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Discovering Correlated Parameters in
Semiconductor Manufacturing Processes:

A Data Mining Approach
Alain Casali and Christian Ernst

Abstract—Data mining tools are nowadays becoming more and
more popular in the semiconductor manufacturing industry, and
especially in yield-oriented enhancement techniques. This is be-
cause conventional approaches fail to extract hidden relationships
between numerous complex process control parameters. In order
to highlight correlations between such parameters, we propose in
this paper a complete knowledge discovery in databases (KDD)
model. The mining heart of the model uses a new method
derived from association rules programming, and is based on two
concepts: decision correlation rules and contingency vectors. The
first concept results from a cross fertilization between correlation
and decision rules. It enables relevant links to be highlighted
between sets of values of a relation and the values of sets of
targets belonging to the same relation. Decision correlation rules
are built on the twofold basis of the chi-squared measure and of
the support of the extracted values. Due to the very nature of
the problem, levelwise algorithms only allow extraction of results
with long execution times and huge memory occupation. To offset
these two problems, we propose an algorithm based both on the
lectic order and contingency vectors, an alternate representation
of contingency tables. This algorithm is the basis of our KDD
model software, called MineCor. An overall presentation of its
other functions, of some significant experimental results, and of
associated performances are provided and discussed.

Index Terms—Chi2 correlation statistic, data mining, decision
rule, semiconductor manufacturing.

I. Introduction and Motivation

I
N THIS SECTION, we first introduce why and how data

mining techniques are useful to enhance semiconductor

fabrication capabilities. Discussion is set on how to detect

the main parameters which have an impact on yield loss

rather than on how to improve final yield. Then we present

our approach that determines the main correlated production

parameters impacting the yield.

A. Data Mining Techniques in the Manufacturing Industry

Data mining [1] allows us to extract data in terms of models

which may be rules, concepts, patterns, anomalies, or trends
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that are useful and intelligible for the end-user. Nowadays,

databases or data warehouses of significant size implicitly con-

tain a large amount of relevant information. Their extraction

presents an interest in various domains such as marketing,

design, medical research [2], telecommunication networks [3],

dynamic restructuring of websites [3], manufacturing sciences

[4], and so on.

Data mining models can be categorized into four types

[1]: classification, clustering, prediction, and association rules.

Such approaches have been widely carried out in manufac-

turing areas [4]. Data mining extracts knowledge to identify

hidden patterns in the parameters that control manufacturing

processes or to determine and to improve product quality.

Unfortunately, there is no standard scalable model for man-

ufacturing applications. The models used are a collection of

“implementation specific” data mining algorithms. Associated

applications can be roughly divided into six categories.

1) Customer relationships: the objective is to develop the

relationship with the customers in order to maximize

profits.

2) Engineering design: based on historical data, the goal

is to optimize design specification by matching the

temporal data of a new product with the knowledge base.

3) Manufacturing systems: in such environments, the need

and importance of data is ever present for statistical pro-

cess control (SPC) purposes; SPC consists in effective

statistical methods for monitoring a process through the

use of control charts, by enabling the use of objective

criteria for distinguishing background variation from

events of significance.

4) (Equipment) maintenance: since databases contain in-

formation to improve processes, they also contain the

reasons for machine failures.

5) Fault detection and quality improvement: examining

what happened in the past is used to better understand

the process, and therefore to predict and to improve the

future system’s performance. Virtual metrology [5] is

here one of the most novel tools.

6) Decision support systems: the goal is to determine

links between control parameters and product quality,

essentially in the form of (decision) rules.

We focus hereafter on the last two points, which deal with

quality, and thus implicitly with product yield. Moreover, we

0894-6507/$26.00 c© 2011 IEEE
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concentrate on a particular application area, semiconductor

wafer manufacturing. Yield is here defined as the ratio of

nondefective chips in a finished wafer to the number of

input products. However, we do not directly focus on yield

enhancement, but on front-end issues, as shown in the next

paragraph.

B. Enabling Quality in Semiconductor Fabs

In semiconductor manufacturing facilities, the volume and

the complexity of the collected data are generally much more

consequent than in other manufacturing fields due to the very

nature of the domain. Fabrication processes include several

hundred steps with regard to the produced “chip.” Each of

these steps uses various chemico-physical recipes, divided into

four main phase units (photolithography, etch, implant, and

chemical mechanical polishing).

Two approaches are used to improve the yield: real-time and

post hoc. The first approach monitors on-line measurements

of specific process steps, and undertakes corrective action

to ensure that the parameter being measured remains within

the desired limits. The post hoc approach compares the end

result of the whole process with the desired specifications,

analyzing the root causes of low yield for adjusting the

process parameters to ensure future quality. Advanced process

control (APC), an extension of SPC, considers both aspects

by highlighting correlations between production parameters in

order to rectify possible shifts of the associated process(es).

This can be done for specific equipment and process steps

in real-time: fault detection and classification (FDC) tools,

and run to run (R2R) feedback and feedforward regulation

loops are most representative APC techniques. FDC detects

monitored key parameters which tend to drift. After identifying

an abnormal status of a tool or a process running on it, the goal

is to classify the detected failure. Associated data are finally

checked by conventional SPC tools such as univariate or multi-

variate statistical methods, or by knowledge based procedures.

R2R is an increasingly used process control method where

process recipes are modified during the fabrication chain to

diminish process drifts. The recipe contains all the equipment

parameters required for a given process. A R2R control loop is

able to center a process on a given value, by acting on defined

parameters to reduce the process variability.

Correlations can also be discovered post hoc, i.e., after the

whole fabrication process has been completed. This is the

framework of our paper.

Both approaches try to identify the parameters causing

particular yield excursion. By automatically deriving correla-

tions between variability in process parameters including yield,

model-based analysis can then reduce the time required to

determine the yield loss causes. Let us emphasize that this

second nontrivial problematic is excluded from the scope of

this paper.

However, in manufacturing plants, conventional methods

are inaccurate to improve yield, because they fail to extract

underlying features from complex data [6], [7]. These methods

include SPC and derived techniques such as FDC, design of

experiments, or spatial mapping analysis. Component speci-

fication changes, mean process shift and variance reduction

are well-known SPC techniques, while control charts aim at

monitoring processes in order to detect abnormal drifts but

cannot point out which parameters impact them.

When studying data mining techniques in semiconductor

fabrication, the most widely used method is classification, even

if it generally focuses on very specific process stages, such as

cleaning [8], or photolithography [9]. The aim of classification

is to build a classifier by induction from a set of pre-classified

instances (the sensor measures). The classifier is then used

to categorize “unlabeled” instances. Decision tree induction is

the most representative approach in the field [10].

Clustering methods correspond to a particular classification

of values into clusters. Among the relevant hierarchical algo-

rithms that search to minimize a formal objective function,

the most widely used is K-means clustering [11]. K-means

remains also the simplest and most commonly used nonhier-

archical algorithm employing a squared error criterion [12].

Prediction systems search to perform automatic discovery

of significant parameters having an impact on the yield.

Genetic programming [13] or neural networks [8] are therefore

employed. Input data are first grouped into categorical classes.

Field engineers can then build the relationship between the low

yield lots and the in-line measurements at specific stages and,

by the way, use these measurements to predict the future line

yield.

Finally, only association rules are not often used to try to

enhance yield. In [14], the authors used a modified a priori

algorithm in LCD panel manufacturing to locate machines

with low yield after completion of processes, and thus to

improve the yield rate. In [15], correlations are also analyzed

between combinations of used tools and defective products.

Other relevant approaches do not directly deal with the semi-

conductor area [16].

C. Our Approach

We present hereafter a whole KDD model based on specific

association rules. Within this framework, and in collabora-

tion with STMicroelectronics (STM) and ATMEL (ATM),

this paper is focused on the detection of the main control

parameters impacting the yield. The goal is not to directly

enhance the yield, but to propose indicators to which special

attention should be paid in further production cycles through,

for example, the construction of yield enhancement models.

Our post hoc analysis is based on comma-separated values

(CSV) files of real valued measurements associated with

production lots. These data have themselves been extracted

in a previous step from very large manufacturer databases,

covering the four fabrication units mentioned at the beginning

of Section I-B. The main characteristic of the CSV files is the

huge number of columns (nature of the measurements) with

regard to the number of rows (measures). We want to highlight

correlations between the values of some columns and those of

a target column: a particular column of the file, the yield. To

detect these correlations, we introduce the concept of decision

correlation rules, a restriction of correlation rules containing a

value of one target column. In order to compute these rules:

1) We use the lectic order [17] to browse the powerset

lattice (the search space).
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TABLE I

Relation Example r

Tid ItemSet Target
1 BCF t1
2 BCE t1
3 BCF t2
4 BC -
5 BD t1
6 B -
7 ACF t1
8 AC -
9 AE t1
10 F t2

2) We propose the concept of contingency vector: a new

approach to contingency tables.

3) We show how to build the contingency vector of a

pattern with a cardinality i with the contingency vector

of one of its subsets with a cardinality i − 1 (which is

impossible with contingency tables).

4) We take advantage of the lectic order, the contingency

vectors and the recursing mechanisms of construction to

propose the LHS-Chi2 algorithm.

This paper is organized as follows. In Section II, the

bases of association and correlation rules, and of the lectic

order are recalled. Section III describes the concepts used

for mining decisional correlation rules and our algorithm. In

Section IV, we expose the other functions of the software—

called MineCor—developed for mining decisional correlation

rules. Experiments are detailed in Section V. As a conclusion,

we summarize our contributions and outline some research

perspectives.

II. Related Work

In this section, we recall the definitions of association rules,

correlation rules [18], and lectic order [17]. Then, we introduce

the Ls algorithm [19]. It allows the browsing of the search

space according to the lectic order.

A. Statement of the Problem

An association rule is an approximate implication X → Y

between two sets of items X and Y . Two measures are used to

extract such rules: 1) support: the proportion of transactions

(rows) containing X and Y , and 2) confidence: the ratio

between the support of Y and the support of X (the degree

of truth of the implication).

Example 1: The relation example r of Table I illustrates the

introduced concepts. The BC pattern has a support equal to

4, and the rule B → C has a confidence equal to 2/3. This

means that two thirds of the transactions including pattern B

also contain pattern C.

Agrawal et al. [20] introduced levelwise algorithms for the

computation of association rules in reasonable response times.

Because the underlying semantics of an association rule are

fairly poor, Wu et al. [21] introduced literal sets and proposed

the computation of positive and/or negative association rules

such as ¬X → Y .

A literal is a pattern XY in which X is also called the

positive part and Y the negative part. To compute such

rules, the authors still use the support-confidence platform by

redefining the support of a literal: the number of transactions

of the binary relation including X and containing no 1-item

(item of cardinality 1) of Y .

Example 2: With the relation example r, the literalset BC

has a support equal to 2. As a consequence, the association

rule B → C has a confidence equal to 1/3. This means that

one third of the transactions containing pattern B does not

include pattern C.

Brin et al. [18] proposed the extraction of correlation rules.

The platform is no longer based on the support nor the

confidence of the rules, but on the chi-squared statistical

measure, written χ2. The use of χ2 is well-suited for several

reasons: 1) it is a more significant measure in a statistical way

than an association rule; 2) the measure takes into account

not only the presence but also the absence of the items; and

3) the measure is nondirectional, and can thus highlight more

complex existing links than a “simple” implication.

The crucial problem, when computing correlation rules, is

the memory usage required by levelwise algorithms. For a pat-

tern X, the computation of the χ2 function is based on a table

including 2|X| cells. Thus, at level i, Ci
n candidates (where n is

the number of values of r) have to be generated and stored, in

the worst case scenario, as well as the associated contingency

tables. With cells encoded over 2 Bytes, corresponding storage

space requires 2.5 GB of memory at the third level, and 1.3 TB

at the fourth level. This is why Brin et al. [18] computed only

correlations between two values of a binary relation. Using an

end-user threshold MinCor, Grahne et al. [22] showed that

the “χ2(X) ≥ MinCor” constraint is monotone. Consequently,

the resulting set of rules is a convex space [23], which can be

represented by its minimal border [24], noted L. In this paper,

the author proposed a levelwise algorithm to compute L, and

used an approximation to compute the χ2 value of any pattern

belonging to that convex space.

B. Correlation Rules

Let r be a binary relation (a transaction database) over a set

of items R = I ∪ T . In our approach, I represents the values

(the items) of the binary relation used as analysis criteria,

and T is a target attribute. For a given transaction, the target

attribute does not necessarily have a value. The computation

of the value for the χ2 function for an item X ⊆ R is based

on its contingency table. In order to simplify the notation, we

first introduce the lattice of the literalsets associated with a

pattern X ⊆ R. This set contains all the literalsets that can be

built up given X, and with a cardinality |X|.

Definition 1 (Literalset Lattice): Let X ⊆ R be a pattern.

We denote by P(X) the literalset lattice associated with

X: P(X) = {YZ such that X = Y ∪ Z and Y ∩ Z = ∅} =

{YZ such that Y ⊆ X and Z = X\Y}.

Example 3: The literalset lattice associated with

X = {A, B, C} contains the following elements:

{ABC, ABC, ACB, BCA, ABC, BAC, CAB, ABC}.

Definition 2 (Contingency Table): For a given pattern X, its

contingency table, noted CT (X), contains exactly 2|X| cells.

Each cell stores the support of a literalset YZ belonging to

the literalset lattice associated with X.
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TABLE II

Contingency Table of Pattern BC

B B
∑

row

C 4 2 6

C 2 2 4
∑

column 6 4 10

Example 4: With the relation example r given in Table I,

Table II shows the contingency table of pattern BC.

For each cell YZ of CT (X), we compute its expectation

value: the theoretical frequency in case of independence of

the 1-items included in YZ [see (1)]

E(YZ) = |r| ∗
∏

y∈Y

Supp(y)

|r|
∗

∏

z∈Z

Supp(z)

|r|
. (1)

Formula (2) finally computes the value of the χ2 function

for a pattern X

χ2(X) =
∑

YZ∈P(X)

(Supp(YZ) − E(YZ))2

E(YZ)
. (2)

Brin et al. [18] showed that there is a single degree of

freedom between the items. A table giving the centile values

with regard to the χ2 value for X can be used in order to

obtain the correlation rate for X [25].

Example 5: Continuing our example, χ2(BC) ≃ 0.28,

which corresponds to a correlation rate of about 45%.

Unlike association rules, a correlation rule is not represented

by an implication but by the patterns for which the value of

the χ2 function is larger than a threshold.

Definition 3 (Correlation Rule): Let MinCor be a thresh-

old (≥ 0), and X ⊆ R a pattern. If the value for the χ2

function for X is larger than or equal to MinCor, then this

pattern represents a valid correlation rule.

Many authors have proposed additional constraints to eval-

uate whether a correlation rule is semantically valid [26].

Generally, the Cochran criteria are used: 1) all literalsets of a

contingency table must have an expectation value not equal to

zero (which never happens in our context), and 2) 80% of them

must have a support larger than 5% of the whole population.

This last criterion has been generalized by Brin et al. [18]

as follows: MinPerc of the literalsets of a contingency table

must have a support larger than MinSup, where MinPerc and

MinSup are also thresholds.

Example 6: Let MinCor = 0.25, then the correlation rule

materialized by the BC pattern is valid (χ2(BC) ≃ 0.28).

However, the correlation rule represented by the Bt1 pattern

is not valid (χ2(Bt1) ≃ 0.1).

C. Lectic Order

The lectic order, noted <lec, enumerates all the subsets of

an itemset I. This order allows the closed lattice of a binary

relation to be computed [17], or to serve as a basis for the

computation of the partition cube [19]: a lossless reduction of

the data cube.

Fig. 1. Execution tree of Ls for I = {A, B, C}.

Definition 4 (Lectic Order): Let I be a set of items totally

ordered and therefore comparable two by two via an order

denoted by �. If X and Y ⊆ I, then we have X <lec Y ⇔

max�(X\(X ∩ Y )) � max�(Y\(X ∩ Y )).

Example 7: Let us consider the set I = {A, B, C}, totally

ordered according to the lexicographic order. The enumeration

of the subsets of I, according to the lectic order, produces

the following result: ∅ <lec A <lec B <lec AB <lec C <lec

AC <lec BC <lec ABC.

In order to enumerate all the subsets of I according to the

lectic order, the lectic subset algorithm, noted Ls [19], [27],

is used. It is a simplified version of Algorithm 2 (limited to

lines 1–7, 12). The associated execution tree is a balanced tree,

based on a double recursive call. Being given a node of the

tree (representing a pattern X ⊆ I), the left subtree generates

subpatterns of X not containing max�(X), whereas the right

subtree leads to subpatterns of X containing max�(X).

Example 8: Fig. 1 shows the execution tree of the Ls

Algorithm for I = {A, B, C}.

Proposition 1 expresses the fact that the lectic order is

compatible with the antimonotone constraints. Consequently,

we can modify the Ls algorithm to take into account a

conjunction of antimonotone constraints.

Proposition 1: Let be X, Y ⊆ I two itemsets. If X ⊂ Y ,

then X <lec Y [17].

III. LHS-Chi2 Algorithm

In this section, we introduce the contingency vectors: an-

other representation of the contingency tables. We show that,

for a given pattern X∪A (X ⊆ R, A ∈ R\X), the computation

of its contingency vector is possible using the contingency

vector of X and the list of the row identifiers of the relation

containing A. Then, we present the concept of the decision

correlation rule: a restriction of correlation rules, in such a way

that only the rules containing a value of the target attribute are

kept. Finally, in order to compute these rules, we describe the

LHS-Chi2 Algorithm.

A. Contingency Vectors

A literal YZ, belonging to the literalset lattice associated

with a pattern X, is represented in a computer with vectors of

|X| bits. For a 1-item x ∈ X, the value of the bit vector has a

value of 1 if x ∈ Y (the 1-item belongs to the positive part of

the literal), and 0 otherwise. Thus, comparing two literals Y1Z1

and Y2Z2 belonging to the literalset lattice associated with

pattern X, consists in comparing each integer corresponding
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to the binary value of the associated bit vector. The comparison

is equivalent to extending the definition of the lectic order to

the literalset one.

This order allows the total ordering of the whole literalset

lattice associated with pattern X.

Definition 5 (Lectic Order for a Literalset): Let X ⊆ R be

a pattern, Y1Z1 and Y2Z2 two elements of the literalset lattice

associated with the X pattern. The definition of the lectic order

is extended over the literalsets as follows: Y1Z1 <lec Y2Z2 if

and only if Y1 <lec Y2.

Example 9: The literalset lattice associated with the pattern

X = {A, B, C} according to the lectic order is the following:

ABC <lec ABC <lec BAC <lec ABC <lec CAB <lec

ACB <lec BCA <lec ABC.

Definition 6 (Equivalence Class Associated with a Literal):

Let YZ be a literal. Let us denote by [YZ] the

equivalence class associated with the literal YZ. This

class contains the set of transaction identifiers of the

relation including Y and containing no value of Z (i.e.,

[YZ] = {i ∈ Tid(r) such that Y ⊆ Tid(i) and Z ∩ Tid(i) = ∅}).

Example 10: With our relation example (see Table I), we

have [BC] = {5, 6}.

Proposition 2: Let X ⊆ R be a pattern. The union of the

equivalence classes [YZ] of the literalset lattice associated

with X is a partition [28] of the identifiers of relation r. In

other words

⋃

YZ∈P(X)

[YZ] = Tid(r).

Definition 7 (Contingency Vector): Let X ⊆ R be a pat-

tern. The contingency vector of X, denoted CV (X), groups

the set of the literalset equivalence classes belonging to P(X)

ordered according to the lectic order.

Proposition 2 ensures that each transaction identifier belongs

only to one single equivalence class. Consequently, for a given

pattern X, its CV is an exact representation of its contingency

table. To derive the contingency table from a contingency

vector, it is sufficient to compute the cardinality of each of its

equivalence classes. If the literalsets, related to the equivalence

classes of a CV , are ordered according to the lectic order,

it is possible to know the literal relative to a position i of a

contingency vector (i ∈ [0; |X|−1]). This is because the literal

and the integer i have the same binary coding.

Example 11: With our sample relation (see Table I),

the contingency vector associated with the BC pattern

is the following: CV (BC) = {[BC], [BC], [CB], [BC]} =

{{9, 10}, {5, 6}, {7, 8}, {1, 2, 3, 4}}.

Theorem 1 is the main result of our paper. It shows how to

compute the CV of the X ∪ A pattern given the CV of X and

the set of identifiers of the relation containing pattern A.

Theorem 1: Let X ⊆ R be a pattern and A ∈ R\X a

1-item. The contingency vector of X ∪ A can be computed

given the contingency vectors of X and A as follows:

CV (X ∪ A) = (CV (X) ∩ [A]) ∪ (CV (X) ∩ [A]). (3)

Example 12: With the relation example (see Table I), we

have CV (B) = {{7, 8, 9, 10}, {1, 2, 3, 4, 5, 6}} and CV (C) =

Algorithm 1 CREATE−CV Algorithm

Input: CV (X) contingency vector of X, Tid(A)

Output: contingency vector of X∪A sorted according to the

lectic order

1: CV (Z) := {∅}

2: for all Equivalence classes [YZ] ∈ P(X) according to the

lectic order do

3: CV (Z) := CV (Z)∪ ([YZ]∩ (Tid(r)\(Tid(A)))∪ ([YZ]∩

Tid(A))

4: end for

5: return CV (Z)

{{5, 6, 9, 10}, {1, 2, 3, 4, 7, 8}}. By applying Theorem 1, the

contingency vector of BC is the following: CV (BC) =

{{9, 10}, {5, 6}, {7, 8}, {1, 2, 3, 4}}. Thus, we retrieve the result

of Example 11.

Algorithm 1 is used, given the CV of a pattern X and the

set of the transaction identifiers containing a 1-item A, to build

the CV of the X∪A pattern sorted according to the lectic order

over the literalset lattice P(X ∪ A). Line 3 is an adaptation of

Theorem 1 to our context.

The computation of a CV needs one database scan, and

the following transition to the associated CT another one

(overheads are ignored). This leads to a complexity of 2 ∗ |r|

or O(|r|), whatever the number of cells in the CT . A classical

computation of a CT at level i also needs one database scan;

but here, in the worst case, each of the CT cells is involved

in one operation, which globally forces 2i ∗ |r| operations.

Because 2i is generally much smaller in comparison to |r|,

the complexity is also of O(|r|). But when going into detail,

the difference between the two methods is 2i−1∗|r| operations.

B. Decision Correlation Rules

Definition 8 (Decision Correlation Rules): Let X ⊆ R be

a pattern, and MinCor a given threshold. X represents a valid

decision correlation rule if and only if:

1) X contains a value of the target attribute T ;

2) χ2(X) ≥ MinCor.

Example 13: With our relation example (see Table I), if

MinCor = 0.25, the decision correlation rule materialized by

the BCt1 pattern is a valid rule because:

1) t1 ∈ T and t1 ∈ BCt1;

2) χ2(BCt1) ≃ 0.28 (≥ MinCor).

The lectic hybrid subset-Chi2 algorithm, or LHS-Chi2,

permits to extract the whole set of decision correlation rules

for a relation r satisfying the threshold constraint MinCor for

the χ2 function. This algorithm is an adaptation of the Ls

Algorithm to our context, by taking into account contingency

vectors. Moreover, we added several monotone and antimono-

tone constraints in order to prune the search space [22].

1) A value of the target attribute must be present in the

extracted pattern (monotone constraint).

2) As the χ2 computation has no significance for a 1-item,

we only examine patterns of cardinality larger than or

equal to two (monotone constraint).
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3) Since the χ2 function is an increasing function, we

impose a maximum cardinality, noted MaxCard, on the

number of 1-items belonging to the patterns to examine

(antimonotone constraint).

4) All literalsets of a CT must have an expectation value

not equal to zero (antimonotone constraint).

5) Because the obtained rules must have a semantics on

the relation, at least MinPerc of the cells of a CT

must have a support larger than or equal to MinSup.

This constraint is expressed in our algorithm by the

CtPerc predicate, which parameters are the contin-

gency vector, MinPerc and MinSup (antimonotone

constraint).
Laporte et al. [19] modified the Ls Algorithm in order

to compute “iceberg” data cubes. The authors included an

antimonotone constraint threshold, evaluated before the second

recursive call of the Ls Algorithm; they used a pruning step

with the negative border [29] in order to only examine the

most “interesting” cuboids (patterns in our context). In the

same spirit, we modify Ls in order to take into account the

five constraints above, and to compute the χ2. The result is an

algorithm requiring, in the worst case, |R|+MaxCard +1 CVs

in memory. We need |R| CVs for the 1-items, the height of

our tree is bounded by MaxCard, and we need an additional

CV for the current node computation. This value has to be

compared to the number of contingency tables to be computed

at each level using a levelwise algorithm (see the end of

Section II-A).

Proposition 1 justifies the inclusion of these constraints into

our algorithm. However, we do not carry out pruning using

the negative border. Instead, we use the positive border [29]

relating to predicate CtPerc. The use of the positive border

is justified on the basis of the experiments carried out by

Flouvat et al. [30]. The authors showed that the positive

border is of highly reduced cardinality in comparison with the

negative one. As a consequence, the satisfiability tests of the

antimonotone constraints are faster when the positive border

is used. In our context, we make sure that the Z pattern,

used as a parameter within the second recursive call of the

algorithm, has all its direct subsets included in one of the

elements of the positive border (line 8). Let us emphasize that

this test is carried out in the AprioriGen function [20] during

the generation of the candidates of level i+1 using the frequent

i-itemsets. If pattern Z is a candidate, then we compute its

contingency vector by making sure that the literalsets relating

to the classes of equivalence are sorted according to the lectic

order (line 9) by calling Algorithm 1. If the pattern satisfies

the antimonotone constraints (line 10), we update the positive

border (line 11), and carry out the second recursive call of the

algorithm (line 12). The monotone constraints are evaluated

on the leaves of the execution tree (line 1). By convention, we

have CV (∅) = {Tid(R), ∅}. The positive border is initialized

with {∅}. The pseudo code of LHS-Chi2 is provided in

Algorithm 2. The first recursive call to LHS-Chi2 is carried

out with X = ∅ and Y = R.

Example 14: The results of LHS-Chi2 with MinSup = 0.2,

MinPerc = 0.25, and MinCor = 0.25 for our relation example

(see Table I) are shown in Table III.

Algorithm 2 LHS-Chi2 Algorithm

Input: X and Y two patterns

Output: {itemset Z ⊆ X such that χ2(Z) ≥ MinCor}

1: if Y = ∅ and |X| ≥ 2 and ∃c ∈ C : c ∈ X and χ2(X) ≥

MinCor then

2: Output X, χ2(X)

3: end if

4: A := max(Y )

5: Y := Y\{A}

6: LHS-Chi2(X, Y)

7: Z := X ∪ {A}

8: if ∀z ∈ Z, ∃W ∈ BD+ : {Z\z} ⊆ W then

9: VC(Z) := CREATE CV(CV(X), Tid(A))

10: if |Z| ≤ MaxCard and

CtPerc(CV (Z), MinPerc, MinSup) then

11: BD+ := max⊆(BD+ ∪ Z)

12: LHS-Chi2(Z, Y)

13: end if

14: end if

TABLE III

Results of the LHS-Chi2 Algorithm Over Table I

Decision Correlation Rule χ2 Value

At1 0.48
BCt1 0.28
BFt1 0.28

IV. MineCor Software

We developed a global KDD model including the LHS-

Chi2 algorithm. The software, called MineCor (Miner for

Correlations), is developed in C language. To carry out pre-

processing and transformation in the form of a transaction

database of the CSV files given by our manufacturer partners

(see the end of Section I), we have first performed column

elimination and discretization stages [1], [31]. These steps,

known as data cleaning or cleansing in the literature, are

summarized in Sections IV-A and IV-B. The output of the

two steps is placed into a feature database, which serves as

a source for the data mining phase. Finally, after the mining

step, the results are interpreted, what is resumed in Section

IV-C.

A. Preprocessing Stage

The first step of data cleaning is the preprocessing stage.

Data has to be prepared for two reasons: 1) if each value of

each column is considered as a single item, the search space

explodes combinatorially, and results cannot be provided in a

reasonable amount of time, and 2) we cannot expect this task

to be performed by an expert, because manual cleaning of data

is laborious and subject to errors.

Preprocessing consists in the reduction of the data structure

[32] by eliminating columns (and rows) of low significance.

Such situations can result, for example, from the dysfunction

of one or more sensors, or from the occurrence of a mainte-

nance step. As a consequence, corresponding columns contain

many null or default values, and must be deleted from the

source file. Moreover, sometimes, several sensors measure the
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same information, resulting in identical columns in the source

file. In this case, we keep only a single column. Another

classical technique is the elimination of columns having small

standard deviation. Since all values are almost the same,

we consider that they do not have a significant impact on

the result; but their inclusion pollutes the search space and

reduces the response time of MineCor. Attention is finally

paid to missing or inconsistent values, such as “outliers” and

noisy columns. Elimination is performed through thresholds

specified by the end-user.

B. Discretization Stage

Discrete values deal with value intervals, which are more

concise to represent knowledge, so that they are easier to use

and comprehend than continuous values.

Many discretization algorithms have been proposed over the

years in order to classify data into intervals, also called bins. In

this section, we only summarize these methods. Discretization

can be performed [33]: 1) in a supervised or unsupervised

manner, depending on whether class information is at one’s

disposal; 2) in a dynamic or static way: with a static discretiza-

tion approach, discretization is done before the classification

task; and 3) using splitting or merging techniques. In the latter

case, using a bottom-up approach while examining the search

space.

We represent continuous real valued columns by associating

each of their values with an interval code. The bins are created

either using equal-width or equal-frequency discretization,

which are nonsupervised, static, and splitting methods. In both

approaches, arity k is the number of intervals to use. And the

different values associated with each set S are managed in the

same way through initial normalization.

1) Equal Width Discretization (EWD): Let S be the set of

values to be discretized, and respectively MinS and MaxS the

smallest and the largest value of S. Each interval has a length

of l = MaxS−MinS

k
. The computed classes are c1 : [MinS , MinS+

l[, c2 : [MinS + l, MinS + 2l[, ....

2) Equal Frequency Discretization (EFD): The goal is to

obtain classes having, if possible, the same number of contin-

uous values. The Jenks’ natural breaks method minimizes the

in-class difference and maximizes the between-class difference

[34]. This can be measured by the goodness of variance fit

(GVF)

GVF = 1 −

∑k
j=1

∑|[Si,Sj]|

i=1 (Si − [Si,Sj])2

∑|[S]|
i=1 (Si − S)2

where |[Si,Sj]| is the cardinality of the interval [Si,Sj], and

S is the mean of the sorted set S. Jenks’ method is the best

from a statistical point of view because it creates homoge-

neous groups. Its main drawback is the high computational

complexity of the class generation, which is Ck−1
d−1, where d

represents the number of distinct values in the set S. Thus,

we use instead the Fisher’s exact optimization method [35]

proposed for grouping n elements into k mutually exclusive

and exhaustive subsets having maximum homogeneity. The

partition is guaranteed to be optimal, but not unique, which is

Fig. 2. Output produced by MineCor.

not important while the obtained time gain is. This is why the

EFD method is also referred to, in the next sections of this

paper, as the Fisher–Jenks’ method.

Example 15: Let S = {1.8, 1.9, 2.1, 2.2, 1.3, 2.0, 0.5, 0.6,

0.5, NULL} be the set to discretize. If we specify two output

classes, the proposed methods produce the following results.

1) EWD: since MaxS−MinS

2
= 1.35, this method computes

the classes [0.6, 1.3], [1.8, 2.2]. As a consequence, the

set S is encoded by the vector {B, B, B, B, A, B, A,

A, A, - } in the output of the discretization step (“-”

symbolizes the NULL value).

2) EFD: the Fisher–Jenks’ method produces ten class

generation possibilities. The one which maximizes the

squared sum is [0.5, 0.6], [1.3, 2.2]. The following

vector is produced to represent the set S: {B, B, B,

B, B, B, A, A, A, - }. Let us underline that we retrieve

here partial results presented in Table I.

C. Interpretation Stage

Interpretation essentially consists in decoding the discretiza-

tion stage with regard to the results, and to produce an

intelligible output for the end-user. MineCor produces outputs

in HTML and text formats.

Example 16: Fig. 2 provides an example of output pro-

duced by MineCor, limited to some 3-patterns. Given a row,

the last column is the computed χ2 value for the associated

decision correlation rule.

As mentioned in Section IV-B, and because EWD is the

default method, the results shown are slightly different than

those presented in Table III.

V. Experimental Analysis

Some representative results of the LHS-Chi2 algorithm are

presented below. The comparison is made with a standard

levelwise (a complete a priori) algorithm, hereafter called

Levelwise, based on the same monotone and antimonotone

constraints as those used in LHS-Chi2 (see Section III).

The main difference is that the Levelwise method does not

use contingency vectors but uses standard computation of

contingency tables.

As emphasized in Section I-C, the experiments were done

on different CSV files of real value measures supplied by

STM and ATM. These files have one or more target columns,

resulting from the concatenation of several measurement files.

The characteristics of the datasets used for experiments can

be found in Table IV. All experiments were conducted on a

HP Workstation (1.8 GHz processor with a 4 GB RAM).
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TABLE IV

Dataset Examples

Name Number of Columns Number of Rows

STM File 1281 297
ATM File 749 213

Fig. 3. Execution time with MinPerc = 0.34, MinCor = 1.6 (STM file:
target1).

Fig. 4. Execution time with MinPerc = 0.24, MinCor = 2.8 (ATM file:
target2).

Experimental results are presented on Figs. 3 to 8(c). The

EWD discretization method is used in all the experiments

carried out in Sections V-A to V-C.

A. Execution Times for LHS-Chi2 and Levelwise Algo-

rithms

Figs. 3 and 4 show the evolution of the execution times

for both methods for the two files when MinSup varies and

MinPerc and MinCor are fixed. As the graphs point it out,

the response times of our method are between 30% and 70%

better than Levelwise, even if they remain high when using

small thresholds. In each case, an increasing windowing of the

results is provided for subsequent subintervals of MinSup.

B. Impact of the MinPerc Parameter

Fig. 5 shows the execution times for the STM file (using

the same configuration as the experiment in Fig. 3) when

MinSup and MinCor are constant, and when MinPerc varies.

The staircase curve thus explains. A CT associated with a i-

pattern containing 2i cells, specifying that MinPerc of its cells

must have the support means that ⌈2i ∗ MinPerc⌉ cells must

have it. So, for a 3-pattern, to define a value for MinPerc

varying between 0% and 12.49% means specifying that one

single cell of the CT has to have the support, and so on. The

scale is logarithmic, because response times for small values

of MinPerc are very high (more than 13 h for LHS-Chi2, and

about 69 h for Levelwise with MinPerc = 0.12).

Fig. 5. Execution time with MinSup = 0.24, MinCor = 6.9 (STM file:
target1).

Fig. 6. Results with MinSup = 0.38, MinPerc = 0.24 (ATM file: target3).

C. Impact of the MinCor Parameter

Fig. 6 shows the number of extracted rules (identical in

both methods) after mining when MinPerc and MinSup are

fixed with suitable values and when MinCor varies. In that

particular case, execution times are identical whatever the

MinCor value, but are of the order of 2 min with LHS-Chi2,

and about 17 min for Levelwise. This means that the MinCor

threshold only has a small effect on performance.

D. Impact of the Discretization Stage

Figs. 7(a) and 8(a) show the number of items kept after

the preprocessing and discretization stages. This number only

depends on the MinSup threshold, while the number of bins is

constant [4 in Fig. 7(a), and 6 in Fig. 8(a)]. In each example,

all items with a support greater than MinSup are kept.

As illustrated in Figs. 7(a) and 8(a), the smaller the threshold

MinSup, the larger the number of items kept for the mining

stage, whatever the discretization method. Figs. 7(b) and 8(b)

show the number of rules generated in both cases. While the

number of partitions generated by the EFD method is larger

than the one generated by the EWD method, the number of

rules is smaller. Moreover, the execution time is shorter by

a factor up to 2.5 [see Figs. 7(c) and 8(c)]. These results

come from the perspective that MineCor tries to provide

rules of “best” quality: 1) low in number; 2) significant; and

3) computed quickly.

Finally, let us emphasize that the experimental sets used in

Fig. 7 produce decision correlation rules with a cardinality

of 4. This is the kind of information that is of interest for

semiconductor manufacturers, as well as different possible

crossings using other techniques (see Section I-B) between

rules of cardinality 3 and 4.
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Fig. 7. Results with four intervals, CtPerc = 0.34, MinCorr = 1.6 (STM file: target1). (a) Number of items kept after discretization/preprocessing stages.
(b) Number of generated decision correlation rules. (c) Execution time.

Fig. 8. Results with six intervals, CtPerc = 0.3, MinCorr = 2.8 (ATM file: target3). (a) Number of items kept after discretization/preprocessing stages.
(b) Number of generated decision correlation rules. (c) Execution time.

VI. Conclusion and Future Work

In this paper, we showed the different facets of the MineCor

software. CSV parameter measurement files given by semicon-

ductor manufacturers (STMicroelectronics and ATMEL) are

used as input, and produce as output values of parameters

with most influence on the yield. To achieve this objective,

we built a complete knowledge discovery in databases model,

based on:

1) decision correlation rules, i.e., a restriction of correlation

rules containing a target attribute value;

2) contingency vectors, i.e., an alternative representation

of contingency tables, which are more concise and

offer better performance related properties. We finally

proposed an algorithm based on the lectic order to go

through the powerset lattice.

The LHS-Chi2 algorithm is the heart of our model. It uses the

inference property of the contingency vector of a pattern given

the contingency vector of one of its direct subsets. The exper-

iments show that the proposed method computes rules faster

than those offered by levelwise algorithms. Moreover, we

implemented two methods at the discretization stage: 1) equal

width discretization, and 2) equal frequency discretization

based on the Fisher–Jenks’ method. Experiments show that,

in most cases, the latter method produces decision correlation

rules faster and of better quality. Furthermore, the software

enables us to find new correlations between the parameters of

the files that have been studied. As an example, approximately

25% of the correlation rules determined by the first experiment

were unknown to STM, and the quasi-totality of the results

obtained have been experimentally validated.

Finally, let us emphasize that the presented post hoc method

could also be applied in real-time, i.e., associated with specific

process steps, from the moment on the relevant configuration

parameters are set up in an optimal way. Moreover, our

KDD model could be used in other domains than wafer

manufacturing.

Some new issues to our work are: 1) to optimize memory

management in order to increase the performance of LHS-

Chi2; 2) to compare our approach with other mining methods;

3) to optimize the processing stages upstream of the algorithm

(aggregation of attributes, merging of intervals) while safe-

guarding the context in order to obtain a larger number of rules

and more significant results; and 4) to broaden the correlation

rule extraction problem on items to those on literalsets.
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Discovering Correlated Parameters in
Semiconductor Manufacturing Processes:

A Data Mining Approach
Alain Casali and Christian Ernst

Abstract—Data mining tools are nowadays becoming more and
more popular in the semiconductor manufacturing industry, and
especially in yield-oriented enhancement techniques. This is be-
cause conventional approaches fail to extract hidden relationships
between numerous complex process control parameters. In order
to highlight correlations between such parameters, we propose in
this paper a complete knowledge discovery in databases (KDD)
model. The mining heart of the model uses a new method
derived from association rules programming, and is based on two
concepts: decision correlation rules and contingency vectors. The
first concept results from a cross fertilization between correlation
and decision rules. It enables relevant links to be highlighted
between sets of values of a relation and the values of sets of
targets belonging to the same relation. Decision correlation rules
are built on the twofold basis of the chi-squared measure and of
the support of the extracted values. Due to the very nature of
the problem, levelwise algorithms only allow extraction of results
with long execution times and huge memory occupation. To offset
these two problems, we propose an algorithm based both on the
lectic order and contingency vectors, an alternate representation
of contingency tables. This algorithm is the basis of our KDD
model software, called MineCor. An overall presentation of its
other functions, of some significant experimental results, and of
associated performances are provided and discussed.

Index Terms—Chi2 correlation statistic, data mining, decision
rule, semiconductor manufacturing.

I. Introduction and Motivation

I
N THIS SECTION, we first introduce why and how data

mining techniques are useful to enhance semiconductor

fabrication capabilities. Discussion is set on how to detect

the main parameters which have an impact on yield loss

rather than on how to improve final yield. Then we present

our approach that determines the main correlated production

parameters impacting the yield.

A. Data Mining Techniques in the Manufacturing Industry

Data mining [1] allows us to extract data in terms of models

which may be rules, concepts, patterns, anomalies, or trends
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that are useful and intelligible for the end-user. Nowadays,

databases or data warehouses of significant size implicitly con-

tain a large amount of relevant information. Their extraction

presents an interest in various domains such as marketing,

design, medical research [2], telecommunication networks [3],

dynamic restructuring of websites [3], manufacturing sciences

[4], and so on.

Data mining models can be categorized into four types

[1]: classification, clustering, prediction, and association rules.

Such approaches have been widely carried out in manufac-

turing areas [4]. Data mining extracts knowledge to identify

hidden patterns in the parameters that control manufacturing

processes or to determine and to improve product quality.

Unfortunately, there is no standard scalable model for man-

ufacturing applications. The models used are a collection of

“implementation specific” data mining algorithms. Associated

applications can be roughly divided into six categories.

1) Customer relationships: the objective is to develop the

relationship with the customers in order to maximize

profits.

2) Engineering design: based on historical data, the goal

is to optimize design specification by matching the

temporal data of a new product with the knowledge base.

3) Manufacturing systems: in such environments, the need

and importance of data is ever present for statistical pro-

cess control (SPC) purposes; SPC consists in effective

statistical methods for monitoring a process through the

use of control charts, by enabling the use of objective

criteria for distinguishing background variation from

events of significance.

4) (Equipment) maintenance: since databases contain in-

formation to improve processes, they also contain the

reasons for machine failures.

5) Fault detection and quality improvement: examining

what happened in the past is used to better understand

the process, and therefore to predict and to improve the

future system’s performance. Virtual metrology [5] is

here one of the most novel tools.

6) Decision support systems: the goal is to determine

links between control parameters and product quality,

essentially in the form of (decision) rules.

We focus hereafter on the last two points, which deal with

quality, and thus implicitly with product yield. Moreover, we

0894-6507/$26.00 c© 2011 IEEE
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concentrate on a particular application area, semiconductor

wafer manufacturing. Yield is here defined as the ratio of

nondefective chips in a finished wafer to the number of

input products. However, we do not directly focus on yield

enhancement, but on front-end issues, as shown in the next

paragraph.

B. Enabling Quality in Semiconductor Fabs

In semiconductor manufacturing facilities, the volume and

the complexity of the collected data are generally much more

consequent than in other manufacturing fields due to the very

nature of the domain. Fabrication processes include several

hundred steps with regard to the produced “chip.” Each of

these steps uses various chemico-physical recipes, divided into

four main phase units (photolithography, etch, implant, and

chemical mechanical polishing).

Two approaches are used to improve the yield: real-time and

post hoc. The first approach monitors on-line measurements

of specific process steps, and undertakes corrective action

to ensure that the parameter being measured remains within

the desired limits. The post hoc approach compares the end

result of the whole process with the desired specifications,

analyzing the root causes of low yield for adjusting the

process parameters to ensure future quality. Advanced process

control (APC), an extension of SPC, considers both aspects

by highlighting correlations between production parameters in

order to rectify possible shifts of the associated process(es).

This can be done for specific equipment and process steps

in real-time: fault detection and classification (FDC) tools,

and run to run (R2R) feedback and feedforward regulation

loops are most representative APC techniques. FDC detects

monitored key parameters which tend to drift. After identifying

an abnormal status of a tool or a process running on it, the goal

is to classify the detected failure. Associated data are finally

checked by conventional SPC tools such as univariate or multi-

variate statistical methods, or by knowledge based procedures.

R2R is an increasingly used process control method where

process recipes are modified during the fabrication chain to

diminish process drifts. The recipe contains all the equipment

parameters required for a given process. A R2R control loop is

able to center a process on a given value, by acting on defined

parameters to reduce the process variability.

Correlations can also be discovered post hoc, i.e., after the

whole fabrication process has been completed. This is the

framework of our paper.

Both approaches try to identify the parameters causing

particular yield excursion. By automatically deriving correla-

tions between variability in process parameters including yield,

model-based analysis can then reduce the time required to

determine the yield loss causes. Let us emphasize that this

second nontrivial problematic is excluded from the scope of

this paper.

However, in manufacturing plants, conventional methods

are inaccurate to improve yield, because they fail to extract

underlying features from complex data [6], [7]. These methods

include SPC and derived techniques such as FDC, design of

experiments, or spatial mapping analysis. Component speci-

fication changes, mean process shift and variance reduction

are well-known SPC techniques, while control charts aim at

monitoring processes in order to detect abnormal drifts but

cannot point out which parameters impact them.

When studying data mining techniques in semiconductor

fabrication, the most widely used method is classification, even

if it generally focuses on very specific process stages, such as

cleaning [8], or photolithography [9]. The aim of classification

is to build a classifier by induction from a set of pre-classified

instances (the sensor measures). The classifier is then used

to categorize “unlabeled” instances. Decision tree induction is

the most representative approach in the field [10].

Clustering methods correspond to a particular classification

of values into clusters. Among the relevant hierarchical algo-

rithms that search to minimize a formal objective function,

the most widely used is K-means clustering [11]. K-means

remains also the simplest and most commonly used nonhier-

archical algorithm employing a squared error criterion [12].

Prediction systems search to perform automatic discovery

of significant parameters having an impact on the yield.

Genetic programming [13] or neural networks [8] are therefore

employed. Input data are first grouped into categorical classes.

Field engineers can then build the relationship between the low

yield lots and the in-line measurements at specific stages and,

by the way, use these measurements to predict the future line

yield.

Finally, only association rules are not often used to try to

enhance yield. In [14], the authors used a modified a priori

algorithm in LCD panel manufacturing to locate machines

with low yield after completion of processes, and thus to

improve the yield rate. In [15], correlations are also analyzed

between combinations of used tools and defective products.

Other relevant approaches do not directly deal with the semi-

conductor area [16].

C. Our Approach

We present hereafter a whole KDD model based on specific

association rules. Within this framework, and in collabora-

tion with STMicroelectronics (STM) and ATMEL (ATM),

this paper is focused on the detection of the main control

parameters impacting the yield. The goal is not to directly

enhance the yield, but to propose indicators to which special

attention should be paid in further production cycles through,

for example, the construction of yield enhancement models.

Our post hoc analysis is based on comma-separated values

(CSV) files of real valued measurements associated with

production lots. These data have themselves been extracted

in a previous step from very large manufacturer databases,

covering the four fabrication units mentioned at the beginning

of Section I-B. The main characteristic of the CSV files is the

huge number of columns (nature of the measurements) with

regard to the number of rows (measures). We want to highlight

correlations between the values of some columns and those of

a target column: a particular column of the file, the yield. To

detect these correlations, we introduce the concept of decision

correlation rules, a restriction of correlation rules containing a

value of one target column. In order to compute these rules:

1) We use the lectic order [17] to browse the powerset

lattice (the search space).
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TABLE I

Relation Example r

Tid ItemSet Target
1 BCF t1
2 BCE t1
3 BCF t2
4 BC -
5 BD t1
6 B -
7 ACF t1
8 AC -
9 AE t1
10 F t2

2) We propose the concept of contingency vector: a new

approach to contingency tables.

3) We show how to build the contingency vector of a

pattern with a cardinality i with the contingency vector

of one of its subsets with a cardinality i − 1 (which is

impossible with contingency tables).

4) We take advantage of the lectic order, the contingency

vectors and the recursing mechanisms of construction to

propose the LHS-Chi2 algorithm.

This paper is organized as follows. In Section II, the

bases of association and correlation rules, and of the lectic

order are recalled. Section III describes the concepts used

for mining decisional correlation rules and our algorithm. In

Section IV, we expose the other functions of the software—

called MineCor—developed for mining decisional correlation

rules. Experiments are detailed in Section V. As a conclusion,

we summarize our contributions and outline some research

perspectives.

II. Related Work

In this section, we recall the definitions of association rules,

correlation rules [18], and lectic order [17]. Then, we introduce

the Ls algorithm [19]. It allows the browsing of the search

space according to the lectic order.

A. Statement of the Problem

An association rule is an approximate implication X → Y

between two sets of items X and Y . Two measures are used to

extract such rules: 1) support: the proportion of transactions

(rows) containing X and Y , and 2) confidence: the ratio

between the support of Y and the support of X (the degree

of truth of the implication).

Example 1: The relation example r of Table I illustrates the

introduced concepts. The BC pattern has a support equal to

4, and the rule B → C has a confidence equal to 2/3. This

means that two thirds of the transactions including pattern B

also contain pattern C.

Agrawal et al. [20] introduced levelwise algorithms for the

computation of association rules in reasonable response times.

Because the underlying semantics of an association rule are

fairly poor, Wu et al. [21] introduced literal sets and proposed

the computation of positive and/or negative association rules

such as ¬X → Y .

A literal is a pattern XY in which X is also called the

positive part and Y the negative part. To compute such

rules, the authors still use the support-confidence platform by

redefining the support of a literal: the number of transactions

of the binary relation including X and containing no 1-item

(item of cardinality 1) of Y .

Example 2: With the relation example r, the literalset BC

has a support equal to 2. As a consequence, the association

rule B → C has a confidence equal to 1/3. This means that

one third of the transactions containing pattern B does not

include pattern C.

Brin et al. [18] proposed the extraction of correlation rules.

The platform is no longer based on the support nor the

confidence of the rules, but on the chi-squared statistical

measure, written χ2. The use of χ2 is well-suited for several

reasons: 1) it is a more significant measure in a statistical way

than an association rule; 2) the measure takes into account

not only the presence but also the absence of the items; and

3) the measure is nondirectional, and can thus highlight more

complex existing links than a “simple” implication.

The crucial problem, when computing correlation rules, is

the memory usage required by levelwise algorithms. For a pat-

tern X, the computation of the χ2 function is based on a table

including 2|X| cells. Thus, at level i, Ci
n candidates (where n is

the number of values of r) have to be generated and stored, in

the worst case scenario, as well as the associated contingency

tables. With cells encoded over 2 Bytes, corresponding storage

space requires 2.5 GB of memory at the third level, and 1.3 TB

at the fourth level. This is why Brin et al. [18] computed only

correlations between two values of a binary relation. Using an

end-user threshold MinCor, Grahne et al. [22] showed that

the “χ2(X) ≥ MinCor” constraint is monotone. Consequently,

the resulting set of rules is a convex space [23], which can be

represented by its minimal border [24], noted L. In this paper,

the author proposed a levelwise algorithm to compute L, and

used an approximation to compute the χ2 value of any pattern

belonging to that convex space.

B. Correlation Rules

Let r be a binary relation (a transaction database) over a set

of items R = I ∪ T . In our approach, I represents the values

(the items) of the binary relation used as analysis criteria,

and T is a target attribute. For a given transaction, the target

attribute does not necessarily have a value. The computation

of the value for the χ2 function for an item X ⊆ R is based

on its contingency table. In order to simplify the notation, we

first introduce the lattice of the literalsets associated with a

pattern X ⊆ R. This set contains all the literalsets that can be

built up given X, and with a cardinality |X|.

Definition 1 (Literalset Lattice): Let X ⊆ R be a pattern.

We denote by P(X) the literalset lattice associated with

X: P(X) = {YZ such that X = Y ∪ Z and Y ∩ Z = ∅} =

{YZ such that Y ⊆ X and Z = X\Y}.

Example 3: The literalset lattice associated with

X = {A, B, C} contains the following elements:

{ABC, ABC, ACB, BCA, ABC, BAC, CAB, ABC}.

Definition 2 (Contingency Table): For a given pattern X, its

contingency table, noted CT (X), contains exactly 2|X| cells.

Each cell stores the support of a literalset YZ belonging to

the literalset lattice associated with X.
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TABLE II

Contingency Table of Pattern BC

B B
∑

row

C 4 2 6

C 2 2 4
∑

column 6 4 10

Example 4: With the relation example r given in Table I,

Table II shows the contingency table of pattern BC.

For each cell YZ of CT (X), we compute its expectation

value: the theoretical frequency in case of independence of

the 1-items included in YZ [see (1)]

E(YZ) = |r| ∗
∏

y∈Y

Supp(y)

|r|
∗

∏

z∈Z

Supp(z)

|r|
. (1)

Formula (2) finally computes the value of the χ2 function

for a pattern X

χ2(X) =
∑

YZ∈P(X)

(Supp(YZ) − E(YZ))2

E(YZ)
. (2)

Brin et al. [18] showed that there is a single degree of

freedom between the items. A table giving the centile values

with regard to the χ2 value for X can be used in order to

obtain the correlation rate for X [25].

Example 5: Continuing our example, χ2(BC) ≃ 0.28,

which corresponds to a correlation rate of about 45%.

Unlike association rules, a correlation rule is not represented

by an implication but by the patterns for which the value of

the χ2 function is larger than a threshold.

Definition 3 (Correlation Rule): Let MinCor be a thresh-

old (≥ 0), and X ⊆ R a pattern. If the value for the χ2

function for X is larger than or equal to MinCor, then this

pattern represents a valid correlation rule.

Many authors have proposed additional constraints to eval-

uate whether a correlation rule is semantically valid [26].

Generally, the Cochran criteria are used: 1) all literalsets of a

contingency table must have an expectation value not equal to

zero (which never happens in our context), and 2) 80% of them

must have a support larger than 5% of the whole population.

This last criterion has been generalized by Brin et al. [18]

as follows: MinPerc of the literalsets of a contingency table

must have a support larger than MinSup, where MinPerc and

MinSup are also thresholds.

Example 6: Let MinCor = 0.25, then the correlation rule

materialized by the BC pattern is valid (χ2(BC) ≃ 0.28).

However, the correlation rule represented by the Bt1 pattern

is not valid (χ2(Bt1) ≃ 0.1).

C. Lectic Order

The lectic order, noted <lec, enumerates all the subsets of

an itemset I. This order allows the closed lattice of a binary

relation to be computed [17], or to serve as a basis for the

computation of the partition cube [19]: a lossless reduction of

the data cube.

Fig. 1. Execution tree of Ls for I = {A, B, C}.

Definition 4 (Lectic Order): Let I be a set of items totally

ordered and therefore comparable two by two via an order

denoted by �. If X and Y ⊆ I, then we have X <lec Y ⇔

max�(X\(X ∩ Y )) � max�(Y\(X ∩ Y )).

Example 7: Let us consider the set I = {A, B, C}, totally

ordered according to the lexicographic order. The enumeration

of the subsets of I, according to the lectic order, produces

the following result: ∅ <lec A <lec B <lec AB <lec C <lec

AC <lec BC <lec ABC.

In order to enumerate all the subsets of I according to the

lectic order, the lectic subset algorithm, noted Ls [19], [27],

is used. It is a simplified version of Algorithm 2 (limited to

lines 1–7, 12). The associated execution tree is a balanced tree,

based on a double recursive call. Being given a node of the

tree (representing a pattern X ⊆ I), the left subtree generates

subpatterns of X not containing max�(X), whereas the right

subtree leads to subpatterns of X containing max�(X).

Example 8: Fig. 1 shows the execution tree of the Ls

Algorithm for I = {A, B, C}.

Proposition 1 expresses the fact that the lectic order is

compatible with the antimonotone constraints. Consequently,

we can modify the Ls algorithm to take into account a

conjunction of antimonotone constraints.

Proposition 1: Let be X, Y ⊆ I two itemsets. If X ⊂ Y ,

then X <lec Y [17].

III. LHS-Chi2 Algorithm

In this section, we introduce the contingency vectors: an-

other representation of the contingency tables. We show that,

for a given pattern X∪A (X ⊆ R, A ∈ R\X), the computation

of its contingency vector is possible using the contingency

vector of X and the list of the row identifiers of the relation

containing A. Then, we present the concept of the decision

correlation rule: a restriction of correlation rules, in such a way

that only the rules containing a value of the target attribute are

kept. Finally, in order to compute these rules, we describe the

LHS-Chi2 Algorithm.

A. Contingency Vectors

A literal YZ, belonging to the literalset lattice associated

with a pattern X, is represented in a computer with vectors of

|X| bits. For a 1-item x ∈ X, the value of the bit vector has a

value of 1 if x ∈ Y (the 1-item belongs to the positive part of

the literal), and 0 otherwise. Thus, comparing two literals Y1Z1

and Y2Z2 belonging to the literalset lattice associated with

pattern X, consists in comparing each integer corresponding
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to the binary value of the associated bit vector. The comparison

is equivalent to extending the definition of the lectic order to

the literalset one.

This order allows the total ordering of the whole literalset

lattice associated with pattern X.

Definition 5 (Lectic Order for a Literalset): Let X ⊆ R be

a pattern, Y1Z1 and Y2Z2 two elements of the literalset lattice

associated with the X pattern. The definition of the lectic order

is extended over the literalsets as follows: Y1Z1 <lec Y2Z2 if

and only if Y1 <lec Y2.

Example 9: The literalset lattice associated with the pattern

X = {A, B, C} according to the lectic order is the following:

ABC <lec ABC <lec BAC <lec ABC <lec CAB <lec

ACB <lec BCA <lec ABC.

Definition 6 (Equivalence Class Associated with a Literal):

Let YZ be a literal. Let us denote by [YZ] the

equivalence class associated with the literal YZ. This

class contains the set of transaction identifiers of the

relation including Y and containing no value of Z (i.e.,

[YZ] = {i ∈ Tid(r) such that Y ⊆ Tid(i) and Z ∩ Tid(i) = ∅}).

Example 10: With our relation example (see Table I), we

have [BC] = {5, 6}.

Proposition 2: Let X ⊆ R be a pattern. The union of the

equivalence classes [YZ] of the literalset lattice associated

with X is a partition [28] of the identifiers of relation r. In

other words

⋃

YZ∈P(X)

[YZ] = Tid(r).

Definition 7 (Contingency Vector): Let X ⊆ R be a pat-

tern. The contingency vector of X, denoted CV (X), groups

the set of the literalset equivalence classes belonging to P(X)

ordered according to the lectic order.

Proposition 2 ensures that each transaction identifier belongs

only to one single equivalence class. Consequently, for a given

pattern X, its CV is an exact representation of its contingency

table. To derive the contingency table from a contingency

vector, it is sufficient to compute the cardinality of each of its

equivalence classes. If the literalsets, related to the equivalence

classes of a CV , are ordered according to the lectic order,

it is possible to know the literal relative to a position i of a

contingency vector (i ∈ [0; |X|−1]). This is because the literal

and the integer i have the same binary coding.

Example 11: With our sample relation (see Table I),

the contingency vector associated with the BC pattern

is the following: CV (BC) = {[BC], [BC], [CB], [BC]} =

{{9, 10}, {5, 6}, {7, 8}, {1, 2, 3, 4}}.

Theorem 1 is the main result of our paper. It shows how to

compute the CV of the X ∪ A pattern given the CV of X and

the set of identifiers of the relation containing pattern A.

Theorem 1: Let X ⊆ R be a pattern and A ∈ R\X a

1-item. The contingency vector of X ∪ A can be computed

given the contingency vectors of X and A as follows:

CV (X ∪ A) = (CV (X) ∩ [A]) ∪ (CV (X) ∩ [A]). (3)

Example 12: With the relation example (see Table I), we

have CV (B) = {{7, 8, 9, 10}, {1, 2, 3, 4, 5, 6}} and CV (C) =

Algorithm 1 CREATE−CV Algorithm

Input: CV (X) contingency vector of X, Tid(A)

Output: contingency vector of X∪A sorted according to the

lectic order

1: CV (Z) := {∅}

2: for all Equivalence classes [YZ] ∈ P(X) according to the

lectic order do

3: CV (Z) := CV (Z)∪ ([YZ]∩ (Tid(r)\(Tid(A)))∪ ([YZ]∩

Tid(A))

4: end for

5: return CV (Z)

{{5, 6, 9, 10}, {1, 2, 3, 4, 7, 8}}. By applying Theorem 1, the

contingency vector of BC is the following: CV (BC) =

{{9, 10}, {5, 6}, {7, 8}, {1, 2, 3, 4}}. Thus, we retrieve the result

of Example 11.

Algorithm 1 is used, given the CV of a pattern X and the

set of the transaction identifiers containing a 1-item A, to build

the CV of the X∪A pattern sorted according to the lectic order

over the literalset lattice P(X ∪ A). Line 3 is an adaptation of

Theorem 1 to our context.

The computation of a CV needs one database scan, and

the following transition to the associated CT another one

(overheads are ignored). This leads to a complexity of 2 ∗ |r|

or O(|r|), whatever the number of cells in the CT . A classical

computation of a CT at level i also needs one database scan;

but here, in the worst case, each of the CT cells is involved

in one operation, which globally forces 2i ∗ |r| operations.

Because 2i is generally much smaller in comparison to |r|,

the complexity is also of O(|r|). But when going into detail,

the difference between the two methods is 2i−1∗|r| operations.

B. Decision Correlation Rules

Definition 8 (Decision Correlation Rules): Let X ⊆ R be

a pattern, and MinCor a given threshold. X represents a valid

decision correlation rule if and only if:

1) X contains a value of the target attribute T ;

2) χ2(X) ≥ MinCor.

Example 13: With our relation example (see Table I), if

MinCor = 0.25, the decision correlation rule materialized by

the BCt1 pattern is a valid rule because:

1) t1 ∈ T and t1 ∈ BCt1;

2) χ2(BCt1) ≃ 0.28 (≥ MinCor).

The lectic hybrid subset-Chi2 algorithm, or LHS-Chi2,

permits to extract the whole set of decision correlation rules

for a relation r satisfying the threshold constraint MinCor for

the χ2 function. This algorithm is an adaptation of the Ls

Algorithm to our context, by taking into account contingency

vectors. Moreover, we added several monotone and antimono-

tone constraints in order to prune the search space [22].

1) A value of the target attribute must be present in the

extracted pattern (monotone constraint).

2) As the χ2 computation has no significance for a 1-item,

we only examine patterns of cardinality larger than or

equal to two (monotone constraint).
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3) Since the χ2 function is an increasing function, we

impose a maximum cardinality, noted MaxCard, on the

number of 1-items belonging to the patterns to examine

(antimonotone constraint).

4) All literalsets of a CT must have an expectation value

not equal to zero (antimonotone constraint).

5) Because the obtained rules must have a semantics on

the relation, at least MinPerc of the cells of a CT

must have a support larger than or equal to MinSup.

This constraint is expressed in our algorithm by the

CtPerc predicate, which parameters are the contin-

gency vector, MinPerc and MinSup (antimonotone

constraint).
Laporte et al. [19] modified the Ls Algorithm in order

to compute “iceberg” data cubes. The authors included an

antimonotone constraint threshold, evaluated before the second

recursive call of the Ls Algorithm; they used a pruning step

with the negative border [29] in order to only examine the

most “interesting” cuboids (patterns in our context). In the

same spirit, we modify Ls in order to take into account the

five constraints above, and to compute the χ2. The result is an

algorithm requiring, in the worst case, |R|+MaxCard +1 CVs

in memory. We need |R| CVs for the 1-items, the height of

our tree is bounded by MaxCard, and we need an additional

CV for the current node computation. This value has to be

compared to the number of contingency tables to be computed

at each level using a levelwise algorithm (see the end of

Section II-A).

Proposition 1 justifies the inclusion of these constraints into

our algorithm. However, we do not carry out pruning using

the negative border. Instead, we use the positive border [29]

relating to predicate CtPerc. The use of the positive border

is justified on the basis of the experiments carried out by

Flouvat et al. [30]. The authors showed that the positive

border is of highly reduced cardinality in comparison with the

negative one. As a consequence, the satisfiability tests of the

antimonotone constraints are faster when the positive border

is used. In our context, we make sure that the Z pattern,

used as a parameter within the second recursive call of the

algorithm, has all its direct subsets included in one of the

elements of the positive border (line 8). Let us emphasize that

this test is carried out in the AprioriGen function [20] during

the generation of the candidates of level i+1 using the frequent

i-itemsets. If pattern Z is a candidate, then we compute its

contingency vector by making sure that the literalsets relating

to the classes of equivalence are sorted according to the lectic

order (line 9) by calling Algorithm 1. If the pattern satisfies

the antimonotone constraints (line 10), we update the positive

border (line 11), and carry out the second recursive call of the

algorithm (line 12). The monotone constraints are evaluated

on the leaves of the execution tree (line 1). By convention, we

have CV (∅) = {Tid(R), ∅}. The positive border is initialized

with {∅}. The pseudo code of LHS-Chi2 is provided in

Algorithm 2. The first recursive call to LHS-Chi2 is carried

out with X = ∅ and Y = R.

Example 14: The results of LHS-Chi2 with MinSup = 0.2,

MinPerc = 0.25, and MinCor = 0.25 for our relation example

(see Table I) are shown in Table III.

Algorithm 2 LHS-Chi2 Algorithm

Input: X and Y two patterns

Output: {itemset Z ⊆ X such that χ2(Z) ≥ MinCor}

1: if Y = ∅ and |X| ≥ 2 and ∃c ∈ C : c ∈ X and χ2(X) ≥

MinCor then

2: Output X, χ2(X)

3: end if

4: A := max(Y )

5: Y := Y\{A}

6: LHS-Chi2(X, Y)

7: Z := X ∪ {A}

8: if ∀z ∈ Z, ∃W ∈ BD+ : {Z\z} ⊆ W then

9: VC(Z) := CREATE CV(CV(X), Tid(A))

10: if |Z| ≤ MaxCard and

CtPerc(CV (Z), MinPerc, MinSup) then

11: BD+ := max⊆(BD+ ∪ Z)

12: LHS-Chi2(Z, Y)

13: end if

14: end if

TABLE III

Results of the LHS-Chi2 Algorithm Over Table I

Decision Correlation Rule χ2 Value

At1 0.48
BCt1 0.28
BFt1 0.28

IV. MineCor Software

We developed a global KDD model including the LHS-

Chi2 algorithm. The software, called MineCor (Miner for

Correlations), is developed in C language. To carry out pre-

processing and transformation in the form of a transaction

database of the CSV files given by our manufacturer partners

(see the end of Section I), we have first performed column

elimination and discretization stages [1], [31]. These steps,

known as data cleaning or cleansing in the literature, are

summarized in Sections IV-A and IV-B. The output of the

two steps is placed into a feature database, which serves as

a source for the data mining phase. Finally, after the mining

step, the results are interpreted, what is resumed in Section

IV-C.

A. Preprocessing Stage

The first step of data cleaning is the preprocessing stage.

Data has to be prepared for two reasons: 1) if each value of

each column is considered as a single item, the search space

explodes combinatorially, and results cannot be provided in a

reasonable amount of time, and 2) we cannot expect this task

to be performed by an expert, because manual cleaning of data

is laborious and subject to errors.

Preprocessing consists in the reduction of the data structure

[32] by eliminating columns (and rows) of low significance.

Such situations can result, for example, from the dysfunction

of one or more sensors, or from the occurrence of a mainte-

nance step. As a consequence, corresponding columns contain

many null or default values, and must be deleted from the

source file. Moreover, sometimes, several sensors measure the
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same information, resulting in identical columns in the source

file. In this case, we keep only a single column. Another

classical technique is the elimination of columns having small

standard deviation. Since all values are almost the same,

we consider that they do not have a significant impact on

the result; but their inclusion pollutes the search space and

reduces the response time of MineCor. Attention is finally

paid to missing or inconsistent values, such as “outliers” and

noisy columns. Elimination is performed through thresholds

specified by the end-user.

B. Discretization Stage

Discrete values deal with value intervals, which are more

concise to represent knowledge, so that they are easier to use

and comprehend than continuous values.

Many discretization algorithms have been proposed over the

years in order to classify data into intervals, also called bins. In

this section, we only summarize these methods. Discretization

can be performed [33]: 1) in a supervised or unsupervised

manner, depending on whether class information is at one’s

disposal; 2) in a dynamic or static way: with a static discretiza-

tion approach, discretization is done before the classification

task; and 3) using splitting or merging techniques. In the latter

case, using a bottom-up approach while examining the search

space.

We represent continuous real valued columns by associating

each of their values with an interval code. The bins are created

either using equal-width or equal-frequency discretization,

which are nonsupervised, static, and splitting methods. In both

approaches, arity k is the number of intervals to use. And the

different values associated with each set S are managed in the

same way through initial normalization.

1) Equal Width Discretization (EWD): Let S be the set of

values to be discretized, and respectively MinS and MaxS the

smallest and the largest value of S. Each interval has a length

of l = MaxS−MinS

k
. The computed classes are c1 : [MinS , MinS+

l[, c2 : [MinS + l, MinS + 2l[, ....

2) Equal Frequency Discretization (EFD): The goal is to

obtain classes having, if possible, the same number of contin-

uous values. The Jenks’ natural breaks method minimizes the

in-class difference and maximizes the between-class difference

[34]. This can be measured by the goodness of variance fit

(GVF)

GVF = 1 −

∑k
j=1

∑|[Si,Sj]|

i=1 (Si − [Si,Sj])2

∑|[S]|
i=1 (Si − S)2

where |[Si,Sj]| is the cardinality of the interval [Si,Sj], and

S is the mean of the sorted set S. Jenks’ method is the best

from a statistical point of view because it creates homoge-

neous groups. Its main drawback is the high computational

complexity of the class generation, which is Ck−1
d−1, where d

represents the number of distinct values in the set S. Thus,

we use instead the Fisher’s exact optimization method [35]

proposed for grouping n elements into k mutually exclusive

and exhaustive subsets having maximum homogeneity. The

partition is guaranteed to be optimal, but not unique, which is

Fig. 2. Output produced by MineCor.

not important while the obtained time gain is. This is why the

EFD method is also referred to, in the next sections of this

paper, as the Fisher–Jenks’ method.

Example 15: Let S = {1.8, 1.9, 2.1, 2.2, 1.3, 2.0, 0.5, 0.6,

0.5, NULL} be the set to discretize. If we specify two output

classes, the proposed methods produce the following results.

1) EWD: since MaxS−MinS

2
= 1.35, this method computes

the classes [0.6, 1.3], [1.8, 2.2]. As a consequence, the

set S is encoded by the vector {B, B, B, B, A, B, A,

A, A, - } in the output of the discretization step (“-”

symbolizes the NULL value).

2) EFD: the Fisher–Jenks’ method produces ten class

generation possibilities. The one which maximizes the

squared sum is [0.5, 0.6], [1.3, 2.2]. The following

vector is produced to represent the set S: {B, B, B,

B, B, B, A, A, A, - }. Let us underline that we retrieve

here partial results presented in Table I.

C. Interpretation Stage

Interpretation essentially consists in decoding the discretiza-

tion stage with regard to the results, and to produce an

intelligible output for the end-user. MineCor produces outputs

in HTML and text formats.

Example 16: Fig. 2 provides an example of output pro-

duced by MineCor, limited to some 3-patterns. Given a row,

the last column is the computed χ2 value for the associated

decision correlation rule.

As mentioned in Section IV-B, and because EWD is the

default method, the results shown are slightly different than

those presented in Table III.

V. Experimental Analysis

Some representative results of the LHS-Chi2 algorithm are

presented below. The comparison is made with a standard

levelwise (a complete a priori) algorithm, hereafter called

Levelwise, based on the same monotone and antimonotone

constraints as those used in LHS-Chi2 (see Section III).

The main difference is that the Levelwise method does not

use contingency vectors but uses standard computation of

contingency tables.

As emphasized in Section I-C, the experiments were done

on different CSV files of real value measures supplied by

STM and ATM. These files have one or more target columns,

resulting from the concatenation of several measurement files.

The characteristics of the datasets used for experiments can

be found in Table IV. All experiments were conducted on a

HP Workstation (1.8 GHz processor with a 4 GB RAM).
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TABLE IV

Dataset Examples

Name Number of Columns Number of Rows

STM File 1281 297
ATM File 749 213

Fig. 3. Execution time with MinPerc = 0.34, MinCor = 1.6 (STM file:
target1).

Fig. 4. Execution time with MinPerc = 0.24, MinCor = 2.8 (ATM file:
target2).

Experimental results are presented on Figs. 3 to 8(c). The

EWD discretization method is used in all the experiments

carried out in Sections V-A to V-C.

A. Execution Times for LHS-Chi2 and Levelwise Algo-

rithms

Figs. 3 and 4 show the evolution of the execution times

for both methods for the two files when MinSup varies and

MinPerc and MinCor are fixed. As the graphs point it out,

the response times of our method are between 30% and 70%

better than Levelwise, even if they remain high when using

small thresholds. In each case, an increasing windowing of the

results is provided for subsequent subintervals of MinSup.

B. Impact of the MinPerc Parameter

Fig. 5 shows the execution times for the STM file (using

the same configuration as the experiment in Fig. 3) when

MinSup and MinCor are constant, and when MinPerc varies.

The staircase curve thus explains. A CT associated with a i-

pattern containing 2i cells, specifying that MinPerc of its cells

must have the support means that ⌈2i ∗ MinPerc⌉ cells must

have it. So, for a 3-pattern, to define a value for MinPerc

varying between 0% and 12.49% means specifying that one

single cell of the CT has to have the support, and so on. The

scale is logarithmic, because response times for small values

of MinPerc are very high (more than 13 h for LHS-Chi2, and

about 69 h for Levelwise with MinPerc = 0.12).
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Fig. 5. Execution time with MinSup = 0.24, MinCor = 6.9 (STM file:
target1).
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Fig. 6. Results with MinSup = 0.38, MinPerc = 0.24 (ATM file: target3).

C. Impact of the MinCor Parameter

Fig. 6 shows the number of extracted rules (identical in

both methods) after mining when MinPerc and MinSup are

fixed with suitable values and when MinCor varies. In that

particular case, execution times are identical whatever the

MinCor value, but are of the order of 2 min with LHS-Chi2,

and about 17 min for Levelwise. This means that the MinCor

threshold only has a small effect on performance.

D. Impact of the Discretization Stage

Figs. 7(a) and 8(a) show the number of items kept after

the preprocessing and discretization stages. This number only

depends on the MinSup threshold, while the number of bins is

constant [4 in Fig. 7(a), and 6 in Fig. 8(a)]. In each example,

all items with a support greater than MinSup are kept.

As illustrated in Figs. 7(a) and 8(a), the smaller the threshold

MinSup, the larger the number of items kept for the mining

stage, whatever the discretization method. Figs. 7(b) and 8(b)

show the number of rules generated in both cases. While the

number of partitions generated by the EFD method is larger

than the one generated by the EWD method, the number of

rules is smaller. Moreover, the execution time is shorter by

a factor up to 2.5 [see Figs. 7(c) and 8(c)]. These results

come from the perspective that MineCor tries to provide

rules of “best” quality: 1) low in number; 2) significant; and

3) computed quickly.

Finally, let us emphasize that the experimental sets used in

Fig. 7 produce decision correlation rules with a cardinality

of 4. This is the kind of information that is of interest for

semiconductor manufacturers, as well as different possible

crossings using other techniques (see Section I-B) between

rules of cardinality 3 and 4.
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Fig. 7. Results with four intervals, CtPerc = 0.34, MinCorr = 1.6 (STM file: target1). (a) Number of items kept after discretization/preprocessing stages.
(b) Number of generated decision correlation rules. (c) Execution time.
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Fig. 8. Results with six intervals, CtPerc = 0.3, MinCorr = 2.8 (ATM file: target3). (a) Number of items kept after discretization/preprocessing stages.
(b) Number of generated decision correlation rules. (c) Execution time.

VI. Conclusion and Future Work

In this paper, we showed the different facets of the MineCor

software. CSV parameter measurement files given by semicon-

ductor manufacturers (STMicroelectronics and ATMEL) are

used as input, and produce as output values of parameters

with most influence on the yield. To achieve this objective,

we built a complete knowledge discovery in databases model,

based on:

1) decision correlation rules, i.e., a restriction of correlation

rules containing a target attribute value;

2) contingency vectors, i.e., an alternative representation

of contingency tables, which are more concise and

offer better performance related properties. We finally

proposed an algorithm based on the lectic order to go

through the powerset lattice.

The LHS-Chi2 algorithm is the heart of our model. It uses the

inference property of the contingency vector of a pattern given

the contingency vector of one of its direct subsets. The exper-

iments show that the proposed method computes rules faster

than those offered by levelwise algorithms. Moreover, we

implemented two methods at the discretization stage: 1) equal

width discretization, and 2) equal frequency discretization

based on the Fisher–Jenks’ method. Experiments show that,

in most cases, the latter method produces decision correlation

rules faster and of better quality. Furthermore, the software

enables us to find new correlations between the parameters of

the files that have been studied. As an example, approximately

25% of the correlation rules determined by the first experiment

were unknown to STM, and the quasi-totality of the results

obtained have been experimentally validated.

Finally, let us emphasize that the presented post hoc method

could also be applied in real-time, i.e., associated with specific

process steps, from the moment on the relevant configuration

parameters are set up in an optimal way. Moreover, our

KDD model could be used in other domains than wafer

manufacturing.

Some new issues to our work are: 1) to optimize memory

management in order to increase the performance of LHS-

Chi2; 2) to compare our approach with other mining methods;

3) to optimize the processing stages upstream of the algorithm

(aggregation of attributes, merging of intervals) while safe-

guarding the context in order to obtain a larger number of rules

and more significant results; and 4) to broaden the correlation

rule extraction problem on items to those on literalsets.
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