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Abstract. The disassembly line balancing problem is studied under uncertainty. 
Disassembly task times are assumed random variables with known probability 
distributions. An AND/OR graph is used to model the precedence relations 
among tasks. The goal is to assign the disassembly tasks to workstations while 
respecting precedence and cycle time constraints. The objective is to minimize 
the total line cost including the incompletion cost arising from task incomple-
tion within the cycle time. A stochastic linear mixed integer programming for-
mulation is developed. 
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1 Introduction 

    The growing amount of postconsumer products poses challenges for business and 
society at large [7]. To decrease the amount of waste to be sent to landfills, more and 
more manufacturers turn to end-of-life processing of products [6]. The selective sepa-
ration of desired parts and materials, executed by disassembly, is a mandatory step 
before recycling or remanufacturing [8]. As a consequence, disassembly systems tend 
to play an important role in industry.  Since their design results in complex optimiza-
tion problems, including disassembly planning, balancing and sequencing, efficient 
mathematical tools are needed in order to improve their performances and their cost 
effectiveness. Such tools must take into account the high degree of uncertainty in the 
structure and the quality of the products to be disassembled because of varying condi-
tions affecting them before they arrive in a disassembly system. This paper deals with 
the uncertainty related to the disassembly task times and proposes a new mathemati-
cal formulation for the stochastic disassembly line balancing problem (DLBP) as well 
as an exact method to solve it efficiently.   
 



2 Problem Formulation 

    The Disassembly Line Balancing Problem considered here aims to assign a given 
set of disassembly tasks I� �1,2, … , ��  to an ordered sequence of workstations 	 � �1,2, … ,
� under precedence and cycle time constraints. A task cannot be split 
between two workstations. Disassembly task times �� are assumed random variables 
with normal probability distributions having known mean   and variance ��, �. �. �� � ���, ���~��� , ���, �� � 0, � ∈ �, [5], [12-13]. The task times of set I are modeled 
by random vector �� � ����, ���, … , �� ! varying over a set Ξ ⊂ $%  in given probability 
space �Ξ, &, '�. Random variables	���,	� ∈ � are assumed to be mutually independent. 
Let ��� � )����!, � ∈ �	. 
The precedence relations among tasks are given by an AND/OR Graph (AOG), [2], 
[10], see Fig. 1. Each subassembly of the product to be disassembled is represented by 
an auxiliary node A� in the AOG. Each disassembly task gives a basic node B�. Two 
types of arcs define the precedence relations between the subassemblies and the disas-
sembly tasks. AND-type arcs (in bold) dictate the normal precedence relation. OR-
type arcs (remaining arcs) permit the selection of any of the successors. A dummy 
task , is introduced into the precedence graph as a sink node, see the figure below.  

 

Fig. 1. AND/OR precedence graph. 

The following notations have to be introduced. 
Parameters. � � �1,2, … , ��, disassembly tasks’ index set, � ∈ -∗; 	 � �1,2, … ,
�, workstations’ index set, 
 ∈ -∗; 

 / � �0,1, … , 0 1 1�, index set of the AND/OR precedence graph’s auxiliary nodes, 0 ∈ -∗; A2	: Auxiliary node of the AND/OR graph, 3 ∈ /	; B�	: Disassembly task, � ∈ �	; ,	: The AND/OR graph’s sink node, �4 � 0; 56	: Fixed cost per unit time of operating the workstations; 



78: cost per unit time of exceeding 9: , ; ∈ 	; 9: 	: Cycle time, 9: � 0; )����! : Random task time of B� , � ∈ �	; P�3� : Predecessors index set of A2, 3 ∈ /	i.e. P�3� � ��|B� 	preceeds	A2�; S�3� : Successors index set of A2, 3 ∈ /, S�3� � ��|A2	precceeds	B��. 
Decision Variables.  E�8 � F1				if	task	from	N� 	is	assigned	to	workstation	;,0				otherwise.																																																														 

E48 � F 1				if	sink	task	,	is	assigned	to	workstation	;,0				otherwise.																																																														 
S8 � T9: 			if	E48 � 1,			0				otherwise. 																																																										 

The objective considered in this paper is to minimize the line cost including fixed 
workstation operating costs and recourse costs caused by exceeding 9:. A recourse 
variable U8���!, ; ∈ 	, measures the amount of time exceeding 9: if there is any.  
The following model is used for the problem presented. 

Stochastic MIP Formulation (SMIP I).  

min V56 	W ;	S88∈X
+ Z[\ ]W78 	U8���!8∈X

^_																																																	 
s.t. 

S8 � 9: 	E48 , ∀	; ∈ 																																																																										�1� 
W WE�88∈X�	∈a�b�

� 1																																																																													�2� 
WE�88∈X

≤ 1, ∀	� ∈ �																																																																									�3� 
W WE�88∈X�∈a�2�

� W WE�88∈X�∈e�2�
, ∀	3 ∈ /\�0�																															�4� 

W E�h�∈a�2�
≤ W WE�8h

8i��∈e�2�
, ∀	3 ∈ /\�0�, ∀	j ∈ 																							�5� 

WE488∈X
� 1																																																																																							�6� 

W;	E�88∈X
≤W;	E488∈X

, ∀	� ∈ �																																																									�7� 



W)����!	E�8�∈n
1 U8���! ≤ Cp, ∀	; ∈ 																																													�8� 

S8 ≥ 0, ∀	; ∈ 																																																																																			�9� 
E48 , E�8 ∈ �0,1�, ∀	� ∈ �, ∀	; ∈ 																																																			�10� 
U8���! ≥ 0, ∀	; ∈ 																																																																										�11� 

The objective function includes fixed and recourse costs, where Z[\  stands for the 

expected value with the respect to the distribution of the random vector ��: 
              Z[\ t∑ 78 	U8���!8∈X v � w �∑ 78 	U8���!8∈X !	d'�x 																																	�12�  
Note that the integral (12) makes the model nonlinear one.  

Constraints (1) ensure the value of S8 to be 9: when dummy task , is assigned to 
station	;. Constraint (2) imposes the selection of only one disassembly task (OR-
successor) to begin the disassembly process. Constraint set (3) indicates that a task is 
to be assigned to at most one workstation. Constraints (4) and (5) define OR- and 
AND-precedence relations, respectively. Constraint (6) imposes the assignment of the 
dummy task  , to one station. Constraints (7) ensure the precedence relations for 
dummy task ,. The constraints (8) force the respect of the cycle time limitations. Sets 
(9)-(11) represent the trivial constraints. 
Let y � {	E | constraints (1)-(7), (9)-(10) are satisfied} and 	z � �1,2,… , L�, L ∈ -∗. 
If �� has a finite discrete distribution ���| , }|�, ~ ∈ z�, }| � 0, ∀	~ ∈ z (}|  is the realiza-
tion probability of �| of ��), then the model presented is an ordinary linear program 
with a so-called dual decomposition structure. 

Deterministic Equivalent (I’).  

min V56 	W;	S88∈X
+W}|W78 	U8��|�8∈X

�
|i�

_																																											 
s.t. 

W)���|�	E�8�∈n
1 U8��|� ≤ Cp, ∀	; ∈ 	, ∀	~ ∈ z																																		 

E ∈ y, U8��|� ≥ 0, ∀	; ∈ 	, ∀	~ ∈ z																																																					 
    Depending on the number of realizations of ��, L, this linear mixed integer program, 
may become very large in scale, but its particular block structure can be exploited by 
specially designed algorithms such as the L-shaped method, [1], [3-4], [9], [11] which 
will be developed in the next session. 



3 Solution Method    

3.1 The L-shaped Method 

    The main idea of the L-shaped method is to approximate the nonlinear term in the 
objective function of the two-stage stochastic problems [3]. Assume a finite realiza-
tions set Ξ of the stochastic vector �� such as |Ξ| � L. The L-shaped method for the 
DLBP can be written as follows.  

L-shaped Algorithm 

Step 0. Set � � � � � � 0. 
Step 1. Set � � � + 1. Solve the following LP: 

min���E + ��																																																																										 
s.t. 

�	E � �																																																																																						 
��E ≥ ��, � � 1,… , �																																																			�13� ℰ�E + � ≥ ℯ� , � � 1,… , �																																											�14� E	binary, � ≥ 0																																																																						 

Let �E�, ��� be an optimal solution. 
 
Step 2. For ~ � 1,… , L solve the following LP: 

min 			� � ���% + ����																																																												 
s.t. 

�	U + ��% 1 ��� � ℎ| 1 �|E�																																																		 U ≥ 0, �% ≥ 0, �� ≥ 0																																																																 
� � �1,… ,1��, until for some ~ the optimal value � � 0. In this case, let �� be the 
associated simplex multipliers, define 

��%� � ������|  
and 

��%� � �����ℎ|  
in order to generate a constraint called a feasibility cut of type (13). Set � � � + 1, add 
constraint type (13) and return to Step 1. If for all ~ ∈ z, � � 0 , go to Step 3. 
 
Step 3. For � 1,… , L , solve the LP: 



min 	� � q|�U																																																																 �	U � ℎ| 1 �|E�																																																											 U ≥ 0																																																																														 
Let �|� be the simplex multipliers associated with the optimal solution of problem ~ 
above and define 

ℰ�%� �W}|��|����||∈�
 

and 

ℯ�%� �W}|��|���ℎ||∈�
. 

Let �� � ℯ�%� 1 ℰ�%�E�. If �� ≥ ��, stop; E� is an optimal solution. Else, generate a 
constraint called optimality cut of type (14), set � � � + 1, add constraint type (14) 
and return to Step 1. 

This method approximates Z[\ t∑ 78 	U8���!8∈X v � w �∑ 78 	U8���!8∈X !	d'�x  using an outer 

linearization.   

Two types of constraints are sequentially added: 

• feasibility cuts (13) determining �E|Z[\ t∑ 78 	U8���!8∈X v < +∞ ; 
• optimality cuts (14), which are linear approximations to Z[\ t∑ 78 	U8���!8∈X v. 
4 Example 

The method presented has been applied to the compass example illustrated in Fig. 2. 
It is made of seven components: (1) wheel, (2) left leg, (3) right leg, (4) left fixation 
screw, (5) lead, (6) tip and (7) right fixation screw. The AOG for this example is 
shown in Fig. 1. The input data for the DLBP is presented in Table 1. 



 

Fig. 2. The Compass example. 

Table 1. Input data 

Task  � Subassembly Component  
1 0.21 0.05 1:5 6;7 |Ξ| � 1024 
2 0.21 0.05 1:3,6,7 4;5 	 � �1,2,3� 
3 0.50 0.10 2,4,5 1;3 / � �0,1, … ,5� 
4 0.21 0.05 1:3 4;5 56 � 5 
5 0.50 0.10 2,4,5/3,6,7 1 78 � 7, ; ∈ 	 
6 0.21 0.05 1:3 6;7 9: � 0.51 
7 0.50 0.10 3,6,7 1;2  
8 0.21 0.05 -- 2;4;5  
9 0.50 0.10 -- 1;2;3  
10 0.21 0.05 -- 3;6;7  
 

The L-shaped method was implemented in Microsoft Visual C++ 2008. ILOG 
CPLEX 12.4 was used to solve the model on a PC with Pentium(R) Dual-Core CPU 
2.30 GHz and 3Go RAM. The optimal solution contains 2 workstations. Task 5 is 
assigned to the 1st workstation and tasks {8,10} to the second one. The total line cost 
is 5.342 when the recourse cost is 0.242. The resolution time was 58 s. The overall 
idle time of the disassembly line, if mean time of each task selected is considered, is 
0.10. 

5 Conclusion and Perspectives 

    The disassembly line balancing problem was formulated under uncertainty. A two-
stage stochastic linear mixed integer program with fixed recourse was developed to 
solve it. The formulation presented can be easily adapted for the stochastic assembly 



line balancing problem as well. Then, the model can be considered for the disassem-
bly task times given by, for example, triangular distribution.  
Further research work should be done in order to refine the proposed mathematical 
model and solution method in order to approach real-world problems where uncer-
tainty does not only concern the disassembly task times but the quantity and the quali-
ty of the inputs and outputs of the disassembly line as well.  
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