute these rules:
experiments, or spatial mapping analysis. Component specid) We use the lectic order [17] to browse the powerset
pcation changes, mean process shift and variance reduction lattice (the search space).

. Our Approach
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TABLE | rules, the authors still use the support-conbdence platform by

Relation Example r redePning the support of a literal: the number of transactions
Tid ltemSet Target qf the binary. relgtion including and containing no 1-item
1 BCF t (item of cardinality 1) ofY.
2 BCE 51 Example 2:With the relation example, the literalsetBC
i %CcF t_z has a support equal to 2. As a consequence, the association
5 BD ty rule B C has a conbdence equal to 1/3. This means that
6 B - one third of the transactions containing patt&ndoes not
g /}CCF t_l include patterrC.
9 AE t Brin et al. [18] proposed the extraction of correlation rules.
10 F t2 The platform is no longer based on the support nor the

conbdence of the rules, but on the chi-squared statistical

2) We propose the concept of contingency vector: a neweasure, written 2, The use of ? is well-suited for several
approach to contingency tables. reasons: 1) it is a more signibcant measure in a statistical way

3) We show how to build the contingency vector of d&han an association rule; 2) the measure takes into account
pattern with a cardinality with the contingency vector not only the presence but also the absence of the items; and
of one of its subsets with a cardinalitys 1 (which is 3) the measure is nondirectional, and can thus highlight more
impossible with contingency tables). complex existing links than asftinpleD implication.

4) We take advantage of the lectic order, the contingencyThe crucial problem, when computing correlation rules, is
vectors and the recursing mechanisms of constructiontfee memory usage required by levelwise algorithms. For a pat-
propose theLHS-Chi2 algorithm. tern X, the computation of the? function is based on a table

This paper is organized as follows. In Section II, théncluding 2! cells. Thus, at level, C;, candidates (where is

bases of association and correlation rules, and of the lecdft¢ number of values af) have to be generated and stored, in
order are recalled. Section Il describes the concepts udBg worst case scenario, as well as the associated contingency
for mining decisional correlation rules and our algorithm. I#gbles. With cells encoded over 2 Bytes, corresponding storage
Section 1V, we expose the other functions of the softwarefiPace requires 2.5 GB of memory at the third level, and 1.3 TB
called MineCorldeveloped for mining decisional correlationat the fourth level. This is why Briet al. [18] computed only
rules. Experiments are detailed in Section V. As a conclusidiPrelations between two values of a binary relation. Using an

we summarize our contributions and outline some resear@Rd-user thresholdlinCor, Grahneet al. [22] showed that
perspectives. the O%(X) MinCor O constraint is monotone. Consequently,

the resulting set of rules is a convex space [23], which can be
represented by its minimal border [24], notiedIn this paper,
IIl. Related Work the author proposed a levelwise algorithm to computend
In this section, we recall the dePnitions of association rulessed an approximation to compute thevalue of any pattern
correlation rules [18], and lectic order [17]. Then, we introdudeelonging to that convex space.
the Ls algorithm [19]. It allows the browsing of the search .
space according to the lectic order. B. Correlation Rules
Letr be a binary relation (a transaction database) over a set
A. Statement of the Problem of itemsR =1 T. In our approach| represents the values
An association rule is an approximate implicatign Y (the items) of the binary relation used as analysis criteria,
between two sets of item$ andY. Two measures are used toand T is a target attribute. For a given transaction, the target
extract such rules: 1) support: the proportion of transactioattribute does not necessarily have a value. The computation
(rows) containingX and Y, and 2) conbdence: the ratioof the value for the 2 function for an itemX R is based
between the support of and the support oK (the degree on its contingency table. In order to simplify the notation, we
of truth of the implication). Prst introduce the lattice of the literalsets associated with a
Example 1:The relation example of Table | illustrates the patternX R. This set contains all the literalsets that can be
introduced concepts. ThBC pattern has a support equal tduilt up givenX, and with a cardinalityX]|.
4, and the ruleB C has a conbdence equal to 2/3. This Debnition 1 (Literalset Lattice)Let X R be a pattern.
means that two thirds of the transactions including paternWe denote byP(X) the literalset lattice associated with
also contain patterc. X: P(X) = {YZsuchthaK =Y ZandY Z =} =
Agrawal et al. [20] introduced levelwise algorithms for the{YZ such thatY X andZ = X\Y}.
computation of association rules in reasonable response time€Example 3:The literalset lattice associated with
Because the underlying semantics of an association rule Xre = {A,B,C} contains the following elements:
fairly poor, Wuet al. [21] introduced literal sets and proposedABC, AB C,ACB,BCA,ABC,BAC, CAB, ABC}.
the computation of positive and/or negative association rulesDepPnition 2 (Contingency Table}:or a given patterix, its
such as=X Y. contingency table, note@T(X), contains exactly 3! cells.
A literal is a patternXY in which X is also called the Each cell stores the support of a literald& belonging to
positive part andY the negative part. To compute suchhe literalset lattice associated wik



4 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING

TABLE Il
Contingency Table of Pattern BC

B|B row
C| 4| 2 6
cC| 2|2 4
column 6 4 10

Example 4:With the relation example given in Table I,
Table Il shows the contingency table of patt&@G.
For each cellYZ of CT(X), we compute its expectation

value: the theoretical frequency in case of independence o epnition 4 (Lectic Order)Let| be a set of 'tems totally
the 1-items included ivZ [see (1)] ordered and therefore comparable two by two via an order

denoted by . If X andY |, then we haveX < |, Y
3 max (X\(X Y)) max (Y\(X Y)).
Supp(y) Supp(2) (1)  Example 7:Let us consider the sét = {A,B,C}, totally
gy Il , 7 Il ordered according to the lexicographic order. The enumeration

. of the subsets of , according to the lectic order, produces
Formula (2) Pnally computes the value of thé function the following result: <iec A <jec B <jec AB <joc C <ec

Fig. 1. Execution tree ots for | ={A,B,C}.

E(YZ) =|r|

for a patternX AC < joc BC < oc ABC.
In order to enumerate all the subsetsl ofccording to the
o (Supp(YZ) S E(YZ))? lectic order, the lectic subset algorithm, notesl [19], [27],
(X) = E(YZ) : (2) is used. It is a simpliped version of Algorithm 2 (limited to
YZ P(X) lines 1D7, 12). The associated execution tree is a balanced tree,

Brin et al. [18] showed that there is a single degree dpased on a double recursive call. Being given a node of the

freedom between the items. A table giving the centile valud§®€ (répresenting a patter 1), the left subtree generates
with regard to the 2 value for X can be used in order to subpatterns oK not containingmax (X), whereas the right

obtain the correlation rate fot [25]. subtree leads to subpatternsXfcontainingmax (X).
Example 5:Continuing our example, 2(BC) 0.28, Exa_lmple 8:Fig. 1 shows the execution tree of tHes
which corresponds to a correlation rate of about 45%. ~ Algorithm for I ={A, B, C}.

Unlike association rules, a correlation rule is not represented”"0POSition 1 expresses the fact that the lectic order is
by an implication but by the patterns for which the value dtompatible with the antimonotone constraints. Consequently,

the 2 function is larger than a threshold. we can modify thelLs algorithm to take into account a
Debnition 3 (Correlation Rule)Let MinCor be a thresh- conjunction of antimonotone constraints.
old ( 0), andX R a pattern. If the value for the? Proposition 1:Let be X, Y | two itemsets. IfX Y,

function for X is larger than or equal tMinCor, then this thenX <iec Y [17].
pattern represents a valid correlation rule.
Many authors have proposed additional constraints to eval- . .
uate whether a correlation rule is semantically valid [26]. lll. - LHS-Chi2 Algorithm
Generally, the Cochran criteria are used: 1) all literalsets of aln this section, we introduce the contingency vectors: an-
contingency table must have an expectation value not equabtber representation of the contingency tables. We show that,
zero (which never happens in our context), and 2) 80% of theor a given patterirX A (X  R,A R\X), the computation
must have a support larger than 5% of the whole populatiosf. its contingency vector is possible using the contingency
This last criterion has been generalized by Beinal. [18] vector of X and the list of the row identibers of the relation
as follows: MinPerc of the literalsets of a contingency tablecontainingA. Then, we present the concept of the decision
must have a support larger th&#inSup, whereMinPerc and correlation rule: a restriction of correlation rules, in such a way
MinSup are also thresholds. that only the rules containing a value of the target attribute are
Example 6:Let MinCor = 0.25, then the correlation rule kept. Finally, in order to compute these rules, we describe the
materialized by theBC pattern is valid (?(BC) 0.28). LHS-Chi2 Algorithm.
However, the correlation rule represented by Bie pattern

is not valid ( 2(Bt;)  0.1). A. Contingency Vectors

) A literal YZ, belonging to the literalset lattice associated
C. Lectic Order with a patternX, is represented in a computer with vectors of
The lectic order, noted |, enumerates all the subsets ofX| bits. For a 1-itemx X, the value of the bit vector has a
an itemset . This order allows the closed lattice of a binarywalue of 1 ifx Y (the 1-item belongs to the positive part of
relation to be computed [17], or to serve as a basis for thiee literal), and O otherwise. Thus, comparing two liteM[& |
computation of the partition cube [19]: a lossless reduction ahd Y,Z, belonging to the literalset lattice associated with
the data cube. patternX, consists in comparing each integer corresponding
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to the binary value of the associated bit vector. The compariso@orithm 1 CREATEsCV Algorithm
is equivalent to extending the debnition of the lectic order {Bput: CV(X) contingency vector oK, Tid(A)

the Iij[eralset one. i ) Output: contingency vector oK A sorted according to the
This order allows the total ordering of the whole literalset |octic order

lattice associated with pattepx. 1 CV(Z2):={}
Depnition 5 (Lectic Order for a LiteralsettetX R be . for g Equivalence classe¥F] P(X) according to the
a pattern,Y:Z; andY,Z, two elements of the literalset lattice lectic orderdo
associated with th¥ pattern. The debnitiongfthe Iectiiorder 3 CV(Z):=CV(Z) (YZ] (Tid(r\(Tid(A)) (YZ]
is extended over the literalsets as follow§Z 1 <|ec Y2Z> if Tid(A))
and only if Y1 <jec Ya. 2: end for
Example 9:The literalset lattice associated with the patters. retyrn  Cv/(2)
X ={A,B,C} according to the lectic order is the following:
m <lec AE <lec BE <lec ABC <lec Cﬁ <lec

ACB <ec BCA < oc ABC. _ .  {{5,6,9,10}, {1, 2, 3,4, 7, 8}}. By applying Theorem 1, the
Debpnition 6 (Equivalence Class Associated with a Literagpntingency vector ofBC is the following: CV(BC) =

Let YZ be a literal. Let us denote byYF] the 9 10 {5 6},{7, 8}, {1 2 3, 4}}. Thus, we retrieve the result
equivalence class associated with the litetdZ. This ¢ Example 11.

class contains the set of transaction identibers of theAIgorithm 1 is used, given th€V of a patternX and the
relation including Y and containing no value oZ (i.e., set of the transaction identipers containing a 1-ifento build
[YZ]={i Tid(r)suchtha¥ Tid(i)andZ Tid(i)=1}).  theCV oftheX A pattern sorted according to the lectic order

Example 10:With our relation example (see Table 1), Wegyer the literalset lattic®(X  A). Line 3 is an adaptation of
have BC] = {5, 6}. Theorem 1 to our context.

Proposition 2:Let X R be a pattern. The union of the The computation of &V needs one database scan, and
equivalence classesy¥] of the literalset lattice associatedipe following transition to the associaté®dT another one
with X is a partition [28] of the identibPers of relatian In (overheads are ignored). This leads to a complexity ofr2
other words or O(|r|), whatever the number of cells in ti&T. A classical

_ computation of &CT at leveli also needs one database scan;
[YZ] = Tid(r). but here, in the worst case, each of & cells is involved
YZ P(X) in one operation, which globally forces 2| r| operations.

Debnition 7 (Contingency Vector):et X R be a pat- Because 2is generally much smaller in comparison fid,
tern. The contingency vector of, denotedCV(X), groups the complexity is also oD(|r|). But when going into detail,
the set of the literalset equivalence classes belongir(x) the difference between the two methods'is'2 r| operations.
ordered according to the lectic order.

Proposition 2 ensures that each transaction identiPer beloggs pecision Correlation Rules
only to one single equivalence class. Consequently, for a giverbebnition 8 (Decision Correlation Rulesyet X R be

patternX, its CV is an exact representation of its contingenc ) . :
table. To derive the contingency table from a contingen pattern, andlinCor a given thresholdX represents a valid
: é’ecision correlation rule if and only if:

vector, it is sufpcient to compute the cardinality of each of i
equivalence classes. If the literalsets, related to the equivalencd) X contains a value of the target attribuke
classes of &CV, are ordered according to the lectic order, 2) *(X) MinCor.
it is possible to know the literal relative to a positiorof a Example 13:With our relation example (see Table I), if
contingency vectori( [0;|X|S 1]). This is because the literal MinCor = 0.25, the decision correlation rule materialized by
and the integer have the same binary coding. the BCt; pattern is a valid rule because:

Example 11:With our sample relation (see Table 1), 1) ¢, T andt; BCt;
the contingency vector associated with t&C pattern ) 2Bct) 0.28 (- MinCor).

is the following: CV(BC) = {[BC], [BC], [CB], [BC]} = The lectic hybrid subset-Chi2 algorithm, drHS-Chi2,

o, 101 {5, 6}‘.{7’ 8.{1, .2’ 3,41} ermits to extract the whole set of decision correlation rules
Theorem 1 is the main result of our paper. It shows how . o "
. or a relationr satisfying the threshold constraiktinCor for
compute theCV of the X A pattern given theCV of X and 2 . . . . )
: . . L the < function. This algorithm is an adaptation of the
the set of identibers of the relation containing pattarn . L :
Algorithm to our context, by taking into account contingency

Theorem 1:Let X R be a pattern andh R\X a .
. . vectors. Moreover, we added several monotone and antimono-
1-item. The contingency vector of A can be computed VR
tone constraints in order to prune the search space [22].

given the contingency vectors &f andA as follows: _ ]
1) A value of the target attribute must be present in the
CV(X A)=(CV(X) [A]) (CV(X) [A]. ©) extracteg pattern (monotone const.ralnt). .
_ _ 2) Asthe < computation has no signibcance for a 1-item,
Example 12:With the relation example (see Table I), we e only examine patterns of cardinality larger than or
have CV(B) = {{7,8,9,10},{1,2,3,4,5,6}} and CV(C) = equal to two (monotone constraint).
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3) Since the 2 function is an increasing function, weAlgorithm 2 LHS-Chi2 Algorithm
impose a maximum cardinality, notédaxCard, on the |nput: X andY two patterns
number of 1-items belonging to the patterns to examir@utput; {itemset Z X such that 2(Z) MinCor}

(antimonotone constraint). 1if Y= and|X| 2and ¢ C:c Xand 2(X)
4) All literalsets of aCT must have an expectation value  MinCor then
not equal to zero (antimonotone constraint). 2. Output X, 2(X)

5) Because the obtained rules must have a semantics @n end if
the relation, at leasMinPerc of the cells of aCT 4: A = max(Y)
must have a support larger than or equalMmSup. 5 Y := Y{A}
This constraint is expressed in our algorithm by theg: |LHS-Chi2(X, Y)
CtPerc predicate, which parameters are the contin-z. 7 :=X { A}
gency vector,MinPerc and MinSup (antimonotone g if z Z W BD*:{Z\zZ} W then
constraint). _ o 9:  VC(Z) := CREATE_CV(CV(X), Tid(A))
Laporte et al. [19] modiPed theLs Algorithm in order .. |Z| MaxCard and
to compute OicebergO data cubes. The authors included an CtPerdCV(Z), MinPerc, MinSup ) then
antimonotone constraint threshold, evaluated before the secqnd BD* := max (BD* Z)
recursive call of theLs Algorithm; they used a pruning step ;.. LHS-Chi2(Z, Y)
with th‘e negativr:: border [29] in order to only examine the .. end if
most nteresting cuboids (patterns in our context). In the,. onq if
same spirit, we modifyLs in order to take into account the

Pve constraints above, and to compute theThe result is an TABLE Il

algorithm requiring, in the worst casf® | +MaxCard+1 CVs Results of the LHS-Chi2 Algorithm Over Table |
in memory. We needR| CVs for the 1-items, the height of

our tree is bounded bilaxCard, and we need an additional Decision Correlation Rule 2 Value

CV for the current node computation. This value has to be gt&l 8:32
compared to the number of contingency tables to be computed BFt; 0.28

at each level using a levelwise algorithm (see the end of

Section 1I-A).

. _— . . _ . Mi e
Proposition 1 justibPes the inclusion of these constraints into IV. MineCor Softwar

our algorithm. However, we do not carry out pruning using We developed a global KDD model including the LHS-
the negative border. Instead, we use the positive border [£9)i2 algorithm. The software, calleMineCor (Miner for
relating to predicateCtPerc The use of the positive borderCorrelations), is developed in C language. To carry out pre-
is justiped on the basis of the experiments carried out Byocessing and transformation in the form of a transaction
Flouvat et al. [30]. The authors showed that the positivélatabase of the CSV Ples given by our manufacturer partners
border is of highly reduced cardinality in comparison with thésee the end of Section I), we have prst performed column
negative one. As a consequence, the satisbability tests of @ligiination and discretization stages [1], [31]. These steps,
antimonotone constraints are faster when the positive bord@own as data cleaning or cleansing in the literature, are
is used. In our context, we make sure that thepattern, summarized in Sections IV-A and IV-B. The output of the
used as a parameter within the second recursive call of f¢ steps is placed into a feature database, which serves as
algorithm, has all its direct subsets included in one of the source for the data mining phase. Finally, after the mining
elements of the positive border (line 8). Let us emphasize ti§éep, the results are interpreted, what is resumed in Section
this test is carried out in th&prioriGen function [20] during [V-C.
the generation of the candidates of leiel using the frequent
i-itemsets. If patterrZ is a candidate, then we compute ité\- Preprocessing Stage
contingency vector by making sure that the literalsets relatingThe Prst step of data cleaning is the preprocessing stage.
to the classes of equivalence are sorted according to the leGiita has to be prepared for two reasons: 1) if each value of
order (line 9) by calling Algorithm 1. If the pattern satisPegach column is considered as a single item, the search space
the antimonotone constraints (line 10), we update the positiggplodes combinatorially, and results cannot be provided in a
border (line 11), and carry out the second recursive call of theasonable amount of time, and 2) we cannot expect this task
algorithm (line 12). The monotone constraints are evaluatesibe performed by an expert, because manual cleaning of data
on the leaves of the execution tree (line 1). By convention, vi® laborious and subject to errors.
haveCV( ) = {Tid(R), }. The positive border is initialized Preprocessing consists in the reduction of the data structure
with {} . The pseudo code otHS-Chi2 is provided in [32] by eliminating columns (and rows) of low signibPcance.
Algorithm 2. The brst recursive call toHS-Chi2 is carried Such situations can result, for example, from the dysfunction
outwithX = and Y =R. of one or more sensors, or from the occurrence of a mainte-
Example 14:The results olLHS-Chi2 with MinSup = 0.2, nance step. As a consequence, corresponding columns contain
MinPerc = 0.25, andMinCor = 0.25 for our relation example many null or default values, and must be deleted from the
(see Table I) are shown in Table Ill. source ble. Moreover, sometimes, several sensors measure the
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same information, resulting in identical columns in the source

ble. In this case, we keep only a single column. Another

classical technique is the elimination of columns having small

standard deviation. Since all values are almost the same,

we consider that they do not have a signibcant impact on

the result; but their inclusion pollutes the search space and

reduces the response time bfineCor. Attention is Pnally Fig. 2. Output produced bilineCor.
paid to missing or inconsistent values, such as OoutliersO and

noisy columns. Elimination is performed through thresholds . . . . o
specibed by the end-user. not important while the obtained time gain is. This is why the

EFD method is also referred to, in the next sections of this
paper, as the FisherbJenksO method.

Example 15:Let S ={1.8, 1.9, 2.1, 2.2, 1.3, 2.0, 0.5, 0.6,
Discrete values deal with value intervals, which are mo®5, NULL} be the set to discretize. If we specify two output
concise to represent knowledge, so that they are easier to gig@ses, the proposed methods produce the following results.

and comprehend than continuous values. 1) EWD: since M&sSMins = 135 this method computes

Many discretization algorithms have been proposed over the the classes [6, 1'23]’ [1.8,2.2]. As a consequence, the
years in order to classify data into intervals, also called bins. In setS is encoded by the vectdB, B, B, B, A, B, A,
this section, we only summarize these methods. Discretization A, A -} in the output of the discretization step (O-O
can be performed [33]: 1) in a supervised or unsupervised symbolizes the NULL value).

manner, depending on whether class information is at oneC EFD: the FisherDJenks® method produces ten class
cﬁsposal; 2)ina Qynarr_uc or static way: with a static d|s<_:ret|z§1- generation possibilities. The one which maximizes the
tion approach, discretization is done before the classibcation squared sum is [6,0.6], [1.3,2.2]. The following

task; and_ 3) using splitting or merging Fechnlqu_es_. In the latter vector is produced to represent the :t{B, B, B,

case, using a bottom-up approach while examining the search B, B, B, A A A, - }. Let us underline that we retrieve

space. i L here partial results presented in Table I.
We represent continuous real valued columns by associating

each of their values with an interval code. The bins are created )

either using equal-width or equal-frequency discretizatiofy: Interpretation Stage

which are nonsupervised, static, and splitting methods. In bothinterpretation essentially consists in decoding the discretiza-
approaches, arity is the number of intervals to use. And theion stage with regard to the results, and to produce an
different values associated with each Setre managed in the intelligible output for the end-useMineCor produces outputs
same way through initial normalization. in HTML and text formats.

1) Equal Width Discretization (EWD)Let S be the set of Example 16:Fig. 2 provides an example of output pro-
values to be discretized, and respectiviélin s andMaxs the duced byMineCor, limited to some 3-patterns. Given a row,
smallest and the largest value $f Each interval has a lengththe last column is the computed? value for the associated
of | = M&sSMins The computed classes are: [Mins, Mins+  decision correlation rule.

I[, cz:[Ming+I,Ming+2[,.... As mentioned in Section IV-B, and because EWD is the

2) Equal Frequency Discretization (EFD)The goal is to default method, the results shown are slightly different than
obtain classes having, if possible, the same number of contihese presented in Table lIl.
uous values. The JenksO natural breaks method minimizes the
in-class difference and maximizes the between-class difference
[34]. This can be measured by the goodness of variance bt V. Experimental Analysis
(GVF)

B. Discretization Stage

Some representative results of thdS-Chi2 algorithm are
presented below. The comparison is made with a standard
. !(=1 ![:Sli's'i”(si SW)Z levelwise (a completea priori) algorithm, hereafter called
GVF =15 Bls & 5 Levelwise , based on the same monotone and antimonotone
=1(S ) constraints as those used ItHS-Chi2 (see Section IlI).
where|[S;, S;]| is the cardinality of the interval], S;], and The main difference is that thieevelwise method does not
S is the mean of the sorted s8t JenksO method is the besise contingency vectors but uses standard computation of
from a statistical point of view because it creates homogeentingency tables.
neous groups. Its main drawback is the high computationalAs emphasized in Section I-C, the experiments were done
complexity of the class generation, which aﬁgi whered on different CSV bles of real value measures supplied by
represents the number of distinct values in the SefThus, STM and ATM. These bles have one or more target columns,
we use instead the FisherOs exact optimization method [@Sjulting from the concatenation of several measurement bles.
proposed for groupingn elements intok mutually exclusive The characteristics of the datasets used for experiments can
and exhaustive subsets having maximum homogeneity. T found in Table IV. All experiments were conducted on a
partition is guaranteed to be optimal, but not unique, which P Workstation (1.8 GHz processor with a 4 GB RAM).
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TABLE IV —
Dataset Examples _. e LHs-cui2
Name Number of Columns| Number of Rows
STM File 1281 297
ATM File 749 213

Fig. 5. Execution time withMinSup = 0.24, MinCor = 6.9 (STM ble:
targetl).

Fig. 3. Execution time withMinPerc = 0.34, MinCor = 1.6 (STM ble:
targetl).

Fig. 6. Results wittMinSup = 0.38, MinPerc = 0.24 (ATM ble: target3).

C. Impact of theMinCor Parameter

Fig. 6 shows the number of extracted rules (identical in
both methods) after mining whedinPerc and MinSup are
pPxed with suitable values and whétinCor varies. In that
particular case, execution times are identical whatever the
MinCor value, but are of the order of 2 min wittHS-Chi2,

Experimental results are presented on Figs. 3 10 8(c). ThRg ahout 17 min fotevelwise . This means that thelinCor
EWD discretization method is used in all the experimenig eshold only has a small effect on performance.

carried out in Sections V-A to V-C.

Fig. 4. Execution time withiMinPerc = 0.24, MinCor = 2.8 (ATM ble:
target2).

A. Execution Times fol.HS-Chi2 and Levelwise Algo- p Impact of the Discretization Stage

rithms Figs. 7(a) and 8(a) show the number of items kept after

Figs. 3 and 4 show the evolution of the execution timgge preprocessing and discretization stages. This number only
for both methods for the two Ples whéfinSup varies and gepends on thMinSup threshold, while the number of bins is
MinPerc and MinCor are bxed. As the graphs point it outsgnstant [4 in Fig. 7(a), and 6 in Fig. 8(a)]. In each example,
the response times of our method are between 30% and 7Qf6iems with a support greater thatinSup are kept.
better thanLevelwise , even if they remain high when using  as jllustrated in Figs. 7(a) and 8(a), the smaller the threshold
small thresholds. In each case, an increasing windowing of WnSup, the larger the number of items kept for the mining

results is provided for subsequent subinterval$/aiSup. stage, whatever the discretization method. Figs. 7(b) and 8(b)
) show the number of rules generated in both cases. While the
B. Impact of theMinPerc Parameter number of partitions generated by the EFD method is larger

Fig. 5 shows the execution times for the STM Pble (usinipan the one generated by the EWD method, the number of
the same conbguration as the experiment in Fig. 3) whares is smaller. Moreover, the execution time is shorter by
MinSup andMinCor are constant, and wheMinPerc varies. a factor up to 2.5 [see Figs. 7(c) and 8(c)]. These results
The staircase curve thus explains. A CT associated with acome from the perspective thaflineCor tries to provide
pattern containing'Xells, specifying thaMinPerc of its cells rules of ObestO quality: 1) low in number; 2) signibcant; and
must have the support means that MinPerc cells must 3) computed quickly.
have it. So, for a 3-pattern, to debne a value ftinPerc Finally, let us emphasize that the experimental sets used in
varying between 0% and 12.49% means specifying that oRy. 7 produce decision correlation rules with a cardinality
single cell of the CT has to have the support, and so on. Tk 4. This is the kind of information that is of interest for
scale is logarithmic, because response times for small valsesniconductor manufacturers, as well as different possible
of MinPerc are very high (more than 13 h ftuHS-Chi2, and crossings using other techniques (see Section I-B) between
about 69 h forLevelwise with MinPerc = 0.12). rules of cardinality 3 and 4.
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Fig. 7. Results with four intervalCtPerc = 0.34, MinCorr = 1.6 (STM Ple: targetl). (a) Number of items kept after discretization/preprocessing stages.
(b) Number of generated decision correlation rules. (c) Execution time.
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Fig. 8. Results with six intervalsCtPerc = 0.3, MinCorr = 2.8 (ATM ble: target3). (a) Number of items kept after discretization/preprocessing stages.
(b) Number of generated decision correlation rules. (c) Execution time.

VI. Conclusion and Future Work Finally, let us emphasize that the presemedt hocmethod
In this paper, we showed the different facets of kieeCor could also be applied in real-time, i.e., associated with specibc
software. CSV parameter measurement bles given by semicBfCesS steps, from the moment on the relevant conbguration
ductor manufacturers (STMicroelectronics and ATMEL) arBarameters are set up in an optimal way. Moreover, our
used as input, and produce as output values of paramet§RD model could be used in other domains than wafer
with most inRuence on the yield. To achieve this objectivEianufacturing.

we built a complete knowledge discovery in databases modelSCMe New issues to our work are: 1) to optimize memory
based on: management in order to increase the performancé H®-

o ) ] o _ Chi2; 2) to compare our approach with other mining methods;
1) decision corrglatlon rules, e, a restriction of correlatlog) to optimize the processing stages upstream of the algorithm
rules_ containing a target attribute valu_e; (aggregation of attributes, merging of intervals) while safe-
2) contingency vectors, i.e., an alternative representatigfjarding the context in order to obtain a larger number of rules
of contingency tables, which are more concise anghq more signibcant results; and 4) to broaden the correlation

offer better performance related properties. We Pnallyje extraction problem on items to those on literalsets.
proposed an algorithm based on the lectic order to go

through the powerset lattice.
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